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Factoring	out	Differences	with	Analysis	
of	Covariance:	The	Effect	of	Instruction	
on	Derivational	Morphology		
 

A covariate is, after all, nothing but an independent variable which, because of the  

logic dictated by the . . . issues of the research, assumes priority among the set of  

independent variables as a basis for accounting for . . . variance.  

Jacob Cohen (1968, p. 439)  

 

Analysis of covariance (ANCOVA) is a statistical technique you can use when you want to focus 

on the effects of a main response variable with the effects of other interval-level variables 

factored out. Such a technique may be useful when:  

 you assume that there is some external factor, such as pretest or TESOL score, which will 

affect how your students will perform on the response variable  

 previous studies have shown that another variable, such as aptitude or writing scores, 

affects how your participants will perform on the variable of interest  

 you find after the fact that an unplanned variable, such as age, affected the performance 

of participants on the response variable  

 

In essence, ANCOVA works by simply including the additional variable (the covariate) in the 

regression, but, by doing so, it allows the effects of that variable (such as age, or aptitude scores) 

to be separated out from the response variable. ANCOVA is like partial correlation (information 



 2

for which can be found in the online document in Chapter 6 called “Other Kinds of 

Correlation”), because it includes the variable whose effects we want to “partial out” in the 

analysis in order to separate them from the other effects. ANCOVA works like the repeated-

measures designs seen in Chapter 11 as well to reduce the amount of variability in the model that 

is unexplained. If we think that scores on an aptitude test help account for the variability on the 

response variable, then by including the aptitude test in the design we help reduce the amount of 

variability that is unexplained.  

 

The ANCOVA design, then, is quite similar to the ANOVA design but includes one or more 

variables as explanatory variables. The example we will look at in this section involves a study 

by Lyster, Quiroga and Ballinger (2013), which looked at the effect of direct instruction on 

derivational morphology among second grade students in bilingual classrooms. The students 

differed in that they came from different schools and were taught by different teachers, had 

different language profiles (English-dominant, French-dominant or bilingual, identified by using 

the Peabody Picture Vocabulary Test), and either received direct biliteracy instruction on 

morphology or did not (the comparison group). Lyster, Quiroga and Ballinger (2013) had a 

number of measures that they could (and did) use as covariates in their analysis, including a test 

of phonological awareness and a pretest measure of morphological awareness. The response 

variable was a morphological awareness test with a maximum score of 146 (both English and 

French were tested, although each ANCOVA only examined one at a time). 
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Recent Examples of ANCOVA in the SLA Literature 
 
Lee & Macaro (2013) 

The authors wanted to investigate the question of whether using a shared L1 in the 
foreign language classroom would help or hinder vocabulary acquisition. They tested 
large numbers of Korean sixth graders (N=443) and Korean college freshmen (N=286) 
after each of 4 sessions where certain words in a reading were targeted and explained 
verbally, either in Korean or English, in the context of trying to understand the reading. 
The teachers used the same reading materials but were divided into whether they were 
native speakers of Korean, and thus used the shared L1 in defining vocabulary words, or 
native speakers of English who had low Korean skills and used only English in the 
classroom. A one-way ANCOVA on the posttest was conducted with Instructional type 
(“English only” or “Codeswitching”) as the between-group variable and a vocabulary 
pretest score as the covariate, with the data split for the younger learners and the older 
learners. On a test of vocabulary recall, where learners had to actually produce a word, 
the younger learners in the Codeswitching group scored statistically higher than the 
English only group even when pretest vocabulary scores were taken into account, with an 
effect size of partial eta-squared = .23, while for older learners the ANCOVA also 
showed a statistical difference between the groups but at a lower measure of effect size, 
partial eta-squared = .14. 
 
Van Beuningen, De Jong & Kuiken (2012)  
 
This study assessed the value of comprehensive error correction. A large number (n=268) 
of secondary school children (mean age 14) learning Dutch as an L2 and with a variety of 
L1s (the largest being Moroccan Arabic at 31%) were tested. One group received direct 
corrective feedback, another received indirect corrective feedback with an error coding 
system, a third group were invited to revise their writing but did not receive any feedback 
(self-correction group), and a fourth group were not asked to revise but instead to write 
another essay (additional writing practice). In a pretest, all groups filled out a 
questionnaire, did a receptive vocabulary test as a measure of overall language 
proficiency, and had to write for 20 minutes on the topic of butterflies as their first 
writing task. In the second week, participants got their treatment on the initial writing 
task. The first three groups were invited to revise their papers after their treatment, while 
the fourth group was asked to write about honeybees. A posttest was given one week 
later and the students had to write another essay about ladybugs. Texts were coded for 
linguistic errors and clause types. The results were measured in an error to number of 
words ratio, and errors were divided into linguistic (word order, article error, additions of 
nonnecessary elements) and non-linguistic (lexical errors, orthographic errors, pragmatic 
errors). Structural complexity was measured as the number of subordinate clauses as a 
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percentage of the total number of clauses. Because the data came from different intact 
classes and schools, the statistical analysis started with a multilevel analysis (what is 
called a mixed-effects analysis in this chapter), but this analysis found that class and 
school did not make a difference in explaining variation, so the authors chose to use an 
ANCOVA design using language proficiency (score on the vocabulary test) and pretest 
performance as covariates to factor out the influence of individual differences of 
proficiency. The authors used the statistical approach explained in the online document in 
Chapter 7, "Finding the Best Fit in Multiple Regression", of starting with a maximal 
model and reducing the model to the minimal model. Many statistical tests were 
conducted, but I will report only on the ANCOVA that looked at the number of errors 
made at the initial posttest. This model found a statistical effect for group (F3,231=11.34, 
p<.001, partial eta-squared=.13), and both the covariate of language proficiency 
(F1,231=12.93, p<.001, partial eta-squared=.05) and pretest accuracy (F1,231=87.9, p<.001, 
partial eta-squared=.28) were statistical. The effect of pretest accuracy explained the 
largest amount of the variance in the data, as can be seen from the very high effect size 
(partial eta-squared). Post-hoc comparisons on group found that those who had received 
direct or indirect correction used fewer errors in their subsequent writing than those who 
self-corrected or just practiced more writing, although there was not a statistical 
difference between either of the two correction conditions. 
 
Miranda Casas, Soriano Ferrer & Baixauli Fortea (2013) 
 
The authors begin by noting that in children with a clinical diagnosis of attention-
deficit/hyperactivity disorder (ADHD), learning disabilities in writing are twice as 
common as problems in other academic areas such as math, reading or spelling. In order 
to investigate the effect that ADHD may have on writing ability, the authors compared 
the writing performance of children with ADHD (n=50, age range 9–14 years) with those 
without ADHD (n=50, same age range) on a written narrative task about a trip they had 
recently taken. The groups were unbalanced in the sense that of the 50 ADHD children, 
49 were boys and 1 was a girl; the makeup of the non-ADHD group was also more 
weighted toward boys (36) than girls (14). For this reason, in the analysis, gender was 
used as a covariate in order to remove any possible effects of gender. In order to evaluate 
the writing, the authors used quite a host of measures, including measures of structure 
(setting information, conclusion), time sequence, content digressions, cohesion, number 
of words, mean length of utterance, syntactic complexity, type-token ratio, etc. 
ANCOVA analyses were performed on each of these measures. One of the measures that 
showed a large effect size was on text structure (F1,97=41.5, p<.000, Cohen’s d=1.3), with 
the ADHD children having a much harder time “articulating an organizational plan 
directed toward a purpose” (p. 453). Another measure that showed a large effect size was 
the number of words (F1,97=56.2, p<.000, Cohen’s d=1.5), with the ADHD children 
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producing on average 73 words while the comparison group produced 115 words. 
 
Peters, Hulstijn, Sercu & Lutjeharms (2009) 
 
Incidental vocabulary acquisition through reading has been found to be a slow and 
arduous process. This study asks whether readers will learn more vocabulary if one or 
more of three techniques is used in a classroom setting: 1) announcing that there is a 
vocabulary test after an in-class reading; 2) giving reading comprehension questions that 
crucially rely on unfamiliar words in the text to correctly complete, and 3) giving a 
vocabulary test after the reading. Students’ vocabulary level was measured with a 50-
item multiple choice test and used as a covariate in the analysis, since previous research 
has shown that students with higher levels of vocabulary are able to retain new words 
better. The researchers measured students’ behavior while reading (whether they looked 
up the words online) and their word retention in (N=137) Dutch L1 German L2 college 
students. One of the three word retention tests was a recall test of meaning in context. 
There were a large number of research hypotheses tested, but one was what effect the 
three techniques mentioned above would have on how many words students retained on 
the test. There were 4 different groups tested, and here are their mean scores on the recall 
test at an immediate posttest and a delayed posttest 2 weeks later: 
 
Experimental Group Immediate Delayed 
INCID ONLY (- test announcement, -comprehension Qs) 8.12 (1.77) 6.04 (1.60) 
INCID PLUS (- test announcement, +comprehension Qs) 11.77 (2.18) 8.27 (1.95) 
INTENT ONLY (+ test announcement, -comprehension Qs) 8.64 (2.36) 6.33 (2.63) 
INTENT PLUS (+ test announcement, +comprehension Qs) 12.17 (2.48) 8.72 (2.69) 

  
A 4-way RM ANCOVA with 1 covariate was used to test the research question. It was a 
2 (+Test announcement) × 2 (+Comprehension Qs) × 2 (Types of words: Targeted or not) 
× 2 (Testing time: Immediate and Delayed) ANCOVA with vocabulary size as a 
covariate. Results of this covariate were not reported; it was simply used as a way to look 
at participants’ results while factoring out the effects of their differential vocabulary 
levels. The first three variables were between-subject variables while Testing time was a 
within-subjects variable (the repeated measures). The analysis found that the four-way 
interaction was statistical with a medium effect size (F1,103=8.22, p=.005, eta-
squared=.06), as was the three-way interaction between the between-subject variables 
(Test announcement, Comprehension Qs and Types of words) with a small-to-medium 
effect size (F1,103=5.24, p=.02, eta-squared=.03). Obviously, with a four-way analysis 
there are quite a large number of results and I won’t list all of them here, but in prose, the 
authors found that participants who did comprehension questions performed better than 
those who did not do it, and that word retention was affected by whether words were 
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targeted or not. Scores were lower on the delayed posttest than immediate posttest, but 
not for all students—those who had done the comprehension questions lost more 
vocabulary from immediate to delayed posttest than those who had not, but they 
remembered more of the targeted words than the non-targeted words. 

Visually	and	Numerically	Examining	the	Data		

Numerically	Examining	the	Data	
Let’s start by looking at Lyster, Quiroga and Ballinger’s data numerically. In their 2013 paper, 

Table 3 listed descriptive statistics for the English and French versions of the morphological 

awareness test, both pretest and posttest, also divided into scores for students in the experimental 

class and the comparison group and then within each of those groups, into language dominance 

groups. Let’s recreate that table. Use the Excel data file called LysterQuirogaBallinger2013.xlsx 

(this will give us practice getting an Excel file into both SPSS and R).  

 

In SPSS, go to FILE > OPEN > DATA and change the type of file to Excel. Press the OPEN button 

and a box labeled “Opening Excel Data Source” appears. The Excel file has variable names 

along the top, so make sure the box that says “Read variable names from the first row of data” is 

checked and the first page of the worksheet is listed (for this data file, it’s labeled in Spanish and 

says “Hoja 1[A1:AP80]”). Press OK and the file is loaded without any problems.  

 

R Commander used to have a command for importing Excel files, but that is now gone, so one 

way to do this is to save the Excel file as a .csv file and then import through R Commander. 

