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Taking	Regression	Further:	Finding	the	
Best	Fit	in	Multiple	Regression		
Chapter 7 acted as if there were only one way to conduct a regression analysis. The truth is that 

statisticians who understand how regression works know that the point is not in simply 

performing a regression, but in finding the regression model that best fits your data. Crawley 

says that “All models are wrong” (2007, p. 339). What Crawley means by this is that, whatever 

model you use to fit your data, there will be error. Thus all models are wrong, but some models 

are better than others. In general, a simpler model is better than a more complicated one, if they 

have the same explanatory value. A model with less error will be better than one with more error.  

 

In order to find the best model for your data, Crawley (2007) recommends beginning with the 

maximal model and then simplifying your model where possible. What is the maximal model? It 

is the one that includes all of the main	 effects (the effect of the variable by itself) plus all of the 

interactions between the terms. A main effect is the effect due to a variable by itself. Going 

back to the TOEFL example considered at the beginning of this chapter with the two explanatory 

variables of MLAT and hours of study, a model with only main effects looks like:  

 

TOEFL score = MLAT score + hours of study 

 

In order to make this example more interesting, let’s add a third variable of gender. Gender is of 

course a categorical variable with only two possible responses. It is perfectly acceptable to add a 

categorical variable to a regression but we will have to interpret the output for categorical 

variables a little differently than we did for continuous variables. So adding gender to the 
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equation, this model has only main effects for the three explanatory variables: 

  

TOEFL score = MLAT score + hours of study + gender  

 

However, it may be the case that there is an interaction between gender and hours of study. It 

may be the case that females study more than males, or vice versa. In other words, the way that 

gender and hours of study vary is linked. If there is an interaction, then we will want to include 

that in our equation as well, in order to most effectively model what is happening. An interaction 

can be shown by putting a colon between the two variables, as in the following model with an 

interaction between gender and hours of study shown:  

 

TOEFL score = MLAT score + hours of study + gender + gender:hours of study  

 

As stated above, the way a professional statistician would approach a question of regression is to 

consider the model that has the best fit. The statistician would start with the maximal model, 

which would include all of the possible interactions. In a model with three explanatory variables, 

there will be three two-way interactions and one three-way interaction:  

 
Two-way interactions:  

MLAT score:hours of study  

MLAT score:gender  

Gender:hours of study  

Three-way interaction:  

MLAT score:hours of study:gender  
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Putting all of the main effects and interactions into one regression model, then, would look like 

this:  

 

TOEFL score = MLAT score + hours of study + gender + MLAT score:hours of  

study + MLAT score:gender + gender:hours of study + MLAT score:hours of  

study:gender  

 

You can see that, if you have more than three explanatory variables, this model can very quickly 

get very complicated! In addition, you might want to add some quadratic terms, which are 

variables that are squared or raised to the cubic power. Why would you want to do this? If there 

is some curvature in your data then squared powers of a variable can help account for that 

curvature.  

Finding	the	Best	Fit	with	SPSS	
The problem with trying to conduct this type of regression analysis in SPSS is that it does not 

provide an easy way for us to evaluate model fit. In the R program different models can easily be 

compared using an ANOVA which tests the difference in something called “residual deviance” 

between the two models. If there is a statistical difference between the residual deviance of two 

models, you pick the model with the smaller deviance as the simpler model. In R there are also 

commands that help automate the process of testing each model against simpler ones (I like 

bootStep AIC). Because SPSS cannot really conduct this type of analysis, in this section I can 

only recommend that, if you think there might be an interaction, you can try including it in a 

regression analysis and see whether it helps improve the size of your R
2
 and also whether the 
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parameter coefficients for each part of the regression equation are statistical. You won’t be able 

to formally test whether one model is better than another, but you can still take a good shot at 

heading toward the minimally adequate model.  

 

The way to include an interaction term in a regression model is to simply create one yourself. I 

will illustrate this process with a file called TOEFLexample.sav that I made up to illustrate the 

TOEFL example in this chapter. Go to TRANSFORM > COMPUTE VARIABLE. In the box called 

“Target Variable” call the interaction between MLAT score and hours of study “MLAT_Hours” 

(the colon is an illegal character so I used the underscore). Then move the MLAT variable to the 

box labeled “Numeric Expression.” From the keypad in this screen put a “*” after MLAT to 

show multiplication. Then add the Hours of Study variable and press OK. In the dataset there is a 

new variable. I went ahead and made up interaction terms for the rest of the possible interactions 

with the three variables. Now I’ll create a regression with all three main effects (MLAT, Hours 

of Study, Gender) and all four interactions (MLAT_Hours, MLAT_Gender, Hours_Gender, 

MLAT_Hours_Gender). I’m interested in finding out the nature and size of the relationship 

between the TOEFL scores and my explanatory variables, so I’ll use standard regression (so the 

METHOD is “Enter”), and this procedure is shown in Figure 1.  
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Figure 1 Regression with interaction terms in SPSS. 

 

This model explains 41% of the variance (R
2 
= .64), but none of the terms is statistical! You can 

tell this by looking at the column in the Coefficients table of output that gives the significance of 

the t-test (Table 1). None of these numbers is less than .05, meaning that none of the terms is 

statistical. This model is thus not a very good one. We want to get to the sparest equation we can 

where all of the terms have a statistical coefficient.  
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Table 1 Testing the significance of terms in a maximal regression. 