Open up the Excel file and save the file as a .csv file. Now in R Commander, go to DATA > 

IMPORT DATA > FROM TEXT FILE, CLIPBOARD OR URL . . . Enter the name LQB and choose 

“Commas” as the “Field Separator.” Press OK and navigate to where you have saved your file. 

You might want to pull down the menu that says "All Files" and change to just text files and .csv 
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files in order to narrow down the files you are searching. Once you find the file and press "Open" 

you should find that your file opened up correctly in R.  

 
To get a table like the one we see in Table 1, in SPSS you might first want to label the 

CONDITION and LANGUAGE variables since it would be nice to have those defined when we call 

for data. Go to the VARIABLE VIEW tab and click on the cell for Language under the Values 

column. A blue button will appear. Press it, and define 1=English dominant, 2=French dominant, 

3=Bilingual. For Condition, 1=Comparison, 2=Experimental. Now go to DATA > SPLIT file, and 

put Condition and Language into the box with the button “Compare groups” pushed. Then go to 

ANALYZE > DESCRIPTIVE STATISTICS > DESCRIPTIVES and move over all of the MAT files (4 of 

them) to the “Variable(s)” box. Open the Options button and tick off everything except “Mean” 

and “Standard deviation.” This will give a fairly compact table, although not arranged as nicely 

as Table 1.  
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Table 1 Descriptive statistics for Lyster, Quiroga & Ballinger 2013. 

 English Version of Morphological Test French Version of Morphological Test 

 Pretest Posttest Pretest Posttest 

 M (sd) M (sd) M (sd) M (sd) 

Experimental     

English dominant (n=9) 74.78 (15.77) 95.44 (15.43) 69.33 (18.16) 80.78 (10.64) 

French dominant (n=16) 59.13 (15.46) 72.94 (25.48) 84.25 (14.41) 93.62 (13.60) 

Bilingual (n=20) 

 

71.10 (19.03) 80.45 (18.53) 81.95 (20.05) 95.25 (17.76) 

Comparison     

English dominant (n=8) 69.13 (15.97) 76.38 (15.20) 53.63 (21.33) 60.25 (16.87) 

French dominant (n=5) 42.40 (13.05) 58.60 (17.39) 82.20 (14.72) 80.80 (18.21) 

Bilingual (n=7) 62.00 (14.35) 85.14 (19.08) 84.14 (16.55) 88.14 (16.65) 

 

 

For R, first look at the structure of the imported data (some variables at the end of dataframe 

cut): 

 

 

 

The thing to notice is that our categorical variables are not factors yet. We would like Language 

and Condition to be factors, with the same category level labels attached that were listed above 
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in the SPSS paragraph. Turning a number into a factor is as easy at telling R to do so, and then 

we can list the level labels for that variable like this: 

 

LQB$Language<-as.factor(LQB$Language) 

levels(LQB$Language)=c("English dominant", "French dominant", "Bilingual") 

LQB$Condition<-as.factor(LQB$Condition) 

 

 

Why do I get an error message here? I check the names of the dataset again: 

 

 

 

Oh! Looks like Condition was spelled incorrectly in the original file. I’ll just change the name 

while I’m making it into a factor, and remove the old “Conditon” column: 

 

LQB$Condition<-as.factor(LQB$Conditon) #notice misspelling on right side but not left 

LQB$Conditon=NULL 

levels(LQB$Condition)=c("Comparison", "Experimental") 

 

That’s all I need for now, but you might want to change Program into a factor too, in case we 

need it later. For Program, 1=80% English, 2=80% French and 3=50/50. 
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LQB$Program<-as.factor(LQB$Program) 

levels(LQB$Program)=c("80% English", "80% French", "50/50") 

 

Looking at Table 1, we notice that test takers' scores improved from pretest to posttest, although 

some more dramatically than others (this trend holds for everyone except for the French-

dominant children in the French morphological test). Also notice that in almost all cases, in the 

pretest the English-dominant children do better on the English version of the morphological test 

and the French-dominant children do better on the French version of the morphological test no 

matter whether they are in the experimental or comparison group (for the Comparison group for 

French the bilinguals are actually a bit higher). For the posttest, in the experimental group the 

English-dominant children do better than everyone else but the French-dominant children are 

bested a bit by the Bilinguals. In the Comparison group, by contrast, the bilinguals in both 

languages score the highest. 

 

As for checking on data assumptions, we notice that the standard deviations of each group are 

not too different from one another and probably we are safe to assume homogeneity of variance 

for the data, at least divided up this way. 

Visually	Exploring	the	Data	
This dataset is quite complex and we may wonder how to begin looking at it. We have at least 

four different factors we’d like to compare—scores on the French morphological awareness test 

(MAT) versus scores on the English MAT, how scores changed from pretest to posttest (testing 

time), membership in the experimental group or not (Condition), and which language is 

dominant (Language). We may also want to explore at some point how Phonological Awareness 
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in both French and English, at a pretest and posttest stage, may have affected or explained scores 

on the MAT. So there’s a lot going on! In Chapter 11 we looked at a parallel coordinate plot for 

complex data, and with this plot we can examine the change on the MAT from pretest to posttest 

scores with plots split for Language and Condition. We’ll just need to look at data from English 

and French separately. Here is the code I used to create Figure 1 in R: 

 

library(lattice) 

parallelplot(~LQB[9:10]|LQB$Condition*LQB$Language, data=LQB, 

main="Lyster, Quiroga & Ballinger (2013)\nFrench Morphological Awareness Test", 

varnames=c("French pretest", "French posttest")) 

parallelplot(~LQB[11:12]|LQB$Condition*LQB$Language, data=LQB, 

main="Lyster, Quiroga & Ballinger (2013)\nEnglish Morphological Awareness Test", 

varnames=c("English pretest", "English posttest")) 

 

We saw in Chapter 11 that SPSS can create parallel coordinate plots too. First, split your data 

according to both Language and Condition (DATA > SPLIT FILE), then go the GRAPHS > 

GRAPHBOARD TEMPLATE CHOOSER, and choose the variables MAT.pre.FR and MAT.post.FR. 

The choice of a parallel coordinate plot (PARALLEL) will appear and with the data already 

divided you should be able to call back all of the graphics you can see in R (although you will 

have to manually put them together to create the type of graphic you see in Figure 1). 
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Figure 1 Parallel coordinate plots for Lyster, Quiroga & Ballinger (2013) morphological 

awareness test. 

 

To see improvement from pretest to posttest we want to see the lines lean to the right, toward 

higher scores. Visually, does it look like more of the lines in the Experimental groups are leaning 

as compared to the Comparison groups? Well we see there are more participants in the 

Experimental group than the Comparison group, so that is something to keep in mind as less 

typical scores may have more influence, but to me there does appear to be more leaning to the 

right in the Experimental column than the Comparison column. Notice also how scores across 

the two language tests (French on the left, English on the right) differ for the Language groups. 

For example, the lines of the French dominant group are clustered more toward the right end of 

the window (more toward the max score) for the French MAT as compared to the English MAT.  

 

Another graphic that we used with lots of variables was the coplot in Section 7.2.1 of the book. 

The coplot shows scatterplots conditioned by other variables, so let’s look at scatterplots of the 
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relationship between pretest and posttest scores, conditioned by Language and Condition (see 

Figure 2 for the English test). Here is the R code for the coplot: 

 

coplot(MAT.post.EN~MAT.pre.EN|Condition*Language, panel= function(x,y,...) 

panel.smooth(x,y,span=1.0,...),data=LQB) 

 

Figure 2 Coplot for Lyster, Quiroga & Ballinger (2013) English morphological awareness test. 
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Because the conditioning variables are all categorical, this coplot is basically just a collection of 

the six scatterplots that can be generated by the intersection of the 3 levels of Language and the 2 

levels of Condition. Although I don’t know of any way to make coplots in SPSS, one could 

certainly make scatterplots with the same division of data. The coplots have Loess lines on the 

data, showing not a straight regression line but rather an approximation to the trends in the data. 

Since the pretest is plotted on the x-axis and the posttest on the y-axis, the steeper the line slopes 

to the right, the more the gains from pretest to posttest. Again, we should note that the number of 

data points in some categories is small and we cannot rely on those trends as strongly, but it 

appears that the French-dominant students had quite steep slopes for both the control and 

experimental groups on the English MAT, steeper than the Bilinguals (and the English-dominant 

groups are both quite small so it is hard to draw conclusions from them).  

 

The coplot excels when using continuous variables as conditioning variables, so let’s try keeping 

the Language variable but using the pretest Phonological Awareness variable to condition scores. 

We’ll see how Phonological Awareness affected the pretest to posttest learning on the English 

MAT (see Figure 3).  

Here is the R code for this figure: 

 

coplot(MAT.post.EN~MAT.pre.EN| Language*PA.pre.EN, panel= function(x,y,...) 

panel.smooth(x,y,span=1.0,...),data=LQB) 
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Figure 3 Coplot English morphological awareness test with conditioning variable of 

Phonological awareness. 

 

 

Use Figure 3 to look at the differences in growth from low PA to high PA. Do you think slopes 

get steeper as participants have higher levels of PA to start with? It looks like perhaps having a 

high phonological awareness may be associated with students being able to make more gains 
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from pretest to posttest in morphological awareness. Of course, this plot mixes together the 

Experimental and Comparison students, which may not be the right thing to do. Anyway, you 

can see how you could use a coplot to explore your data and look for trends. The more you want 

the line to be a straight regression line and not follow the trends of the data, the higher you can 

set the span number in the argument for the coplot. 

 

 There’s one other plot I’d like to make with this data, and it does not involve R or SPSS, but it 

might be helpful for understanding the data. This is a small multiple, a term coined by Tufte 

(2001). The small multiple takes the same information and repeats it multiple times. In this way, 

you can understand the graphic display of information for one individual and then your mind can 

easily create patterns by looking at that display for many individuals. My idea was to have a 

barplot with the MAT pretest and posttest information side by side, and put those barplots for the 

French and English MATs side by side. Then to see how that gain from pretest to posttest was 

affected by phonological awareness, I wanted to have pretest and posttest information for PA for 

each language in a barplot version underneath each MAT. These small graphs containing 8 

pieces of information could then be arranged according to Language and Condition, so that the 

viewer could try to spot any trends across the combinations of Language and Condition (the 

small multiples could also of course be rearranged in other ways, by Program or School). The 

idea of such a graphic is to see all of the individual information in a visual way, which the brain 

is able to use to provide perceptual inferences at basically zero cost (Larkin & Simon, 1987). We 

humans are able to process data this way much more efficiently and to find patterns more readily 

than looking at the same information in numerical form. At least, that’s my hope! Now someone 

who could program R better than me would probably be able to write a program to create these 
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barplot clusters (and I hope they will and will send it to me, and I’ll post it online!), but since I 

can’t, I’ve had them drawn by hand (thanks go to my son, Lachlan Hall), scanned them in, and 

rearranged them according to Condition and Language, and present them to you in Figure 4.  

 

Figure 4 Small multiple boxplot clusters for the Lyster, Quiroga & Ballinger (2013) data. 

 

With those views of the data, then we shall continue in our quest to analyze the data statistically. 

Visually	Examining	the	Data	for	Statistical	Assumptions	
We would like to examine the data for normality and homogeneity of variances, with the data 

divided up the way we will be looking at it. The one-way ANCOVA we look at will examine the 

pretest and posttest morphological awareness tasks (MAT) divided up by Condition 

(Experimental vs. Comparison), so let’s call for boxplots of the data split this way. 

 

In SPSS, here’s a different way to make boxplots than I have before. Go to GRAPHS > 

REGRESSION VARIABLE PLOTS. Move all 4 MAT variables to the box labeled “Vertical-Axis 
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Variables.” Move CONDITION to the box labeled “Horizontal-Axi Variables.” Press the OPTIONS 

box and add a title if you like. Click on “Boxplots under “Categorical Variable Plots.” Press 

CONTINUE. You will get 4 boxplots, one for each MAT variable split into data from the 

Comparison and Experimental groups. 