 

 

Crawley’s recommendation is to look at the maximal model first and then simplify by taking out 

the largest interaction terms first. So I’ll run the regression again, taking out the three-way 

interaction, whose p-value is p=.624. For the new model now, R
2
 is 40%, and still none of the 

terms have statistical coefficients. Therefore, the next step would be to take out the two-way 

interactions, one at a time. Choose the one with the highest p-value for the t-test (the Sig. 

column), which is Hours_Gender. When I run the regression now without this term, the R
2 

= .40, 

and still none of the coefficients is statistical. The next highest p-value for the two-way 

interactions is for MLAT_Gender. However, I don’t see a statistical coefficient appear until I 

have taken out all of the interactions. With all of the interactions gone and only main effects left 

(see Table 2), I see that Hours of Study has a statistical coefficient (p=.004), and R
2 

= .33 (not 

shown in Table 2). I still want to simplify the model as much as I can until only statistical terms 

remain in the equation, so I’ll take out the main effect which has the highest p-value, which is 

Gender with p=.91 (see Table 2).  
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Table 2 Output for a Regression with Only Main Effects.  

 

 

 

It turns out that with just MLAT and Hours of Study in the equation, the p-value of MLAT is still 

.33, not statistical. I therefore continue to reduce the equation to its simplest value, an equation 

with just the Hours of Study. My final regression accounts for 32% of the variance in TOEFL 

scores. The Coefficients output for this minimally adequate model is shown in Table 3.  

 

Table 3 Output for a Minimally Adequate Regression.  

 

 

You might wonder why you shouldn’t stick with the regression that includes MLAT since it 

accounts for a higher amount (33%) of the variance, but the fact is that the more variables you 

include, the higher the R
2
 will always go. What you are looking for is the minimally adequate 

model. It might be that if we had been able to check model fit there would be no difference 
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between the model with two terms and that with one, in which case we would keep both Hours 

of Study and MLAT, but with SPSS we do not have a good way to determine that. I will also 

note that the model with only one term doesn’t seem to have the troubles with non-constant 

variances (heterogeneity of variances) that previous models did (as seen in the chart plotting 

studentized residuals against fitted values), so the model seems to adhere to assumptions better 

than previous models.  

 

My final regression equation will use the unstandardized coefficients (B) in the final model (you 

can see these in Table 3):  

 

TOEFL score = 444.2 + .54*Hours of Study + error  

 

I have barely scratched the surface here of the many things that would need to be kept in mind 

when doing this type of model simplification, but hopefully this will give you an idea of how you 

can take charge of your regression model and look for the minimally adequate model.  

Finding	the	Best	Fit	with	R	
When you begin to use R to perform regressions, the syntax for the command is so transparent 

that you cannot help but have some inkling of what you are doing! Once you understand what 

you are doing, you also come to understand that there are alternative ways of fitting a regression 

model to your data, and that you can easily alter the model. The quotation by John Fox at the 

beginning of chapter 7 summarizes this philosophy—the point is not in simply performing a 

regression, but in finding the regression model which best fits your data. Crawley says, “Fitting 

models to data is the central function of R. The process is essentially one of exploration; there 
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are no fixed rules and no absolutes. The object is to determine a minimal adequate model from 

the large set of potential models that might be used to describe a given set of data” (2002, p. 103). 

 

Let’s get started then! The first step to understanding how to fit models is to understand a little 

bit more about the syntax of R’s regression commands. You’ve already seen that a plus sign 

(“+”) simply adds variables together. This syntax asks R to add in the main effects of each 

variable. Another possibility for fitting a model is to use interaction effects. The colon (“:”) 

indicates an interaction effect. If you have 3 variables in your regression, a full factorial model 

that includes all main effects and interaction effects is: 

 

model = y~A + B + C + A:B + B:C + A:B:C 

 

There is a shortcut for this syntax, however, which is the use of the star (‘*’): 

 

model = y~A*B*C  

 

You can use the carat sign (‘^’) to specify to what order you want interactions. If you only want 

the two-way interaction but not the three-way interaction, you would write: 

 

model = y~(A + B + C)^2  

 

which equals A + B + C + A:B + A:C. You could also achieve the same results this way: 
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model=y~A*B*C – A:B:C 

 

which would remove the three-way interaction. Besides interaction terms, you might want your 

linear regression equation to include quadratic terms, which are squared terms. To raise a number 

to another number in R you use the carat sign, so A squared would be “A^2”. However, as we 

saw above, the carat is already used to represent an interaction model expansion, so we will need 

to use the “as is” function I (upper-case letter i) to suppress the incorrect interpretation of the 

carat as a formula operator. Thus, to create a model with two main effects plus the quadratic of 

each main effect, we would write: 

 

model=y~A + I(A^2) + B + I(B^2) 

 

Table 4 Operators in regression syntax. 

 

Operator Function Example 

+ adds parts of the 

regression equation 

together 

y~A + B 

y~A + B + A:B 

: creates an interaction 

term 

y~A + B + C + A:B + A:C + A:B:C 

* expands to all main 

effects and interactions 

y~A*B = y~ A + B + A:B 

- subtracts out terms y~A*B-A:B = A + B 

^N expands to Nth-way y~(A+B+C)^2  
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interaction  = A + B + C + A:B + A:C 

I use arithmetic of syntax y~A + I(A^2) 

 

 

I’d like to make a comment here about the type of regression that R is doing. Standard 

discussions of multiple regression (such as Tabachnick and Fidell, 2001) will mention three 

types of regression: standard, sequential and stepwise, as noted at the beginning of Chapter 7 in 

the book. In standard regression only the unique portions of overlap between the explanatory and 

response variable are counted, while in sequential or hierarchical regression all areas of overlap 

are counted, so that order of entry into the regression matters. In the next section of this 

document I will be discussing how to find the best model fit of a regression, and I will be 

introducing something Crawley (2007) calls stepwise modeling. Now ordinarily, statistics book 

will tell you that stepwise regression is not a good idea; Tabachnick and Fidell call it a 

“controversial procedure” (2001, p. 133). However, the type of stepwise modeling that Crawley 

(and I) are advocating is not one that lets a computer determine the best model. Actually, you can 

do that using the step( ) command in R, but generally I recommend here conducting your own 

stepwise regression by hand first, and only later checking the step model. In both sequential and 

stepwise modeling the order of entry determines how much importance a given variable will 

have, if explanatory variables are correlated with each other. R is using this type of regression, 

since Crawley (2007, p. 328) says that “the significance you attach to a given explanatory 

variable will depend upon whether you delete it from a maximal model or add it to the null 

model. If you always test by model simplification then you won’t fall into this trap.”  
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To learn about more advanced operations, such as nesting, non-parametric models or polynomial 

regression, Chapter 9 of Crawley (2007) is a good place to start. 

First	Steps	to	Finding	the	Minimal	Adequate	Model	in	R	
In order to find the best model for your data, Crawley (2007) recommends beginning with the 

maximal model and then simplifying your model where possible. The way to simplify is to 

remove one term at a time, beginning with the highest-order interactions first. If you have more 

than one higher-order interaction or main effect to choose from, start with the one that has the 

highest p-value (the least statistical one). You will then compare your simplified model with the 

original model, noting the residual deviance and using an ANOVA to check whether the removal 

of the term resulted in a statistically different model. If the ANOVA is statistical, meaning there 

is a statistical difference in the deviance of the two models, you will keep the term in the model 

and continue to test for other terms to delete. By the way, if you have reason to keep an 

interaction, you must also keep all of the components of the interaction in your regression model 

as well. In other words, if your Condition:Gender interaction is statistical, you must also keep the 

main effect for Condition and the main effect for Gender as well. If there is no difference, 

however, you will accept the second model as the better and continue forward with the simplified 

model. This process repeats until the model contains the least amount of terms possible. 

 

This process probably sounds confusing so we will walk through an example of how it works. 

This whole process can get very complicated with a large number of terms (some statisticians 

say that you shouldn’t test more terms than you can interpret, and draw the line at three 

explanatory variables), so I will explore the Lafrance and Gottardo (2005) data using only the 

three variables that were most important in the relative importance metrics: phonological 
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awareness in the L2 (PAL2), Kindergarten L2 reading performance (KL2WR), and naming 

speed, measured in the L2 (NS). If you are following along with me, first make sure you have the 

SPSS file Lafrance5.sav imported into R, and call it lafrance5. Section 7.4.4 in the book 

discussed how this dataset could be imputed, and ended up with a file called implafrance. If you 

do not have this file already created, here is how you would obtain it: 

 

library(mice) #remember you can use import.packages("mice") #if you do not 

#have this package uploaded yet 

imp<-mice(lafrance5) 

complete(imp) 

implafrance<-complete(imp) 

lafrance<-implafrance 

 

Because I am going to be writing the variables again and again, I am going to change their 

names:  

 

lafrance$PAL2<-lafrance$phonologicalawarenessinl2 

lafrance$KL2WR<-lafrance$kinderl2readingperformance 

lafrance$NS<-lafrance$namingspeed 

lafrance$G1L1WR<-lafrance$grade1l1readingperformance 

 

The research question is how well these three variables explain what is going on in the response 

variable, which is grade 1 L1 reading performance (G1L1WR). 
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The first step is to create the maximal model. Crawley (2007, p. 326) says a maximal model is 

one that “[c]ontains all (p) factors, interactions and covariates that might be of any interest.” This 

contrasts with the saturated model, which contains one parameter for every data point. The 

Lafrance and Gottardo dataset contains 40 rows (37 before we imputed data), so a saturated 

model would contain 40 parameters. 

 

We will start with a full factorial model that includes the main effects of the three explanatory 

variables as well as the three 2-way interactions and one 3-way interaction. This model thus has 

7 parameters. Be aware that we could indeed start with an even more complicated maximal 

model that would include quadratic terms if we thought those were necessary, but for this 

demonstration we won’t get that complicated. 

 

model1=lm(G1L1WR~PAL2*KL2WR*NS, na.action=na.exclude, data=lafrance) 

model1=lm ( . . .) This puts the regression model into an object called “model” 

(you can name it anything you like) 

lm (formula, 

data, . . .) 

‘lm’ fits linear models 

G1L1WR ~ . . . The tilde (“~”) means the thing before it is modeled as a 

function of the things after it 

PAL2*KL2WR*NS The explanatory variables; this formula expands to: 

PAL2 + KL2WR + NS + PAL2:KL2WR + KL2WR:NS + 

PAL2:NS + PAL2:KL2WR:NS 
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na.action=na.exclude Excludes missing (NA) values; it is not needed strictly to fit 

the regression model but it is needed for the diagnostics, 

specifically involving the residuals, to come out correctly, so 

we will enter it here (although we don’t actually need it 

because we imputed missing data) 

data=lafrance If you have not attached the dataframe, specify it here 

 

 

Having now fit a linear model to our equation, we can do all kinds of things with our fitted object 

(model1). First look at the summary command that we have seen before. Note that if you are 

following along with me, the values in your summary will be slightly different from mine. This 

is because the imputation procedure of the data will produce slightly different values every time 

it is used. 