 

In R Commander, you can choose GRAPHS > BOXPLOTS and then split one variable at a time by 

Condition into Experimental and Comparison groups (open the PLOT BY GROUPS button to pick 

Condition).1 This can get you the syntax you need to paste into R and get all 4 boxplots you want. 

Alternatively, use the code I showed in Section 8.2.4 and with a little more work you can clean 

the boxplots up to all fit into one figure and look much nicer, as in the code here, which results in 

Figure 5: 

 

par(mfrow = c(2, 2)) #Change to 2 rows and 2 columns so it will all fit in one window 

boxplot(MAT.pre.EN~Condition, data=LQB,  

names=c(“Comparison”, “Experimental”),main=“MAT pretest English”, 

las=1,notch=FALSE,col=“grey”, boxwex=.5,medcol=“white”) 

. . . continue with the same syntax for 3 more boxplots, just changing the underlined part to 

different files and fix the name. 

 

                                                            
1 Remember that if you don’t seem to be able to choose any groups, you may need to pick a different active dataset, 
then come back to the LQB data file, since we changed the structure of the dataset to turn some variables into factors, 
but R Commander doesn't know that until we detach and reattach the file. 
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Figure 5 Boxplots of the MAT data split by Condition (Experimental vs. Comparison). 

 

The boxplots in Figure 5 show us several things. First, they show that in general, collapsing all of 

the language groups, the Experimental group consistently has a higher median score than the 

Comparison group, but usually not by too much. There are departures from normality in that 

there is one outlier in all but the pretest English MAT, and some slight skewness in some 

distributions. 
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One more graph that can be helpful in assessing what is happening in a situation with covariates 

is to look at a scatterplot of the continuous variables with data divided by groups. The scatterplot 

should have regression lines drawn for the groups because the hypothesis that is being tested in a 

standard ANCOVA is that the regression lines for the groups are parallel. The one-way 

ANCOVA tested in this chapter looks at the relationship between the posttest MAT and the 

posttest PA. This ANCOVA will divide the data into the two Conditions, Experimental and 

Comparison, so this is the type of scatterplot we will look at. 

 

In SPSS, choose GRAPHS > LEGACY DIALOGS > SCATTER/DOT, choose SIMPLE SCATTER and 

DEFINE, and then put “MAT-post-FR” in the “Y-Axis” box and “PA-post-FR”in the “X-Axis” 

box (or vice versa), and “Condition” in “Set Markers by.” Press OK. To draw regression lines on 

the scatterplot, double-click on the plot and the CHART EDITOR will open. In the CHART EDITOR, 

choose ELEMENTS > FIT LINE AT SUBGROUPS to get separate regression lines on the two different 

groups. A PROPERTIES box will open and if you want to choose a different type of line besides 

“Linear” (which you don’t right now) you can choose that and press APPLY. Otherwise, just 

press CLOSE. Since SPSS separates lines only by color, you’ll probably want to make different 

groups have different symbols. To get a different symbols, click twice, slowly, on one particular 

point. A different PROPERTIES box opens to the MARKER tab. You can choose a different symbol 

under the “Marker”: “Type” box. You can change the color too. Press APPLY and CLOSE and 

then close the CHART EDITOR. 

 

In R Commander, you can choose GRAPHS > SCATTERPLOT and pick “MAT.post.FR” for the x-

variable and “PA.post.FR” for the y-variable (or vice versa). We want to split by Condition, so 



 21

open the PLOT BY GROUPS button and pick Condition (by the way, in this command you can only 

pick one variable to split by). Go to the OPTIONS tab and click off “Marginal boxplots,” “Smooth 

line” and “Show spread” (these are useful things but not what we want right now!), leaving only 

“Least-squares line” (the straight regression line). Go ahead and change “Identify Points” to “Do 

not identify.” Press OK. To make Figure 6 I then used the code from this command but added a 

main title to the end of the code: main="French MAT", and then copied both scatterplots to be 

side by side. Here’s the code: 

 

scatterplot(MAT.post.FR~PA.pre.FR | Condition, reg.line=lm, smooth=FALSE,  

spread=FALSE, boxplots=FALSE, span=0.5, by.groups=TRUE, data=LQB, 

main=“French MAT”) 

scatterplot(MAT.post.EN~PA.pre.EN | Condition, reg.line=lm, smooth=FALSE,  

spread=FALSE, boxplots=FALSE, span=0.5, by.groups=TRUE, data=LQB, 

main=“English MAT”) 

 

Figure 6 shows scatterplots between the posttest MAT score and the posttest PA score, with 

separate regression lines for Condition. 
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Figure 6 Scatterplots of MAT posttest and PA posttest split by Condition. 

 

The regression lines for Condition look pretty parallel for the French MAT, but they intersect for 

the English MAT. 

 

Another type of scatterplot in R uses the lattice package and can separate the scatterplots based 

on Condition and put them side by side. See if you like this graph better than Figure 6: 

 

library(lattice) 

xyplot(MAT.post.EN~PA.post.Eng|Condition,layout=c(2,1),col="black",  

type=c("p","r"), data=LQB) #the argument "r" adds a regression line; to get a smooth line, use 

#"smooth" 

#you can add it in addition to the “r” or instead of it; “p” plots points for the scatterplot 
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Application	Activity	(No	Answers	Given)	
1 In the first edition of the book the data featured in the chapter on ANCOVA was the 

object identification task from Lyster (2004). Use the Lyster.Oral.sav file to get the data 

for the object identification task. Do a numerical summary of the mean scores and 

standard deviations for the task by dividing the data into Condition (4 levels) and testing 

Times (3 times). 

2 Using the same data as in Exercise #1, make a parallel coordinate plot for the object 

identification task with three time periods, dividing the graphs into the 4 different 

conditions. Can you make any observations about which groups had more gains from 

pretask to immediate posttask? Did gains seem to hold from immediate to delayed 

posttask? 

3 Figure 2 shows a coplot for the English MAT. Make a similar coplot for the French 

MAT. Talk about any patterns you see with regards to Language or Condition. 

4 Figure 3 shows a coplot for the English MAT with the English Phonological Awareness 

(PA) pretest and Language. Make a similar coplot for the French MAT. Do you notice 

any trends that change as participants have higher levels of PA? 

5 Figure 6 shows scatterplots for the MAT vs. PA posttest scores. The two-way ANCOVA 

we’ll look at later uses pretest scores and posttest scores as the continuous covariates, and 

divides data by Condition and Language. Make scatterplots for the French and English 

MAT pretest and posttest scores, and divide the data by Condition. Are the regression 

lines parallel?  

6 Do the same analysis as in #5 but divide the data by Language. Are the regression lines 

parallel? 
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ANCOVA	Design		
While an ANOVA design includes one continuous dependent variable and one or more 

categorical independent variables, an ANCOVA design differs by being able to have continuous 

independent variables. Covariates can be either categorical or continuous (Howell, 2002), 

although in the field of second language research they are by and large continuous. Covariates 

are considered independent variables.  

 

Covariates can be entered into any of the ANOVA designs—one-way ANOVAs, factorial 

ANOVAs, and even repeated-measures ANOVAs. Therefore, an analysis of covariance does not 

so much tell you about the design of the study as much as the fact that covariates will be 

included in it.  

 

Any number of covariates may be entered into the research design, although Howell (2002) 

cautions that interpreting an analysis of covariance may be difficult enough with just one 

covariate, let alone more. Can covariates enter into any interactions with the other independent 

variables? The research design used in SPSS will not allow it. The research design in R is more 

flexible and it is possible, but you should not enter the covariates into any interactions with the 

other independent variables except in the special case where you are checking on one of the 

assumptions of ANCOVA (see the sections of this paper called “Assumptions of ANCOVA” and 

“Checking the Assumptions for the Lyster, Quiroga & Ballinger (2013) Data: Assumption 1, 

correlations” below). What you are looking for by including a covariate is what’s happening with 

the other variables when the effect of the covariate is taken away, and also whether that variable 

(the covariate) is statistical or not. If a covariate is found to be statistical then it has an 

independent effect on the variance of the dependent variable. Basically, a statistical covariate 



 25

means that the covariate does affect scores on the dependent variable. In fact, this would be the 

same interpretation you would make if any simple main effect of an independent variable were 

statistical. However, be careful not to interpret a statistical covariate as implying causation. In 

other words, if we find that the covariate of Phonological Awareness is a statistical predictor in a 

model where the dependent variable is the MAT score, it does not mean that Phonological 

Awareness causes differences in scores on the MAT. 

 

Howell (2002) also warns against a use of the ANCOVA when it would result in a situation that 

would go against logic or common sense. If controlling for your covariate results in a design that 

does not exist in reality, then it doesn’t make much sense to test for it statistically. For example, 

you probably wouldn’t want to factor age of acquisition out of a research design involving early 

and late bilinguals. Would you really want to examine, say, context of acquisition (naturalistic, 

instructed, or both) among early and late bilinguals while ignoring the effects of age? Age is an 

important factor and it would be silly to ignore it while examining the effects of a different 

variable. 

 

One controversy surrounding ANCOVA is using it to make groups “equal” when the subject 

cannot be randomly assigned to experiments. Although using ANCOVA for experimental 

designs where there is some “noise” in the data, things like individual variation that we want to 

remove to compare the effects of a treatment, is seen as appropriate, there are a number of 

arguments against using covariates to try to make subjects “equal” if they are not. Tabachnick 

and Fidell (2001) say that in research when subjects cannot be randomly assigned to groups it is 

legitimate to use ANCOVA to try to reduce differences of group means on the dependent 
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variable “as long as the [covariate] differences are not caused by the IV” (p. 280). In other words, 

in terms of our research design here, if the differences in MAT pretests (the covariate) were 

caused by being in the Experimental group versus the Comparison group, or if the differences in 

MAT pretests were caused by being a French-dominant or English-dominant or Bilingual 

speaker, this would be problematic.  

 

Other authors argue that problems are increased if assignment to groups is not random, however. 

Clark (2014) lists some problems that arise if you use intact groups in ANCOVA: correlation 

between the covariate and the IV (the fact that this is a problem is detailed in the preceding 

paragraph), if groups differ because of the IV then partialling out the covariate may mean you 

are actually partialling out the effects of treatment, and the adjusted means may not represent any 

situation in the real world and so interpretation is problematic. Clark quotes Anderson (1963), 

who states that covariance may be a useful tool for reducing error variability, but “if the between 

groups differences on the covariate are systematic rather than chance, one may well wonder what 

exactly it means to ask what the data would be like if they were not what they are” (p. 170). 

Tabachnick and Fidell (2001) likewise caution that “adjusted means must be interpreted with 

great caution because the adjusted mean DV score may not correspond to any situation in the real 

world” (p. 280). 

 

Figure 7 shows the research design for the Lyster, Quiroga and Ballinger (2013) analysis I will 

be showing in this chapter. Figure 7 shows the design for the English MAT, although the French 

MAT was similar and the total number of points was the same as the English MAT. The research 

design will depend upon the number and type of variables involved in the test if the covariate is 
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ignored. Figure 5 shows that, without the covariate, the design includes one categorical 

independent variable and one continuous dependent variable. This is a one-way ANOVA design, 

so with the covariate we would call it a one-way ANCOVA design.  

 

Figure 7 Lyster, Quiroga & Ballinger (2013) one-way ANCOVA design box. 