 

summary(model1) 

Tip: If all of the variables in the dataframe are to be used, there is an alternative 
notation that is much shorter than typing in all of the variable names. The “.” to the 
right of the tilde means to include all of the remaining variables (N.B. items in red 
should be replaced with your own data name): 

model=lm(G1L1WR ~ ., data=lafrance, na.action=na.exclude) 
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We should look at the residual deviance (“Residual standard error”) of the model. It is .33 on 32 

degrees of freedom. Models with a better fit will reduce the residual deviance. We don’t have 

anything to compare the .32 deviance to yet, but we will later. We also look at the t-tests for each 

term. At the moment, none are below p = .05 so none are statistical (remember that these p-

values are unadjusted, meaning we haven’t taken into account the fact that we have a lot of tests 

and some might be low just by chance; of course, this may make us remember the discussion in 

Chapter 4 about how p-values are not very stable in the first place and may be high or low by 

chance anyway, but we won’t worry about that just now). 

 

Since no term is statistical in this model because none of the p-values in the Coefficients area are 

under p = .05, we’ll take out the highest-order interaction, the three-way interaction, first. The 

easy way to do this is to use the update command. When you use this command, you’ll need to 

be careful with the syntax. After the name of the original model, you’ll need to use the sequence 

“comma tilde dot minus.” 

 

model2=update(model1,~.- PAL2:KL2WR:NS, data=lafrance) 

summary(model2) 
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We notice that the residual error is slightly smaller (.3281) in this model and that we have one 

more degree of freedom. The unstandardized regression coefficients for several of the terms have 

become much smaller; for example, the unstandardized regression coefficient for KL2WR has 

shrunk from 35.7 to 1.8, and its standard error from 43.4 to 3.1. 

 

Now we compare the two models using ANOVA: 

 

anova(model1,model2) 

 

   

The ANOVA has a p-value = .4395, indicating that there is a non-statistical difference in 

deviance between the two models, so we retain the simpler model 2. In general, we prefer the 

simpler model to the more complex one, if they do not differ in explanatory value. When looking 

at different models, you should keep in mind that a saturated model (which has as many 

parameters as data points) will have a perfect fit, meaning that the R2 value would be 1.0. 
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However, this model would have no explanatory value. So we are always doing a balancing act 

between trying to reduce the number of parameters (and get more degrees of freedom) and trying 

to improve the goodness of fit (a higher R2 value). A value called Akaike’s information criterion 

(AIC) calculates a number that “explicitly penalizes any superfluous parameters in the model” 

(Crawley, 2007, p. 353) while rewarding a model for better fit. In other words, the AIC tries to 

give a number to that balancing act between reducing the number of parameters (or conversely, 

increasing the degrees of freedom) and increasing the fit. Thus, the smaller the AIC, the better 

the model. We can use the AIC function to evaluate models as well: 

 

AIC(model1,model2) 

 

Because model 2 has a lower AIC, it is the preferable model. The automatic stepwise deletion 

function, boot.stepAIC, which we will examine soon, will use the AIC to evaluate models. 

 

We will now continue our deletion procedure by choosing the next term to delete. Since the 3-

way interaction is gone, we will next select a 2-way interaction. There are three of them, so we’ll 

pick the one with the highest p-value from the summary for model2. That was the PAL2:NS 

interaction with a p-value of .996. 

 

model3=update(model2,~.- PAL2:NS, data=lafrance) 

summary(model3) 



  19

 

We finally see a term in model 3 which is statistical, which is the main effect of phonological 

awareness. Let’s compare model 2 and model 3: 

 

anova(model2,model3) 

 

 

There is no difference in deviance between the two models (the p-value is higher than .05), so we 

will accept the simpler Model 3 (you could also verify that the AIC of model 3 is lower than 

model 2) and delete the next 2-way interaction with the highest p-value of the two-way 

interactions, which is KL2WR:NS. 

 

model4=update(model3,~.- KL2WR:NS, data=lafrance) 

summary(model4) 

 

Notice that the residual standard error of every term also decreases in each subsequent model. 

Use anova() to compare models 3 and 4: 
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anova(model3,model4) 

 

No difference, so we’ll take out the last 2-way interaction term. 

 

model5=update(model4,~.- PAL2:KL2WR, data=lafrance) 

summary(model5) 

 

anova(model4,model5) 

 

Again, there’s no difference between the two models, but we still have a model that only has one 

statistical term so we’ll continue now to delete main effects. From the summary for model 5, the 

main effect with the highest p-value is NS, with p = .79. Deleting this term: 

 

model6=update(model5,~.-NS, data=lafrance) 

summary(model6) 

  

anova(model5, model6) 
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The ANOVA shows there is no difference in the models, so we remove the last main effect that 

is not statistical, KL2WR. 

 

model7=update(model6,~.-KL2WR, data=lafrance) 

summary(model7) 

 

The minimal adequate model is one with only phonological acquisition in it. This model explains 

R2 = .53 of the variance in scores, with .31 residual standard error on 38 degrees of freedom. 

Remember that Model 1 had a residual standard error of .32 on 29 df, so we have improved the 

fit (by reducing the amount of error) and decreased the number of parameters (thereby increasing 

the df). We can check to make sure the minimal adequate model is not just the null model (with 

only one parameter, the overall mean) by comparing the fit of model 7 with the null model in 

model 8: 

 

model8=lm(G1L1WR~1,data=lafrance,na.action=na.exclude) 

anova(model7,model8) 
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Thankfully, our one-parameter model is indeed statistically different from the null model. Note 

that the probability of the ANOVA test is recorded in statistical notation, with 9.24e-08 being 

shorthand for p = .0000000924. We continue by assuming that model7 is our minimal adequate 

model. We are not done yet, however, because we need to check regression assumptions for this 

model, which we will see in the next section. 

 

This section has shown how to conduct a backwards stepwise analysis by hand until a model is 

reached where all terms are statistical. Another way to go about a stepwise analysis is to use the 

boot.stepAIC( ) function from the bootStepAIC package (Rizopoulos, 2009). This function uses 

a bootstrap procedure to help evaluate different models, and is much more accurate and 

parsimonious than the step procedure found in the base package of R, according to Crawley 

(2007). 

 

Let’s see what results we get if we use boot.stepAIC( ) with our original model: 

 

library(bootStepAIC)#use install.packages("bootStepAIC") if you don’t have it yet 

boot.stepAIC(model1,data=lafrance) 

The beginning of the output gives some numbers that summarize how many times each variable 

was selected as an independent predictor in each bootstrap sample (100 is the default). Austin 
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and Tu (2004) found 60% was an optimal cut-off level for including the predictors in the final 

equation. However, because this process is transparent (you can see the percentages in the 

column titled “Covariates selected”), this information gives the researcher tools to determine on 

their own the strength of the predictors. 

 

The next part of the output concerns the stability of the predictors. The bootstrap procedure 

samples randomly with replacement, and each sample will contain regression coefficients. 

Austin and Tu (2004) note that we would ideally want all of the coefficients to be either positive 

or negative, and that if half the coefficients were positive and half were negative this would be a 

sign of instability in the model. The boot.stepAIC( ) procedure, unlike the step procedure, is 

able to assess this measure of stability and provide it to the researcher. The output shows that NS 

and PAL2:NS were quite unstable. 

 



  24

The next part of the output shows what percentage of the time the term was a statistical predictor 

at the alpha=.05 level in the model.  

 

From this output I might note that although phonological awareness (PAL2) was a statistical 

predictor over 50% of the time, the Kindergarten reading measure (KL2WR) was a predictor 

close to 50% of the time, as was the interaction between the two terms (PAL2:KL2WR). If the 

researcher had a theoretical reason for wanting to create a model with these three terms (even 

though we will see in the end of the output that this is not the model that the stepwise procedure 

finds) there would be ample room to argue that this was also a very good model. 

 

The next part of the output lists the initial model (the one with 7 terms) and the final minimal 

adequate model that boot.stepAIC( ) finds, which has only the term for phonological awareness. 

 

Last of all is the analysis of deviance table for various permutations of the model (7 in all here). 

This recreates the steps we took manually as we deleted one term at a time (although there is a 

difference as the interaction between phonological awareness and the Kindergarten reading 

measure was deleted after the main term of naming speed (NS)). 
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The analysis of deviance column (“Deviance”) shows the change in deviance each time and AIC 

column shows the AIC value (which, since it is negative in this case, is smaller the larger the 

number is!). Because boot.stepAIC uses bootstrap resampling methods, it is an excellent 

performer that very rarely retains spurious terms in the final model. 

 

I will note that the boot.stepAIC() command will not work with datasets that have missing 

values. You can try to clear out the missing values before running it 

(lafrance=na.omit(lafrance)) or impute the data as I did before I started. If we have data that 

includes missing values, the data are non-orthogonal. If your dataset is totally complete and 

there is no missing data, it is said to be orthogonal. Crawley (2007) notes that when datasets are 

non-orthogonal, as this one was before we imputed values, and explanatory variables correlate 

with each other, as they do here, then the importance you attach to a variable will depend on 

whether you subtract it from the maximal model or add it to the null model. Crawley 

recommends always subtracting from the maximal model to avoid problems with this, and that is 

what we did manually, and that is also what the bootstep model does as well, it just does it many 

times and then evaluates what percentage of the time terms were included. 

 

Although boot.stepAIC is extraordinarily accurate at finding the model with the lowest AIC, 

this doesn’t mean you can just use it and forget the method of hand deletion that I have shown in 
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this section, because this method generalizes to mixed effect models in a later chapter that 

boot.stepAIC can’t model. Another case you may be forced to use hand deletion in is one where 

you have more parameters than cases, which is called overparameterization. We will see an 

example of this in a later section of this chapter. 

 

Once you have determined what your minimal adequate model is, you will want to check 

regression assumptions, as explained in Section 7.4.6 of the book. You should also find out the 

relative importance of the terms in your model. As mentioned in Section 7.4.5 of the book, this is 

best done using the calc.relimp function in the relaimpo package. Since our minimal adequate 

model involves only one term, we obviously cannot determine the relative importance of terms, 

but this process was illustrated above. Just don't forget to do it if you have more than one term 

left in your minimal adequate model! 
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Summary Finding a Minimal Adequate Regression Model 

Here are the steps that Crawley (2007, p. 327) suggests for the model simplification process: 

1 Fit the maximal model (include factors, interactions, possibly quadratic terms). 
2 Inspect model summaries and take out highest-order non-statistical terms first, one at a 

time, using update(model1,~.-A:B:C). 
3 Using ANOVA, compare model 1 to model 2. If there is no statistical difference 

between the models, retain newer model, inspect summary of newer model and 
continue to delete least statistical highest-order terms. 

4 If the ANOVA shows a statistical difference, keep the older model. 
5 I recommend checking your model with boot.stepAIC (bootStepAIC library). 
6 Don’t forget to check regression assumptions (see Section 7.4.6 in the book) and run 

calc.relimp (relaimpo library, described in Section 7.4.5 of the book) to determine the 
relative importance of the terms in your regression equation. 

Notes:  

 If an interaction is kept in a model, its component main effects must be kept too (in 
other words, if you have the interaction NS:PAL2, you must keep both NS and PAL2 
in the model as well). 

 Do not fit more parameters than you have data points (the number of data points equals 
the number of rows in your dataset that have no missing data). 

 If deletion results in no statistical parameters, the null model (y~1) is the minimal 
adequate one (back to the drawing board as far as experimental design!). 