 

Lyster, Quiroga and Ballinger (2013) also performed a two-way ANCOVA analysis on the MAT 

posttest scores by including both Language dominance (English-dominant, French-dominant, 

and Bilingual) and Group (Experimental vs. Comparison) and then used the MAT pretest score 
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as a covariate. Figure 8 shows the research design of this study is a factorial 3 (Language 

dominance) × 2 (Group) ANOVA, so we can call it a two-way ANCOVA (or 3 × 2 ANCOVA) 

design. If the information for the design is the same as I already gave in Figure 7, I won’t repeat 

it in detail for Figure 8. 

 

Figure 8 Lyster, Quiroga & Ballinger (2013) two-way ANCOVA design box. 

Application	Activity:	Identifying	Covariate	Designs		
Look at the following descriptions of experimental studies in the second language research field. 

Decide whether the design is one-way ANCOVA, factorial ANCOVA, or RM ANCOVA. 

Remember that the design depends on what test you would use if the covariates were not 
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included in the design. The requirements for each of these research designs is listed in Table 2.  

 

Table 2 ANOVA design requirements 

 

 

1. Fraser (2007). The author wanted to compare the performance of two groups of Mandarin 

Chinese users of English (one living abroad, one not) on five reading tasks. The same tasks were 

given to the participants in both their L1 (Mandarin) and their L2 (English). There was also a 

covariate, which was scores on the listening portion of a measure of English language 

proficiency called the CELT. Using this study as a covariate would factor out differences 

between participants due to their English listening proficiency. Fraser specified her research 

design (2007, p. 380): “Thus, there was one between-subject factor (group with two levels: 

Canada group and China group), and two within-subject factors (language condition with two 

levels: L1 and L2; and Task with five levels: rauding [normal, ordinary reading], scanning, 

skimming, learning, memorizing).... In addition, to examine the impact of L2 proficiency on L2 

reading rate and task performance, the CELT scores were used as a covariate in the analyses of 

the L2 data.”  

Research Design: One-way ANCOVA Factorial ANCOVA RM ANCOVA 
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2. Lim and Hui Zhong (2006). The authors wanted to see how computer-assisted learning 

(CALL) compared to traditional reading classes in promoting reading comprehension in Korean 

college students learning English. There were two groups of students whose reading 

comprehension was measured at the beginning and end of the semester. The authors found that 

scores on the comprehension task were higher for the traditional learners (X = 54) than for the 

CALL class (X = 49) on the 100-point test, and thus decided to use the pretest comprehension 

task as a covariate. In this way the authors could compare the scores of the two groups, adjusted 

by subtracting out variation due to the pretest scores.  

Research Design: One-way ANCOVA Factorial ANCOVA RM ANCOVA 

 

3 Beech and Beauvois (2005). These researchers begin their study with the assumption that in-

utero influence of sex hormones can affect auditory development, which in turn can affect 

phonology. Problems with phonology have in turn been linked to reading disorders. The authors 

assert that the influence of sex hormones can be measured by a ratio between the length of the 

index and ring fingers. Thus, one of the variables in their study is digit ratio, and participants 

were split into three groups: top, middle, or bottom. The authors wanted to control (or even out) 

the effects of intelligence on their participants, so they used the Baddeley reasoning task. One of 

the statistical tests they performed looked at the effects on a silent reading task (the dependent 

variable) of the covariate reasoning task and the digit ratio as a categorical independent variable.  

Research Design: One-way ANCOVA Factorial ANCOVA RM ANCOVA 

 

4 Larson-Hall (2008). I examined Japanese college users of English in order to see whether an 

earlier start in learning English would result in any advantages on an English grammaticality 
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judgment test (GJT). Thus my dependent variable was scores on the GJT, while my independent 

variables were a categorical division into earlier and later starters (those who began learning 

English before age 12 or 13, when it is a required subject in public schools), a continuous 

variable of language aptitude, and a continuous variable of the amount of total input the 

participants reported in English before they reached college (this was, of course, estimated!). 

Both language aptitude and amount of input were covariates.  

Research Design: One-way ANCOVA Factorial ANCOVA RM ANCOVA 

 

5 Culatta, Reese, and Setzer (2006) (slightly adjusted from the original). The authors 

examined the effects on several different reading tasks of presenting skills in the first six weeks 

or second six weeks of instruction in a dual-language immersion kindergarten. A pretest and 

posttest were also given, so that time was a categorical independent variable. Whether the skill of 

alliteration or rhyme was presented first was categorized as the class independent variable. The 

dependent variable was word recognition. In order to control for differences in reading ability, 

scores from a standardized test of reading were used as a covariate.  

Research Design: One-way ANCOVA Factorial ANCOVA RM ANCOVA 

 

Answers	to	Application	Activity:	Identifying	Covariate	Designs		
1 RM ANCOVA because there are two within-subject variables, meaning all of the 

participants completed every level of these. 

2 One-way ANCOVA because there is only one independent variable beside the 

covariate—that is group (it doesn’t matter that there are only two levels—if there is a 

covariate we cannot use a t-test, we must use a univariate ANOVA design). 
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3 One-way ANCOVA because there is only one independent variable beside the 

covariate—that is the digit ratio. 

4 One-way ANCOVA because there is only one categorical IV. The two covariates are 

continuous and do not enter into any interactions with the IV. 

5 RM ANCOVA because one of the two categorical variables is within-subjects (repeated), 

that of Time (meaning, the same people were tested at two different times). If a 

researcher wanted to ignore the repeated measures and classify Time as a between-

subjects variable (which would cause a loss of power and wouldn’t be recommended), 

then this could be a factorial ANCOVA because it would have two between-subject 

variables, that of Time and Class. 

	

Assumptions	of	ANCOVA		
ANCOVA carries with it the normal assumptions of any ANOVA test, including normal 

distribution of data and homogeneity of variances. However, ANCOVA also carries a couple 

more requirements that are special to the covariate situation. I won’t specifically list the 

assumptions of ANOVA here (they can be found in the book in Section 9.3 for one-way 

ANOVA, Section 10.3 for factorial ANOVA, and Section 11.4 for RM ANOVA), just the 

additional requirements in Table 3. 
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Table 13.3 Additional Assumptions for Covariates 

Meeting assumptions Factorial ANOVA 
1 No strong 
correlations among the 
covariates themselves 

Required? 
 
How to test 
assumption? 
 
 
 
 
 
 
What if assumption 
not met? 
 

Yes 
 
If you have more than one covariate, perform a 
correlation test on your covariates; Tabachnick 
and Fidell (2001) say that any covariate which 
correlates with another covariate at R2=.5 or 
higher should be eliminated, as it is not adding 
much additional information independent of the 
other variable 
 
Eliminate one of the covariates 

2 The relationship 
between the covariate 
and response variable 
should be linear 

Required? 
 
How to test 
assumption? 
 
 
 
 
 
 
What if assumption 
not met? 
 
 

Yes 
 
Look at correlation statistics or scatterplots 
between the covariate and the response variable; 
impose a regression line and a Loess line to see if 
the relationship is linear “enough”; this should be 
done with data divided into the separate groups 
used in your analysis, as shown in Figure 9 in this 
chapter. 
 
1) Use Robust ANCOVA analysis which does 
not require linearity; 2) Try transformation of 
one or both variables; 3) Do not use ANCOVA 

3 The slopes for each 
group of the 
regression should be 
the same (homogeneity 
of regression slopes) 

Required? 
 
How to test 
assumption? 
 
 
 
 
 
What if assumption 
not met? 
 

Yes 
 
1) Check scatterplot to see if all groups are 
similar in their slopes; 2) include an interaction 
term between the covariate and the treatment—
if it is statistical (p<.05) then you have a problem 
(I will demonstrate how to check this 
assumption in the following section) 
 
1) Do not use ANCOVA; 2) use robust 
ANCOVA analysis which does not require 
homogeneity of regression 

 

 
 

Table 3 Additional Assumptions for Covariates. 
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Checking	the	Assumptions	for	the	Lyster,	Quiroga	&	Ballinger	(2013)	
Data:	Assumption	1,	Correlations	
For the first assumption that there may be a strong correlation between covariates, neither one of 

the designs used by Lyster, Quiroga and Ballinger (2013) had more than one covariate, so this 

requirement is moot for those designs. However, there should be some correlation between the 

response (dependent) variable and the covariate. One of the reasons for conducting an ANCOVA 

is to look at what the relationship between the DV and IV would be if everyone were to score 

equally on the covariate. If the covariate has no relationship to the DV, there is nothing to adjust 

for!  

 

So let’s look at the correlation for the one-way ANCOVA between the English MAT posttest 

and the English Phonological Awareness posttest. If there is no correlation between these two 

variables, there is not much reason to keep the covariate in. Remember that to call for 

correlations in SPSS, go to ANALYZE > CORRELATE > BIVARIATE and choose the variables you 

want to test. For R Commander, go to STATISTICS > SUMMARIES > CORRELATION MATRIX, where 

you can choose as many variables as you like. Table 4 shows correlations among all of the 

continuous posttest variables, and the correlation between the English MAT and the English PA 

is r=.42, a moderate correlation, and one that argues for keeping the covariate in.  
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Table 4 Correlations among continuous posttest variables in Lyster, Quiroga & Ballinger 2013. 

 MAT.post.EN MAT.post.FR PA.post.EN PA.post.FR 

MAT.post.EN 1 .44 .34 .42 

MAT.post.FR  1 .31 .43 

PA.post.EN   1 .78 

PA.post.FR    1 

 

 

 

For the two-way ANCOVA, again we do not have to worry about unwanted correlations between 

covariates as there is only one, but we do want there to be a correlation between the English 

MAT posttest and the English MAT pretest. Table 5 shows correlations among the pretest-

posttest pairs of continuous variables. The correlation between the English MAT pretest and 

posttest is r=.62, a large correlation. 

 

Table 5 Correlations between pretest and posttest variables in Lyster, Quiroga & Ballinger 2013. 

 

 MAT.

pre. 

EN 

MAT. 

post. 

EN 

 MAT.

pre. 

FR 

MAT. 

post. 

FR 

 PA. 

pre. 

EN 

PA.

post.

EN 

 PA. 

pre. 

FR 

PA. 

post. 

FR 

pretest  .62   .75   .77   .70 

 

 

Let’s also imagine a situation where we have two covariates with this data. Say we conducted a 

two-way ANCOVA with two covariates, that of Phonological Awareness (at the posttest) and 

pretest scores on the MAT for the English data. In that case we would need to test the 



 36

assumption that there is no correlation between these covariates. The correlation is r=.03, 95% 

CI [-0.21, 0.27]. Thus there is no problem with strong correlation between the two variables. If 

there is a strong correlation between the covariates, there is less room for finding any reduction 

of “noise” in the data due to these factors, but keeping both covariates means we will lose 

statistical power.  

 

For this hypothetical two-way ANCOVA we have already tested the strength of the correlation 

between the covariates and the dependent variable in the paragraphs above, so we would also 

have reasons for keeping the two covariates. We are happy, since Tabachnick and Fidell (2001) 

say that ideally, “we want a very small number of [covariates], all correlated with the DV and 

none correlated with each other” (p. 279), and that is what we have! 

Checking	the	Assumptions	for	the	Lyster,	Quiroga	&	Ballinger	(2013)	
Data:	Assumption	2,	Linearity	
For the second assumption of linearity between the covariate and the dependent variable (divided 

by groups), for the one-way ANCOVA design in Figure 7 the dependent variable is the English 

MAT posttest score and the covariate is Phonological Awareness in English, posttest score, 

divided into experimental groups. Figure 6 showed scatterplots of the correlation between the 

tests with regression lines drawn, but this is not exactly what we want, as we are trying to assess 

whether a straight line (the regression line) is the correct assumption for the data rather simply 

imposing the straight line as was done here. So trying out the Lattice package side-by-side 

scatterplots as detailed for Figure 6 but adding a Loess line along with the regression line results 

in Figure 9 for the English data. A straight line is definitely the best choice for the Comparison 

group but the Experimental group shows some curvature in the Loess line, indicating that a 
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straight line may not be the best choice. We can use a robust regression (and later, we will) to 

examine the data without the assumption of linearity. Here is the code I used in R to generate 

Figure 9: 

 

xyplot(MAT.post.EN~PA.post.Eng|Condition,layout=c(2,1),col=“black”,  

type=c("p","r", "smooth"), data=LQB)  
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Figure 9 Examining the assumption of linearity between the covariate and the dependent 

variable divided by groups for the dependent variable of MAT.post.EN and the covariate of 

PA.post.EN. 