 If your design is non-orthogonal (meaning there are some missing values in some 
variables), the order in which you conduct the regression will make a difference in how 
important the variable seems to be. 
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Further	Steps	in	Finding	the	Best	Fit:	Overparameterization	and	

Polynomial	Regression	

In the previous section we explored a model of the data for Lafrance and Gottardo (2005) that 

included only 3 variables. But let’s say we actually want to fit all 5 variables that the authors fit. 

If we fit a full factorial model with all main effects and interactions, we will have 1 5-way 

interaction, 5 4-way interactions, 10 3-way interactions, 10 2-way interactions, and 5 single 

terms, for a total of 31 interactions. Crawley (2007) says a useful rule of thumb is not to estimate 

more than n/3 parameters during a multiple regression. Since the Lafrance and Gottardo (2005) 

dataset has n=37 data points, that means we shouldn’t estimate more than about 12 parameters at 

any one time. In the case of only 3 terms, there were 7 parameters and that was fine. However, 

for the case of 5 terms, we will want to conduct the regression in separate runs. One rule for 

doing this is that if you have an interaction, you’ll need to also have the component main effects 

in the regression at the same time (see Crawley, 2007, p. 446).  

 

Actually, just to make things a little more fun, let’s start by including quadratic terms along with 

the main effects, just to check whether there is any curvature in our data. In the scatterplots for 

this data examined previously, there did seem to be some possibility of curvature in relationships 

between explanatory variables and the response variable. A regression involving quadratic (or 

higher) terms is called a polynomial regression by Crawley (2007). Although the model is still 

considered linear, having quadratic terms would mean we are fitting a line with some curvature.  
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If you’re following along with me, use the imputed dataset called lafrance that we created in the 

section titled “First steps to finding the minimal adequate model in R.” We’ll need to change a 

couple more of the names to make it easier to see what we’re doing. 

 

lafrance$NR<-lafrance$nonverbalreasoning 

lafrance$WM<-lafrance$workingmemory 

 

Here is the first model we will try, which includes all 5 main effects and their associated 

quadratic terms: 

 

model1=lm(G1L1WR~NR+I(NR^2)+WM+I(WM^2)+NS+I(NS^2)+PAL2+ 

I(PAL2^2)+KL2WR+I(KL2WR^2),data=lafrance) 

   

Remember that the (NR^2) term means it is a squared term. The I (capital letter “i”) in front of 

the parentheses means that the carat (^) is performing its arithmetic job of squaring, instead of its 

regression function of expanding a regression term to a certain number of interactions. Let’s look 

at a summary of this model: 

 

summary(model1) 
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Nothing is statistical. Instead of a manual stepwise deletion, however, I am going to use the 

automatic boot.stepAIC procedure. One thing I like about this (over manual deletion in this 

situation of overparameterization) is that it will be more stable because it can simulate taking 100 

samples of the variables.  

 

library(bootStepAIC) 

boot.stepAIC(model1, data=lafrance) 

 

The automatic procedure tells me that my best model is the following: 

 

model2=lm(G1L1WR~ NS + I(NS^2) + PAL2 + I(PAL2^2), data=lafrance) 

summary(model2) 
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Not all of the terms are statistical and it seems boot.stepAIC may have been generous at leaving 

terms in, but for now we’ll keep these until we do a final culling. 

 

Our next step will be to test the interaction terms. Following Crawley (2007), we will enter the 

names of the 10 2-way interactions, then randomize them. Note that to get the names of all of the 

two-way interactions, I just fit the full factorial model, asked for the summary, and looked at the 

summary not for any statistical information, but just for the full specification of all of the 

interactions! 

 

getfullmodel=lm(G1L1WR~NR*WM*NS*PAL2*KL2WR,data=lafrance) 

summary(getfullmodel) 

#Output not printed but it tells me the name of all the 2-way interactions: 

"NR:WM", "NR:NS", "WM:NS", "NR:PAL2", "WM:PAL2", "NS:PAL2", "NR:KL2WR", 

"WM:KL2WR", "NS:KL2WR", "PAL2:KL2WR" 

 

We’ll conduct 2 separate tests with about half of the 2-way interaction terms per test and all of 

the 5 main effects as well. 

 

model3= lm(G1L1WR~NR+WM+ NS+ PAL2+ KL2WR+ 

PAL2:KL2WR + NR:NS + NS:PAL2 + NR:WM+NS:KL2WR, data=lafrance) 

model4= lm(G1L1WR~NR+WM+ NS+ PAL2+ KL2WR+ 

WM:KL2WR + NR:KL2WR+WM:PAL2+WM:NS+NR:PAL2, data=lafrance) 

 



  32

Here are coefficient terms for these two models: 

 

summary(model3): 

 

summary(model4): 

 

 

Performing a boot.stepAIC (boot.stepAIC(model3,data=lafrance)) on both model 3 and 

model 4, it recommends leaving in these 2-way interactions only: PAL2:KL2WR, NR:WM, 

WM:KL2W, NR:KL2WR, NR:PAL2. 

 

Crawley (2007) recommends putting all the interaction terms that are statistical (or nearly so) 

into one model with the 5 main effects and seeing which ones remain statistical. Since we only 
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found 5 2-way interaction terms to keep, this will not overload the number of parameters in one 

run: 

 

model5= lm(G1L1WR~NR+WM+ NS+ PAL2+ KL2WR+ 

PAL2:KL2WR+ NR:WM +WM:KL2WR +NR:KL2WR +NR:PAL2, data=lafrance) 

 

 

Not all of the 2-way interaction terms included are statistical, so we’ll run a boot.stepAIC 

analysis to see what we should keep for this model. 

 

boot.stepAIC(model5, data=lafrance) 

 

The bootstrapped algorithm suggests taking out the main effect of NS and the first two 

interaction terms (PAL2:KL2WR and NR:WM). Updating the model: 

 

model6=update(model5,~.-NS-PAL2:KL2WR-NR:WM, data=lafrance) 



  34

 

Again, the bootstrapped procedure has left in terms that are not statistical, but we have whittled 

the second-order interactions down so we will keep these in the model for now. We now need to 

worry about the higher-order interactions. We repeat the process of testing the 3-way interactions 

in two separate runs with all of the main effects included as well. Another way to proceed would 

be to include only the 3-way interactions that involve the 2-way interactions that survived, and 

create a larger model with the 8 parameters in model 5 plus the 8 3-way interactions that involve 

any of the terms, but this surpasses our limit of 12 parameters by quite a bit, so I will continue 

with the simplification of the 3-way terms. 

 

All 3-way interactions are: 

"NR:WM:NS", "NR:WM: PAL2", "NR:NS: PAL2", "WM:NS: PAL2", "NR:WM: KL2WR", 

"NR:NS: KL2WR", "WM:NS: KL2WR", "NR: PAL2: KL2WR", "WM: PAL2: KL2WR", "NS: 

PAL2: KL2WR". 

model7= lm(G1L1WR~NR+WM+ NS+ PAL2+ KL2WR+ 

NS:PAL2:KL2WR+NR:WM:PAL2+NR:NS:KL2WR+NR:WM:NS+ 

WM:PAL2:KL2WR, data=lafrance) 

model8= lm(G1L1WR~NR+WM+ NS+ PAL2+ KL2WR+ 

NR:PAL2:KL2WR+WM:NS:KL2WR+NR:WM:KL2WR+NR:NS:PAL2+ 



  35

WM:NS:PAL2, data=lafrance) 

 

Summaries of the models show that none of the 3-way interactions are statistical, but 

boot.stepAIC would keep two of the 3-way parameters: NR:WM:NS and WM:PAL2:KL2WR 

(both are from model7). 

 

Moving on to the 5 4-way interactions and the one 5-way interaction, I’ll add the 5 main effects 

and test this 11-parameter model. 

 

model9= lm(G1L1WR~NR+WM+ NS+ PAL2+ KL2WR+ 

NR:WM:NS:PAL2 + NR:WM:NS:KL2WR + NR:WM:PAL2:KL2WR + 

NR:NS:PAL2:KL2WR + WM:NS:PAL2:KL2WR + NR:WM:NS:PAL2:KL2WR, 

data=lafrance) 

 

According to the summary, none of the higher-way interactions are statistical. The boot.stepAIC 

run, however, keeps NR:WM:NS:KL2WR and WM:NS:PAL2:KL2WR. You can see that the 

whole process is quite complicated and lengthy, even using our automated procedure. It also 

depends somewhat upon the choices you make as to what to include in each regression run. At 

this point I will put together all of the terms that boot.stepAIC has retained at each juncture, 

plus all 5 of the main effects, producing a 14-parameter model, which is higher than the 12 we 

wanted but we’ll go with it. 
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model10=lm(G1L1WR~ NR + WM + NS + I(NS^2) + PAL2 + I(PAL2^2) + KL2WR+ 

WM:KL2WR +NR:KL2WR +NR:PAL2+ #two-way interactions 

NR:WM:NS +WM:PAL2:KL2WR + #three-way interactions 

NR:WM:NS:KL2WR + WM:NS:PAL2:KL2WR, #four-way interactions 

data=lafrance) 

 

The summary of model 10 results in a number of statistical effects, but not all, and here is 

boot.stepAIC’s final model, with 9 terms: 

 

model11=lm(G1L1WR~ NR + WM + NS+ I(NS^2)+PAL2 +KL2WR+ 

WM:KL2WR + NR:PAL2+NR:WM:NS, data=lafrance) 
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Amazingly, this results in a pretty good model with all higher-order terms being statistical (way 

to go, boot.stepAIC!). I repeated this entire process manually without boot.stepAIC, and this 

resulted in the deletion of all but the PAL2 term. We can compare these two models: 

 

model12=lm(G1L1WR~PAL2, data=lafrance) 

summary(model12) 

 

Model 11 with more terms has a higher R2 (.69 vs. .53) and a smaller residual error (.28 vs. .31). 

Examining the two models with an ANOVA shows a p-value that is over .05 (p=.09). 

anova(model11, model12)

 

Remember that an ANOVA test between models tests the hypothesis that there is no difference 

in deviance between the two models (Crawley, 2007). If the p-value is greater than .05, we 

assume that there is no difference between models, and previously we have then always picked 

the simpler model. The probability here is low though and one could argue that there is a 

possible difference between models, in which case we should pick the more complex model that 

has lower deviance. If you calculate the deviance of each model, you see that the model with 
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more terms (model 11) has lower deviance (lower deviance is better than higher deviance as it is 

a measure of error). 

 

deviance(model11) 

[1] 2.476189 

deviance(model12) 

[1] 3.682968 

 

Thus the model that one would pick would depend on the questions. If the question were whether 

phonological awareness was really, by itself, the best predictor of first grade reading scores, then 

this could clearly be argued for. If there is no real difference between the models, we will pick 

the simplest model. If the question were which combination of factors could produce the highest 

level of explanatory value, the more complex model 10 would be the best choice. As you can see, 

finding the best fit of a model is not a simple endeavor, and it is considerably lengthened by 

including more parameters! As Crawley (2002, p. 484) says, “If you really care about the data, 

this can be a very time-consuming business.”  

Reporting	the	Results	of	a	Minimal	Adequate	model		
Crawley (2007) recommends that you report whether any data are missing or not, report on 

correlations between your explanatory variables and then present your minimal adequate model. 