 

 

For the two-way ANCOVA design in Figure 8 the dependent variable is still the English MAT 

posttest score, but now the covariate is the English MAT pretest score, and we want to divide the 
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data by both Language dominance and Condition, which makes things a little trickier if we want 

to have an understandable graph. I ended up doing this in R by subsetting the data into just one 

condition at a time, then calling for the data to be split by Language so I would get 3 side-by-side 

scatterplots with Loess and regression lines drawn on them. The code for the graph for the 

Experimental group is this: 

 

xyplot(LQB$MAT.post.EN[subset=LQB$Condition=="Experimental"] 

~PA.post.Eng[subset=LQB$Condition=="Experimental"]|Language,layout=c(3,1),col="bl

ack",  

type=c("p","r", "smooth"), xlab="MAT.pre.EN", ylab="MAT.post.EN", 

main="Experimental group", data=LQB)  

 

Figure 10 Examining the assumption of linearity between the covariate and the dependent 

variable divided by groups for the dependent variable of MAT.post.EN and the covariate of 

MAT.pre.EN. 
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Figure 10 shows the result, although for the Comparison group: French dominant there is no 

Loess line as the xyplot( ) command had a problem with plotting a Loess line over so few data 

points. In fact, we have to be careful with Loess lines if they fit the data too carefully, as then 

they will never look linear. Although none of the Loess lines looks like it fits a line well, we also 

do not see any kind of curvilinear pattern in the data, so for now we will hope that a line best 

describes the data. The worst that can happen is that we will lose statistical power if we violate 

this assumption.  

 

If there is more than one covariate, there is also an assumption that the relationship between the 

covariates is linear (Tabachnick and Fidell, 2001). However, if there is no correlation between 

the covariates according to assumption #1 in the section of this chapter called “Assumptions of 

ANCOVA,” I’m not sure how the scatterplot between the two variables will be linear. I guess the 

best we can hope for is that there are not any clear patterns and that the data are mostly randomly 

scattered. Examining a scatterplot between posttest phonological awareness in English and the 

pretest MAT in English, the data do just seem to be randomly scattered. 

Checking	the	Assumptions	for	the	Lyster,	Quiroga	&	Ballinger	(2013)	
Data:	Assumption	3,	Homogeneity	of	Regression	Slopes	
For the third assumption for the one-way ANCOVA we can go to Figure 6 to see if slopes are 

parallel for the 2 conditions (Experimental vs. Comparison). They are not parallel and cross at 

one point for the English test, indicating an interaction. Tabachnick and Fidell (2001) say that if 

there is an interaction for the lines of different groups, this indicates that the relationship between 

the DV and the covariate is different at different levels of the groups. This would make finding a 

statistical result for the ANCOVA difficult, and Tabachnick and Fidell recommend not using an 
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ANCOVA in that situation. If you have read the online section for Chapter 11 entitled 

“Performing an RM ANOVA the Mixed Effects Way,” you know that a mixed-effects model is 

an excellent way to handle situations where groups have different slopes because mixed-effects 

models can let the slopes of different groups vary. So if your data violates these assumptions, 

you might want to think about a mixed-effects model. Other authors suggest a plain multiple 

regression if you violate this assumption for ANCOVA. 

 

Another way to test whether there is homogeneity of regression slopes is to test for the presence 

of an interaction between the covariate and the treatment or grouping variable. If the interaction 

is not statistical, I can proceed with the normal model, according to Tabachnick and Fidell (2001, 

p. 292).  

Checking	the	Homogeneity	of	Regression	Slopes	Assumption	in	SPSS	
In order to test the homogeneity of regression slopes assumption in SPSS, we will request the 

interaction between the covariate and the grouping variable in our initial model, whatever it is. 

For the one-way ANCOVA case we are considering, we want to use the one-way ANOVA 

procedure. To do this, open ANALYZE > GENERAL LINEAR MODEL > UNIVARIATE. In the Uni-

variate dialogue box, move the variables you want to analyze to the right. For the one-way 

ANCOVA data, move MAT.POST.EN to the “Dependent variable” box, CONDITION to the “Fixed 

Factor(s)” box, and PA.POST.EN to the “Covariate(s)” box. Now open the MODEL button.  

 

Figure 11 shows a box where you can build a custom ANOVA model. Click on the button that 

says “Custom.” Click on CONDITION, and in the “Build Term(s)” area use the arrow to move it to 

the right under “Model.” Do the same for PA.POST.EN. Then use the Ctrl button to click on both 
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variables at the same time under the left-hand box “Factors & Covariates.” In the “Build 

Term(s)” area the “Type” button should say INTERACTION. This will let you set up the third term 

in the “Model” area as I have. Notice also that I have changed the sum of squares to Type II. 

Press CONTINUE and then OK to run the analysis.  

 

Figure 11 Creating an interaction term in a custom ANCOVA model. 

 

The main output table, the “Tests of Between-Subjects Effects,” shows that the interaction 

(Condition*PApostEng) is not statistical (p = .08). This is one of those times when we are 

hoping the p-value will be larger than p = 0.05. If it is, we can conclude that the slopes of the 

groups on the covariate are parallel enough and that there is homogeneity of regression. If there 

were a statistical interaction, then that would mean that the groups performed differently on the 
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covariate. In the output, shown in Table 6, the interaction (Cond*PreObjectID) is the only thing 

that you need to look at; you can ignore the other parts of the output.  

 

 

Table 6 Testing assumptions in a one-way ANCOVA in SPSS. 

 

The fact that the p-value of the interaction is quite low as well as the fact that the scatterplot 

showed the lines crossing may make us cautious about using ANCOVA in this situation, 

although if we interpret Tabachnickand Fidell (2001) strictly, we could do it. It seems it may be 

more prudent to use it in the case of the French MAT (which did not show any interaction of 

groups in Figure 6).  

 

In the case of an ANCOVA where you have two independent variables or more than one 

covariate, I do not know whether it is necessary to simply check the relationship of each of the 

independent variables with each covariate separately, or whether all of the variables in the model 

need to be checked together. In other words, for Lyster, Quiroga and Ballinger’s (2013) two-way 

ANOVA, do we need to look at two interactions—one between the covariate of the pretest MAT 

and Condition (Experimental vs. Comparison), and one between pretest MAT and Language 
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dominance (French-dominant, English-dominant or Bilingual), or should we look at the three-

way interaction between the pretest MAT, Condition and Language dominance? None of the 

books that I have examined have directly address this issue, and I don’t know the answer. My 

hunch is that the interactions should be considered separately. Tabachnick and Fidell (2001) give 

an example of an ANCOVA where the question is whether political attitude is affected by 

geographic region and religious affiliation (so 2 IVs), with two covariates of socioeconomic 

status and age, and say that “[w]ith more than one IV, separate statistical tests are available for 

each one” (p. 278). It seems to me that this means that assumptions should also be checked 

separately. 

Checking	the	Homogeneity	of	Regression	Slopes	Assumption	in	R	
In order to test the homogeneity of regression slopes assumption in R, we will request the 

interaction between the covariate and the grouping variable in our initial model, whatever it is. 

For the one-way ANCOVA case we are considering, we want to use the one-way ANOVA 

model but add in the covariate plus an interaction between the dependent variable and the 

covariate. Basically this will mean setting up a full-factorial ANOVA with the two variables in 

the case of the one-way ANOVA, like this: 

 

Model1=aov(MAT.post.EN~Condition*PA.post.Eng, data=LQB) 

summary(Model1) 
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The ANOVA output shows that the interaction is not statistical (p = .08). This is one of those 

times when we are hoping the p-value will be larger than p = 0.05. If it is, we can conclude that 

the slopes of the groups on the covariate are parallel enough and that there is homogeneity of 

regression. If there were a statistical interaction, then you can see that that would mean that the 

groups performed differently on the covariate. In the case of checking for the assumption of 

homogeneity of slopes, the interaction is the only row of the ANOVA that you need to look at; 

you can ignore the other parts of the output.  

 

The fact that the p-value of the interaction is quite low as well as the fact that the scatterplot 

showed the lines crossing may make us cautious about using ANCOVA in this situation, 

although if we interpret Tabachnick and Fidell (2001) strictly, we could do it. It seems it may be 

more prudent to use it in the case of the French MAT (which did not show any interaction of 

groups in Figure 6).  

 

In the case of an ANCOVA where you have two independent variables or more than one 

covariate, I do not know whether it is necessary to simply check the relationship of each of the 

independent variables with each covariate separately, or whether all of the variables in the model 

need to be checked together. In other words, for Lyster, Quiroga and Ballinger’s (2013) two-way 

ANOVA, do we need to look at two interactions—one between the covariate of the pretest MAT 

and Condition (Experimental vs. Comparison), and one between pretest MAT and Language 

dominance (French-dominant, English-dominant or Bilingual), or should we look at the three-

way interaction between the pretest MAT, Condition and Language dominance? None of the 

books that I have examined have directly address this issue, and I don’t know the answer. My 
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hunch is that the interactions should be considered separately. Tabachnick and Fidell (2001) give 

an example of an ANCOVA where the question is whether political attitude is affected by 

geographic region and religious affiliation (so 2 IVs), with two covariates of socioeconomic 

status and age, and say that “[w]ith more than one IV, separate statistical tests are available for 

each one” (p. 278). It seems to me that this means that assumptions should also be checked 

separately. 

Application	Activity	for	Checking	ANCOVA	Assumptions	(No	Answers	
Given)	

1 The tests in the section of this paper called “Assumptions of ANCOVA” looked mainly at 

the ANCOVA that used the English MAT, but Lyster, Quiroga and Ballinger (2013) also 

used a one-way ANCOVA to look at the French MAT as well. Go through the the 

assumptions and see whether the French MAT satisfies the extra ANCOVA assumptions. 

2 Lyster, Quiroga and Ballinger’s two-way ANCOVA has one dependent variable (MAT 

posttest), one covariate (MAT pretest) and two independent variables (Condition and 

Language dominance). Examine the data to see if it satisfies the three extra assumptions 

of ANCOVA (use the English test): 

a) Check to make sure there are correlations between the MAT pretest (the covariate) 

and MAT posttest (the dependent variable 

b) Check whether the relationship between the MAT pretest and the MAT posttest is 

linear 

c) Check whether the slopes for Condition in a scatterplot of MAT pretest and MAT 

posttest are parallel and use a one-way ANOVA model to check for interaction 

between MAT posttest and Condition; check whether the slopes for Language 
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dominance in a scatterplot of MAT pretest and MAT posttest are parallel and use a 

one-way ANOVA model to check for interaction between MAT posttest and 

Language. 

3 Do the same as #2 for the French MAT. 

4 Look at the data file Lyster.Oral.sav (if using R, import as LysterO). Assume that you 

want to run a one-way ANCOVA on the posttest oral object identification task 

(PostObjectID) with Condition (treatment group) as the IV and pretest scores on the task 

as covariates. Check to see if the data satisfy the three extra assumptions of ANCOVA. 

5 Later in the chapter we will look at the Larson-Hall 2008 data (if using R, import as 

larsonhall2008). This study was described in an earlier section of this paper entitled 

“Application	Activity:	Identifying	Covariate	Designs.” The response variable is scores 

on a GJT and the independent variable is classification as an earlier or later starter 

(Early). This study used 2 covariates, one language aptitude and the other amount of 

input. Examine the data to see if it satisfies the three extra assumptions of ANCOVA:	

a) Check to make sure there are correlations between the covariates and the dependent 

variable; make sure the covariates themselves are not correlated 

b) Check whether the relationship between aptitude and the IV of GJT is linear, and also 

whether the relationship between amount of input and GJT is linear. 

c) Check whether the slopes for Early in a scatterplot of GJT and aptitude are parallel 

and use a one-way ANOVA model to check for interaction between GJT and Early; 

check whether the slopes for Early in a scatterplot of GJT and amount of input are 

parallel and use a one-way ANOVA model to check for interaction between GJT and 

Early. 
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Performing	an	ANCOVA		

Performing	a	One‐way	ANCOVA	with	One	Covariate	in	SPSS		
 

Performing an ANCOVA involves using SPSS’s GENERAL LINEAR MODEL choices in the 

ANALYZE menu. The three pertinent choices in that menu are: UNIVARIATE, MULTIVARIATE, AND 

REPEATED MEASURES (the VARIANCE COMPONENTS choice is for mixed-effects models, which 

are discussed in the online document called “RM ANOVA the mixed effects way”, but SPSS is 

not illustrated). Use the UNIVARIATE command for one-way or factorial ANOVA. Use the 

MULTIVARIATE command for MANOVA. I don’t discuss MANOVA in this book, but it would 

involve analyzing more than one dependent variable in the same test. Use the REPEATED 

MEASURES command when you have any independent variable that measures the same people 

more than once.  

 

The first ANCOVA I will analyze from the Lyster, Quiroga and Ballinger (2013) research design 

is the one-way ANCOVA, so I’ll use the UNIVARIATE choice. So I choose ANALYZE > GENERAL 

LINEAR MODEL > UNIVARIATE and move MATPOSTEN to the “Dependent variable” box, 

CONDITION to the “Fixed Factor(s)” box, and PAPOSTENG to the “Covariate(s)” box. This 

corresponds to the ANCOVA for the English MAT reported in Lyster, Quiroga and Ballinger 

(2013) on p. 184. 

 

You should now open some of the buttons that are found on the right side of the UNIVARIATE 

dialogue box. First, open the MODEL button and choose a Type II sum of squares analysis if 

you agree with me that this is the best choice (see Section 10.4.4 for arguments). If you 

previously explored a “Custom” model to check for interactions between the covariate and the 
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IV, change this back to the “Full Factorial” model. Because there’s only one non-covariate 

independent variable for the Lyster, Quiroga and Ballinger (2013) data, a means plot would not 

be possible, so there’s no reason to open the PLOT button. However, if you had two or more 

non-covariate independent variables you might like to call for some means plots using this 

button. To get diagnostic tests of your residuals, open the Save button and check 

“Unstandardized” under “Predicted Values” and “Cook’s Distance” under Diagnostics. 

 

If your independent variable has more than two levels, Tabachnick and Fidell (2001, p. 313) state 

that one should be able to run post-hoc tests after an ANCOVA run, but in SPSS the POST HOC 

button will become unavailable if a covariate is entered, as shown in Figure 12. To obtain post-

hoc tests on the independent variable you can instead open the OPTIONS button and move the 

independent variables to the “Display Means for” box, as shown for CONDITION in Figure 12. If 

you tick the box that says “Compare main effects,” pairwise comparisons will be done for all of 

the levels of the IV. The “Confidence interval adjustment” drop-down menu in the SPSS Options 

dialogue box gives only three choices for ways to adjust the p-values of the pairwise 

comparisons—LSD, which means no adjustments are made, Bonferroni, which means 0.05 is 

divided by the total number of comparisons that are made, and Sidak, which is a conservative 

familywise error rate adjustment, but slightly less conservative than the Bonferroni. As I am an 

advocate for higher power, I recommend using the LSD choice. If you are nervous about having 

too many comparisons, I would recommend still using LSD and then going to R to use the FDR 

adjustment (R code shown in Section 8.3.1) to adjust p-values.  

 

While the OPTIONS button is open, also check the “Descriptive statistics,” “Estimates of effect 
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size,” “Spread vs. level plot” and “Residual plot” boxes. If you want a Levene’s test of homo-

geneity of variances, tick “Homogeneity Tests.” When finished, press CONTINUE. Open the 

BOOTSTRAP button and click on the box that says “Perform bootstrapping” and set the number of 

samples to 2000. Change the type of “Confidence Intervals” to “BCa” and press CONTINUE, and 

then press OK in the main dialogue box.  

Figure 12 Calling for ANCOVA in SPSS. 

 

ANCOVA	Output	in	SPSS	
The beginning of the output for a one-way ANCOVA in SPSS gives a box for “Between-

Subjects Factors,” just listing the groups, their labels and counts, and then “Descriptive Statistics.” 

For the English posttest MAT, the data are divided into just scores for the Comparison group 

(M=75.0, SD=19.3, N=20) and the Experimental group (M=80.8, SD=21.9, N=45). Next comes 

“Levene’s test of equality of error variances”, which has a p-value of p = .146, which gives us an 

additional reason to believe that variances are equal (it is only when p<.05 that we worry about 
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variances being unequal across groups). The next box, “Tests of Between-Subjects Effects,” is 

the main output we want to examine, and is in Table 7.  

 

The two main lines we care about are the ones labeled PApostEng and Condition. We see that 

the effect of Condition is p = .11, and would report this result by saying that “the participants did 

not differ in their performance by the experimental group they belonged to, when scores were 

adjusted for posttest Phonological Awareness, (F1,62 = 2.61, p = .11, partial eta-squared = .04).” 

We can see the effect size (partial eta-sqared) is also very small, and we could see from the 

boxplots in Figure 5 that median differences between the groups were small. This means that, 

when MAT posttest scores are adjusted for PA scores, condition is not a factor in explaining 

variance in the model.  

 

We also are interested to know whether our covariate, Phonological Awareness (posttest, in 

English) was statistical, as this would mean that it provides adjustment of the scores on the 

dependent variable, and it can be interpreted as any independent variable in a regression model 

would be (Tabachnick and Fidell, 2001). Table 7 shows that the effect of the posttest PA is 

statistical (F1,62=9.96, p=.002, partial eta-squared = .14), meaning that the scores are adjusted for 

the effect of this variable. This means that differences in Phonological Awareness accounted for 

14% of the variance in the Morphological Awareness Test, if differences in Condition are held 

constant. By the way, if you compare the results for the English MAT given here and those given 

in Lyster, Quiroga and Ballinger (2013), the general outcome is the same but the actual numbers 

for the statistical test differ because the authors excluded one outlier from this analysis, a French-
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dominant participant who scored 70 on the pretest but 142 on the posttest. You can see this 

participant’s outlier score in the MAT posttest English boxplot in Figure 5.  

 

Overall, this model accounted for R2=15% of the variance in the model (13% for adjusted R2). 

This is a rather small amount of the variance and means we have a lot of unexplained error in the 

model. 

 
Table 7 Main results for testing a one-way ANCOVA in SPSS. 

 

We can say more about the effect of PA scores by looking at the next piece of the SPSS output 

found under the title “Estimated Marginal Means.” These results are shown in Table 8. The 

estimates for the means shown in Table 8 are the posttest means for the English MAT, but 

adjusted for PA, so these means are different from those seen in the descriptive statistics at the 

beginning of the output. The adjusted mean is the mean score with the influence of the 

covariate factored out, and in this dataset you can see there is more difference between scores of 

the Comparison and Experimental groups in these adjusted means than in the original means: 

now the Comparison group’s mean is smaller (M=73.0, SE=4.47, N=20) and the Experimental 

group’s mean is higher (M=81.7, SE=2.96, N=45). These point estimates look fairly different, 
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but if we look at the 95% confidence intervals for the estimated means for the groups, they are 

quite wide for the Comparison group (almost a 20-point difference, from 64.0 to 81.9). The 

confidence interval for the mean for the Experimental groups is smaller [75.8, 87.6] but the large 

and overlapping range means that we are not able to find a difference in effect between groups. 

As a note, it is not the case that just because confidence intervals overlap this automatically 

means that there is no difference between groups. Cumming and Finch (2005) give as a “rule of 

eye” for the interpretation of 2 CIs of two independent groups that they can overlap up to about 

half of the average length of both arms of the CI2 and still be statistical at the .05 level. On the 

other hand, if the confidence intervals do not overlap, this is evidence that there is a strong 

difference between groups. Anyway, my point is that the estimated adjusted means gives you a 

point estimate, but the CIs show us these point estimates are not very precise and we cannot be 

very confident of where the true means lie. 

 
Table 8 Scores on the dependent variable adjusted for the covariate in the one-way ANCOVA. 

 

Next in the output comes the “Pairwise Comparisons” table, which shows comparisons between 

the different groups. In this example there are only two groups, so if there had been a real 

                                                            
2 Precisely, this average length of both of the arms of the CI is called the margin of error, and for this example would 
be [(81.9-64.0)/2 + (87.6-75.8)/2]/2= 7.4, meaning the CIs could overlap by about 3.5 points (half of the average 
length of both arms). 
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difference between the groups we would have known which group was better than the other just 

by looking at the mean scores. If you have more than two groups, the pairwise comparison box 

will help you know which groups are different from the others. These pairwise comparisons 

which have been adjusted for the covariate can be interpreted as for any other post-hoc tests, but 

remember that we asked for no adjustment on our p-values (the LSD choice for pairwise 

comparison adjustments). The SPSS output returns confidence intervals so we can report those 

instead of p-values. If you called for bootstrapping there will also be a different box with 

bootstrapped confidence intervals for the pairwise comparisons. 

 

Table 9 Pairwise comparisons between groups, normal and bootstrapped, in SPSS. 

 

 

At the end of the output will be interaction plots if you called for them, and diagnostic plots for 

the residuals. The spread versus level plots test for the assumption of homogeneity of variances 

in the residuals. There is also a table with various combinations of standardized residuals, 
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observed and predicted residuals. Examine the Std. Residual vs. Predicted table; the data should 

look randomly distributed. To examine the assumption of normality of residuals, look to the 

columns appended to the end of your dataset called PRE_1 and COO_1. The PRE_1 stands for 

the unstandardized predicted values from the regression but we aren’t going to do anything with 

that.The COO_1 stands for Cook’s distance, which is a measure of influence (it measures the 

effect of deleting a given observation) and you can examine this data by either looking for values 

larger than 1 or plotting a scatterplot of the Cook’s distance value crossed with the ID number of 

individuals and looking for values that stand out.  

 

 

 

Performing	a	One‐way	ANCOVA	with	One	Covariate	in	R		
We will need to use R for this, not R Commander. Performing an ANCOVA in R requires no 

more effort than simply including an extra term in the regression equation for an ANOVA. For 

example, this would be the regression equation if we simply wanted to perform a one-way 

ANOVA to examine the effect of Condition on MAT posttest English scores: 

Performing a One-way ANCOVA with One Covariate in SPSS 

1 Choose ANALYZE > GENERAL LINEAR MODEL > UNIVARIATE.  
2 Put dependent variable in “Dependent Variable,” independent variables in “Fixed 

Factor(s),” and covariate in “Covariate(s).” 
3 Open the MODEL button and create a custom model that includes an interaction 

between the covariate and your fixed factor(s). If this is statistical, stop and do not 
continue with your ANCOVA. If this is not statistical, go back and click the “Full 
Factorial” button, which removes the interaction, and also change to a Type II Sum of 
Squares. 