You should also let your reader know what steps you took in your search by giving a list of the 

non-statistical terms that were deleted, and the change in deviance. If you report these things, 

then Crawley (2007, p. 329) says, “Readers can then judge for themselves the relative magnitude 

of the non-significant factors, and the importance of correlations between the explanatory 
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variables.” In the R summary the residual standard error is not the same as the deviance, but the 

boot.stepAIC summary gives the deviance of the model under the column “Resid. Dev” in the 

last bit of output where the deviance and AIC values of each tested model is listed. You might 

want to calculate the fit for each model manually with the deviance() command. Remember that 

lower deviance is better but a simpler model will have a higher deviance. The anova( ) function 

tests whether the difference in deviance is statistically different between models. 

 

Here, then, is a summary of how I would report on my search for a minimal adequate model with 

three factors using the Lafrance and Gottardo (2005) data from the section called “First steps to 

finding the minimal adequate model in R”: 

 

Using data from Lafrance and Gottardo (2005) I modeled a regression analysis with scores on 

grade 1 L2 reading performance with the three variables of phonological awareness in L2 

(PAL2), Kindergarten scores on the L2 reading performance (KL2WR) and naming speed (NS). 

There were high intercorrelations among all 3 explanatory variables (PAL2-KL2WR, r=.7; 

PAL2-NS, r=-.7; KL2WR-NS, r=-.4). There were missing data points in the naming speed data, 

so the data were non-orthogonal, but I imputed the data first using R’s mice package. To search 

for a minimal adequate model, I started with a full factorial model of all 3 main effects plus all 2-

way interactions and the 3-way interaction between terms. Deleting the terms and then checking 

for differences between models, my minimal model was one with only the phonological 

awareness term. This model explained R2=53% of the variance in scores on the grade 1 reading 

test. For PAL2, the estimate for the unstandardized coefficient was 1.58, meaning that for every 

1% increase in phonological awareness, there was a 1.58% increase in scores. This term was 
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statistical, t=6.6, p<.0001. The table below gives the steps of my model search and the change in 

deviance: 

 

Model  Terms  deviance  Δdeviance  

model1  PAL2*KL2WR*NS  3.48   

model2  ‐PAL2:KL2WR:NS  3.55  .07 

model3  ‐PAL2:NS  3.55  .00 

model4  ‐KL2WR:NS  3.56  .01 

 

model5  ‐PAL2:KL2WR 3.66 .10 

 

model6  ‐NS  3.67  .01 

 

model7  ‐KL2WR  3.68  .01 

 

In checking model assumptions, this model showed heteroscedasticity and non-normal 

distribution of errors.  

Application	Activity	for	Finding	a	the	Best	(Minimally	Adequate)	Fit	
1 Howell (2002). Import the HowellChp15Data.sav file as howell. Chapter 15 in Howell 

included a dataset where students rated their courses overall and also aspects of the 

courses on a five-point scale (where 1 = very bad and 5 = exceptional). Use the overall 

variable as the response variable and the other variables (teaching skills of instructor, 
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quality of exams, instructor’s knowledge of subject matter, the grade the student expected 

in the course where F = 1 and A = 5, and the enrollment of the course) as explanatory 

variables. Exercise #4 from Section 7.4.9 of the book addressed this dataset, and a 

scatterplot matrix found that all data have a linear relationship with overall except for 

enroll, which seemed to be a vertical line with a few outliers. Therefore, exclude the 

variable enroll. Start with the full factorial model and find the minimal adequate model 

(try doing this by hand for this item) and report the unstandardized coefficients and the 

R
2
 for the model with only statistical predictors. Calculate the relative importance of the 

remaining terms of the regression equation. Comment on regression assumptions by 

examining residual plots. 

2 Dewaele and Pavlenko Bilingual Emotions Questionnaire (2001–2003). Use the 

BEQ.Swear.sav file (import as beqSwear). Let us take as a given that the variables that 

might help explain how frequently a person swears in their L2 (swear2) are the 

frequency that the person uses their L2 (l2freq), the weight they give to swearing in their 

L2 (weight2), and their evaluation of their speaking and comprehension skills in L2 

(l2speak, l2_comp). Exercise #5 from Section 7.4.9 of the book addressed this dataset, 

and scatterplot matrices looked fairly weird but I found that Loess lines on the plots 

showed linear trends except for plots that were combined with the variable of L2 

comprehension. Therefore, we will exclude the variable l2_comp. Start with the full 

factorial model and conduct an analysis to determine which of these variables effectively 

predicts frequency in swearing in an L2 until you arrive at the minimal adequate model 

(you may try this by hand or use the boot.stepAIC( ) command). Calculate the relative 

importance of the remaining terms of the regression equation. Report the unstandardized 
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coefficients in a regression equation and the R
2
 for the model with only statistical pre-

dictors, and comment on regression assumptions.  

3 Larson-Hall2008.sav (import as larsonhall2008). Are amount of hours of input in a 

foreign language (totalhrs), aptitude (aptscore), and scores on a phonemic task 

(rlwscore) useful predictors of scores on a grammaticality judgment test (gjtscore)? 

Exercise #6 from Section 7.4.9 of the book addressed this dataset, and scatterplot 

matrices showed some curvature. Perform a regression using the GJT (gjtscore) as the 

response variable, and the three other variables as explanatory variables. In order to 

model the curvature, add in quadratic (squared) terms of all of the individual terms. 

Conduct an analysis to determine which model most effectively predicts frequency in 

swearing in an L2 until you arrive at the minimal adequate model (you may try this by 

hand or use the boot.stepAIC( ) command). Calculate the relative importance of the 

remaining terms of the regression equation. Report the unstandardized coefficients and 

the R
2
 for the model with only statistical predictors, and comment on regression 

assumptions.  
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