4 Open the OPTIONS button and tick “Descriptive statistics” and “Estimates of effect 
size. Move between-group variables over to “Display Means for” in order to get post-
hoc comparisons. 
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aov(MAT.post.EN~Condition, data=LQB) 

 

Now we can just add the PA.post.Eng (the covariate) term to the right of the tilde to make an 

ANCOVA model: 

 

aov(MAT.post.EN~Condition + PA.post.Eng, data=LQB) 

 

We could use either aov( ) or lm( ) to model the regression; the only difference is in the format 

of the output, which in any case can be changed, so there is essentially no difference. I will show 

the aov( ) modeling here.  

 

Crawley’s (2007) recommendation is to start out the analysis with a maximal model, one which 

involves the covariate in an interaction with the independent variable (this is indicated by the “*” 

between the IV of Condition and the covariate of PA.post.Eng). Although the syntax in R is 

simple, Crawley says the maximal model will have different slopes and intercepts for each level 

of the factor. Remember that we tried a model with an interaction term in the section of this 

paper called “Checking the Assumptions for the Lyster, Quiroga & Ballinger (2013) Data: 

Assumption 3, homogeneity of regression slopes.” We were hoping that there was no interaction 

between the covariate and the IV, so we can think of this maximal model as starting out 

assuming the worst, but hoping that the model with no interaction will be better.  

 

Model1= aov(MAT.post.EN~Condition*PA.post.Eng, data=LQB) 
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Look then at the output by using the anova( ) command: 

 

 

 

We see that the effect of Condition is not statistical, at p = .27, while the effect of the covariate, 

PA in English at the posttest, is statistical (p=.002), and the effect of the interaction between the 

covariate and the IV has a p-value of p = .08. We are not finished, however, as we want to find 

the best model that fits our data.  

 

Note that order can matter in the regression equation (Crawley, 2007), so that we could actually 

get a different outcome if we model with the covariate first. We don’t get an overall different 

result in this case, but the p-values are different as the order changes the sum of squares, which 

affects the calculation of p-values. Regression effect sizes (the “Estimate” in the lm( ) model), 

however, will not vary, nor will standard errors. 

 

OrderMatters=aov(MAT.post.EN~ PA.post.Eng* Condition, data=LQB) 

anova(OrderMatters) 
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Next we will try a model that does not include the interaction term. Use the update( ) command, 

which lets you change your model without typing everything again. Be careful with the syntax of 

the update( ) command; it is “comma tilde dot minus”: 

 

Model2=update(Model1,~.-Condition:PA.post.Eng) 

 

Now we will use anova( ) to compare the two models and see if there is any statistical 

difference between them: 

 

 

 

There is no statistical difference between groups since p > .05, so we will choose the simpler 

model, Model2, and we are glad there is no need to assume an interaction between the covariate 

and the IV. The next step, according to Crawley (2007), is to remove the IV from the model and 

see if there is any difference in the models: 

 

Model3=update(Model2,~.-Condition) 
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anova(Model2, Model3) 

 

 

 

There is no difference between models, so logically the next step would be to remove the 

covariate, which would leave just the number 1, indicating that the best model is the intercept, 

which is a model with just the overall grand mean. 

 

Model4=update(Model3,~.-PA.post.Eng) 

anova(Model3, Model4) 

 

 

 

This is too extreme a step, as there is a difference between models, so we conclude that the 

minimal adequate model is one that models variation in scores on the English MAT only by 

Phonological Awareness scores on the posttest (Model3). However, for traditional reports of 

ANCOVA, this may not be satisfactory, and one might want to go back to the model with both 
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terms to report on it (Model2). Because this is modeled with aov( ), either the anova(Model2) 

or the summary(Model2) command will return this table: 

 

 

 

We see that the effect of Condition is not statistical as the p-value is above p = .05, and would 

report this result by saying that “the participants did not differ in their performance by the 

experimental group they belonged to, when scores were adjusted for posttest Phonological 

Awareness, (F1,62 = 1.18, p = .28).” We could see from the boxplots in Figure 5 that median 

differences between the groups were small. The results mean that, when MAT posttest scores are 

adjusted for PA scores, condition is not a factor in explaining variance in the model.  

We also are interested in knowing whether our covariate, Phonological Awareness (posttest, in 

English) was statistical, as this would mean that it provides adjustment of the scores on the 

dependent variable, and it can be interpreted as any independent variable in a regression model 

would be (Tabachnick and Fidell, 2001). The output shows that the effect of the posttest PA is 

statistical (F1,62=9.95, p =.002), meaning that the scores on the MAT are in fact affected by this 

variable. By the way, if you compare the results for the English MAT given here and those given 

in Lyster, Quiroga and Ballinger (2013), the general outcome is the same but the actual numbers 

for the statistical test differ because the authors excluded one outlier from this analysis, a French-

dominant participant who scored 70 on the pretest but 142 on the posttest. You can see this 

participant’s outlier score in the MAT posttest English boxplot in Figure 5.  
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Alternatively, we could report that the minimal adequate model for the MAT posttest scores was 

one that included only the PA posttest scores and then describe that model. 

 

For effect sizes, the SPSS output gives partial eta-squared effect sizes for each term of the 

regression equation. In R we have more say over what type of effect size we want to call for. We 

could get a partial eta-squared effect size by using the heplots package, etasq( ) command, like 

this: 

 

install.packages("heplots") 

library(heplots) 

etasq(Model2, anova=T) 

 

 

So we can see that the effect size for the IV, experimental Condition, has a partial eta-squared 

= .04, and the covariate, the posttest PA test in English, has a partial eta-squared = .14, meaning 

that the Condition explains 4% of the variance accounted for when all other factors are fixed, and 

the PA test explains 14%. 

 

But since this is a regression, we might also want to use the calc.relimp( ) command from the 

relaimpo package, which we saw previously in the book in Section 7.4.5. The lmg metric 
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assesses the contribution of each term in the regression to the total variance of the DV, and is 

basically the squared semipartial correlation (sr2). To me this is an intuitively more 

understandable effect size than partial eta-squared. 

 

library(relaimpo) 

calc.relimp(Model2) 

 

 

The output giving us the overall multiple R-squared statistic says that the model overall accounts 

for 15% of the variance in scores on the MAT, and the PA.post.Eng regression entry for lmg 

shows that the effect of PA accounted for 12.5% of the variance while Condition accounted for 

only 2.5%. Note that calc.relim( ) cannot be used to calculate relative importance of a model 

with only one term (such as Model3) as it computes relative importance. In this case you could 

use the summary.lm( ) regression-type output to look at the overall R2 of the model. For 

example: 

 

summary.lm(Model2) 
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returns this part at the bottom: 

 

 

which shows that this model explains 15% of the variance (adjusted R2=12%). 

 

One note here is that the beginning of the output for a one-way ANCOVA in SPSS gives 

descriptive statistics on the English posttest MAT for scores for just the Comparison group and 

the Experimental group. We don’t get this information automatically included in the R output, 

but we can call for it with the tapply( ) command as below, which contains the syntax for counts 

(substitute in mean and sd for those statistics): 

 

tapply(LQB$MAT.post.EN, list(Condition= LQB$Condition), function(x) sum(!is.na(x))) 

 

The result is that the Comparison group has a lower mean (M=75.0, SD=19.3, N=20) than the 

Experimental group (M=80.78, SD=21.9, N=45).  

 

We can say more about the effect of PA scores by calling for the mean scores and standard errors 

of the dependent variable (MAT) adjusted for the effect of the covariate. Use the effects package 

and the effect( ) command to get this information (note that the package has a plural “s” but the 

command does not): 

 

install.packages("effects") 

library(effects) 
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lqb<-effect("Condition", Model2, se=TRUE) #put name of factor you want effects for in first 

#argument 

 

summary(lqb) 

 

 

The effect( ) command gives us the adjusted mean scores for both groups as well as the 95% 

confidence intervals for this mean. These means are different from those obtained with the 

tapply( ) command. The adjusted mean is the mean score with the influence of the covariate 

factored out, and in this dataset you can see there is more difference between scores of the 

Comparison and Experimental groups in these adjusted means than in the original means: now 

the Comparison group’s mean is smaller (M=73.0, SE=4.47, N=20) and the Experimental 

group’s mean is higher (M=81.7, SE=2.96, N=45). These point estimates look fairly different, 

but if we look at the 95% confidence intervals for the estimated means for the groups, they are 

quite wide for the Comparison group (almost a 20-point difference, from 64.0 to 81.9). The 

confidence interval for the mean for the Experimental groups is smaller [75.8, 87.6] but the large 

and overlapping range means that we are not able to find a difference in effect between groups. 

As a note, it is not the case that just because confidence intervals overlap this automatically 

means that there is no difference between groups. Cumming and Finch (2005) give as a “rule of 

eye” for the interpretation of 2 CIs of two independent groups that they can overlap up to about  
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half of the average length of both arms of the CI3 and still be statistical at the .05 level. On the 

other hand, if the confidence intervals do not overlap, this is evidence that there is a strong 

difference between groups. Anyway, my point is that the estimated adjusted means gives you a 

point estimate, but the CIs show us these point estimates are not very precise and we cannot be 

very confident of where the true means lie. 

 

After you have considered your ANCOVA, it might turn out that you will need to conduct 

pairwise comparisons on the variables. In this case, Condition is not statistical, and even if it 

were, since there are only two groups we would just look at the mean scores to see which group 

did better than the other. But in a case where we want to conduct pairwise comparison with the 

effect of the pretest factored out, use the glht( ) command from the multcomp package I used in 

Chapter 9, but use it on the ANCOVA model, like this (change the parts in red for your own 

data): 

 

library(multcomp) 

summary(glht(Model2, linfct=mcp(Condition="Tukey"))) 

 

                                                            
3 Precisely, this average length of both of the arms of the CI is called the margin of error, and for this example would 
be [(81.9-64.0)/2 + (87.6-75.8)/2]/2= 7.4, meaning the CIs could overlap by about 3.5 points (half of the average 
length of both arms). 
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To get confidence intervals for your comparisons, just use confint( ): 

 

confint(glht(Model2, linfct=mcp(Condition="Tukey"))) 

 

 

Assumptions for ANOVA can be checked in the normal way: 

 

plot(Model2)  

 

Section 7.4.6 of the book covered these plots in more detail, but basically you will see a 

Residuals vs. Leverage plot (which should not show any points beyond the Cook’s Distance 

dashed lines), Residuals vs. Fitted plot (which should show a random scattering of points), the 

Normal Q-Q plot (where points should cluster around the line), and the Scale-Location 

Diagnostic plot, which should also show a random scattering of data. Although the plot( ) 

command has called on the computer to label the 3 most extreme scores so that it may look like 

there are outliers, the results show that the residuals basically conform to the assumptions of 

normality and homogeneity. 
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Performing	a	Two‐way	ANCOVA	with	One	Covariate	in	SPSS		
This section assumes you have already read the sections of this document called “Performing a 

One-way ANCOVA with One Covariate in SPSS” and “ANCOVA Output in SPSS,” describing 

how to call for a one-way ANCOVA with one covariate in SPSS. Here I will work to recreate the 

Performing a One-way ANCOVA with One Covariate in R 

1 Model your ANOVA with the aov( ) command (lm( ) can also be used but a 
summary will result in regression output, not ANOVA tables). Add your covariate to 
your equation; you can test out a maximal model by first having the covariate enter 
into an interaction with the IV (although you hope there is no statistical interaction or 
you will be violating the assumption of ANCOVA that the covariate has an 
independent effect on the dependent variable). Here is an example of a maximal 
model where scores on the English Morphology Awareness task (measure on a 
posttest) are modeled according to the experimental Condition that the subjects were 
in with a covariate of scores on Phonological Awareness in a posttest (N.B. items in 
red should be replaced with your own data name): 
Model1=aov(MAT.post.EN~Condition*PA.post.Eng, data=LQB) 

2 Examine output using the anova( ) command. Find the best model by using the 
update( ) function and taking out model terms one by one. For example, here is the 
next model that takes out the interaction between Condition and the PA posttest: 
Model2=update(Model1,~.-Condition:PA.post.Eng) 

3 Use the anova( ) command to compare models to get to a model that has only 
statistical terms. Or you may choose to report on the model which includes both the 
IV and the covariate, whether or not they are statistical.  

4 Whether you pay attention to the statistical significance of the covariate depends on 
your question. You will, however, want to note whether your variable of interest (the 
IV) is statistical even when the effects of the covariate are factored out. 

5 Use tapply( ) to get basic descriptive statistics for your data, and the effect( ) 
command from the effects package to get adjusted means, standard errors, and 
confidence intervals for your adjusted data. 

6 If you would like to perform post-hoc comparisons use the regression model in the 
glht( ) procedure from the multcomp package to compare adjusted means. 
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analysis done by Lyster, Quiroga and Ballinger (2013) and shown in Figure 8 that has the 

English MAT posttest scores as the DV, Condition and Language as the IVs, and the English 

MAT pretest score as the covariate.  

 

Follow the same directions for calling for the ANCOVA as were given in the section 

“Performing a One-way ANCOVA with One Covariate in SPSS,” but additionally add Language 

to the “Fixed Factor(s)” box, and change the covariate from PA.post.Eng to MAT.pre.EN. Open 

the MODEL button and test out the CUSTOM MODEL with an interaction between Condition and 

MAT.pre.EN and another between Condition and MAT.pre.EN. Press CONTINUE and run the 

ANCOVA (perhaps check off Bootstrap to make the analysis run faster while you are checking 

the assumptions right now). Look for the box labeled “Tests of Between-Subjects Effects” and 

you will see that the p-values for the interactions are well above p = .05, so we may assume there 

are no interactions between the covariate and the IVs.  

 

Open up the same analysis and change the Model back to full factorial. Open the Options button 

and since Language has 3 levels, move it over to the right (under “Display Means for”) as well as 

the interaction between the IVs (take the main effect of Condition out if it is still there from the 

one-way ANCOVA analysis). Tick on bootstrapping again if you unticked it for the test of 

assumptions.  

 

What is noteworthy from the output is that neither the effects of experimental Condition nor 

Language dominance are statistical influences on the posttest English MAT, nor does the 

interaction between these two variables fall under the p = .05 level (the relevant table of output is 
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found in Table 10). The covariate of the MAT pretest, however, is statistical, indicating that 

there is an influence of pretest scores on the variability of posttest scores. Overall, this model 

accounted for R2 = 44% of the variance in the model (39% for adjusted R2). 

 

Table 10 Main results for testing a two-way ANCOVA with one covariate in SPSS. 

 

 

Notice that order matters in an ANOVA analysis! I have Condition first, then Language. If you 

put in the factor of Language first, you don’t get an overall different result, but the p-values are 

different as the order changes the sum of squares, which affects the calculation of p-values.  

 

Here is how you could report on the results of this analysis:  

 

A two-way ANCOVA on the English MAT posttest revealed no interaction between group and 

language dominance (F2,58 = 2.91, p = .063, partial eta-squared = .09), although the effect size 

suggests that there is some effect for the interaction in spite of the fact that the p-value is below 

.05. No main effects were found for Language (F2,58 = .51, p=.60, partial eta-squared = .02) or 
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Condition (F1,58 = .12, p = .73, partial eta-squared = .002). There was a statistical effect for the 

covariate of English MAT pretest, however (F1,58 = 26.5, p<.0005, partial eta-squared = .31), 

indicating that pretest scores did have a strong effect on posttest scores. Overall, this model 

accounted for R2=44% of the variance in the model (39% for adjusted R2). 

 

By the way, Lyster, Quiroga and Ballinger (2013) reported that by removing one outlier from 

their analysis, they found a statistical interaction between experimental Condition and Language 

dominance, with further tests showing that there was a difference between Experimental and 

Comparison students who were English-dominant. This shows that this dataset might be a good 

candidate for a robust ANCOVA where outliers would be removed systematically and without 

compromising independence (read on for that!). 

 

Performing	a	Two‐way	ANCOVA	with	One	Covariate	in	R		
This section assumes you have already read the section “Performing a one-way ANCOVA with 

one covariate in R” describing how to call for a one-way ANCOVA with one covariate in R. 

Here I will analyze the two-way ANCOVA used by Lyster, Quiroga and Ballinger (2013) and 

shown in Figure 8 that has the English MAT posttest scores as the DV, Condition and Language 

as the IVs, and the English MAT pretest score as the covariate.  

 

In the section “Performing a one-way ANCOVA with one covariate in R” the maximal model 

was: 

 

Model1= aov(MAT.post.EN~Condition*PA.post.Eng, data=LQB) 
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To model two IVs, just add the second IV in (because order matters, I will model it after 

Condition): 

 

ModelA= aov(MAT.post.EN~Condition*Language*MAT.pre.EN, data=LQB) 

 

A summary( ) of this model reveals that only Language and the covariate of MAT pretest are 

statistical. That’s good as it means we do not violate the assumption of ANCOVA that the 

covariates are independent influences on the DV. Therefore, use update( ) to remove interaction 

terms, and anova( ) to compare the differences between models. 

 

ModelB= update(ModelA,~.-Condition:Language:MAT.pre.EN, data=LQB) 

ModelC= update(ModelB,~.-Condition: MAT.pre.EN, data=LQB) 

ModelD= update(ModelC,~.- Language:MAT.pre.EN, data=LQB) 

ModelE= update(ModelD,~.- Condition:Language, data=LQB) 

anova(ModelA, ModelB, ModelC, ModelD, ModelE) 

 

The ANOVA results show no statistical differences between models (the last change from Model 

D to Model E has a low p-value of p = .07, however) so we will keep Model E, which is the 

simplest model so far. An ANOVA summary of Model E shows the results: 
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The summary shows this is not the minimal adequate model yet though, since there is one non-

statistical term (Condition). So just as in the section called “Performing a One-way ANCOVA 

with One Covariate in R” we might report on this model or take the analysis one last step to 

delete the non-statistical term of Condition. 

 

ModelF= update(ModelE,~.- Condition, data=LQB) 

 

As in that previous section with just one covariate, a regression-type summary (summary.lm( )) 

can get you the R2 effect size for the entire model that you decide to keep. A tapply( ) command 

can get descriptive statistics, and the effect( ) command (from the effects package) can call for 

adjusted means. 

 

For effect sizes, use the relaimpo package: 

 

calc.relimp(ModelF) 
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This output shows that the variable of MAT pretest is relatively much more important 

(explaining 33% of the 39% of the variance that the total model explains) than the Language 

variable, which explains only 6%. You can always call for partial eta-squared too: 

 

 

 

Because the factor of Language dominance is statistical and has more than two levels, let’s try 

the glht( ) command on ModelE (from the multcomp package), specifying that we want 

comparisons on the Language variable: 

 

summary(glht(ModelE, linfct=mcp(Language="Tukey"))) 

confint(glht(ModelE, linfct=mcp(Language="Tukey"))) 
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The results show no differences between groups. The difference between the French-dominant 

and English-dominant group is 5.5, 95% CI [-19.8, 8.7], the difference between the French-

dominant and Bilingual group is 3.0, CI [-9.6, 15.5], and the difference between the English-

dominant and Bilingual group is -2.5, CI [-15.2, 10.1]. This phenomenon, where the omnibus test 

is statistical but the individual tests is not, is known to occur (Wilcox, 2011; Fairley, 1986) and 

could be a result of having the bulk of the joint data concentrated in a very narrow region. 

Performing	a	Two‐way	ANCOVA	with	Two	Covariates	in	SPSS		
This section assumes you have already read the sections of this paper that describe how to call 

for a one-way ANCOVA with one covariate in SPSS. To look at what might be different when 

we have two covariates along with two IVs in an ANCOVA, use the SPSS file 

LarsonHall2008.sav. In this study I looked at whether exposure in childhood to formal English 

lessons resulted in Japanese college students being able to perform better on a test of the English 

R/L/W contrast and on a grammaticality judgment test in English. Since Japanese learners of 

English who began studying English at a younger age might have more hours of exposure, I 

wanted to use this variable as a covariate. In other words, I wanted to factor this out of the 

comparison between the group that had had early exposure and the group that hadn’t. I also 

thought it was possible language aptitude might be involved, so I measured that in order to 

statistically take that factor out of the equation.  

 

We’ll look at the question of scores on the grammaticality judgment test. My research question 

was whether the group that had early exposure differs from the group which did not, and I named 

this factor ErlyExp (for Early Exposure). To create an analysis with two IVs, I added the factor 

of Sex as well.  
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First, I checked additional assumptions for ANCOVA that there was not a strong correlation 

between covariates. I checked the correlation between the two variables of language Aptitude 

and total amount of input in English (Totalhrs) by simply following the menu ANALYZE > 

CORRELATE > BIVARIATE and choosing those two variables. The correlation between these two 

covariates is r = 0.08. This is not cause for worry at all. 

 

I also wanted to check to see that there are strong correlations between the DV and the covariates, 

so I checked the correlation of the DV (GJTscore) with Totalhrs and Aptitude. There is a weak 

correlation between GJTscore and Aptitude (r = .08) and a stronger correlation between 

GJTscore and Totalhrs (r=.18). This is not ideal for an ANCOVA analysis, as I’d like to have 

stronger correlations between my covariates and my DV, but to illustrate the analysis I will 

continue. 

 

Follow the same directions for calling for the ANCOVA as were given in previous SPSS 

sections of this chapter. For this analysis, put GJTscore in the “Dependent Variable” box. Put 

Sex and ErlyExp in the “Fixed Factor(s)” box, and put Totalhrs (amount of input) and Aptscore 

(aptitude test) into the “Covariate(s)” box. Open the MODEL button and test out the CUSTOM 

MODEL with 4 interactions: all the two-way combinations between Aptscore and the IVs (Sex 

and ErlyExp) and all the two-way combinations between Totalhrs and the IVs. Press CONTINUE 

and run the ANCOVA (perhaps check off Bootstrap to make the analysis run faster while you are 

checking the assumptions right now). Look for the box labeled “Tests of Between-Subjects 

Effects” and you will see that the p-values for the interactions are above p=.05, so we may 
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assume there are no interactions between the covariate and the IVs.  

 

Open up the same analysis and change the Model back to full factorial. Since Sex and ErlyExp 

only have 2 levels each, there is no need to move them over to call for comparisons. Tick on 

bootstrapping again if you unticked it for the test of assumptions. The full factorial model in 

SPSS will call for any interactions between IVs but not interactions between covariates and IVs 

(if it did, that would make this a four-way ANOVA, which would be quite complicated!). The 

main results are found in Table 11.  

 

Table 11 Main results for testing a two-way ANCOVA with two covariates in SPSS. 

 

 

One could summarize the results as follows: 

 

A two-way ANCOVA showed that there was no effect for the interaction between sex (male vs. 

female) and early experience (F1,194 = .006, p = .94, partial eta-squared = .00) nor for the simple 

main effect of early experience (F1,194 = .44, p = .51, partial eta-squared = .002), but there was a 
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very small main effect for sex (gender) (F1,194 = 6.8, p = .01, partial eta-squared = .03). The 

covariate of total hours of input was statistical (F1,194 = 4.1, p = .04, partial eta-squared = .02), 

although again with a small effect size. Note that a statistical effect for this variable means scores 

would be adjusted to take the effect of hours of study into account. The effect of the covariate of 

aptitude was not statistical (F1,194 = .48, p = .49, partial eta-squared = .002), meaning there was 

not enough influence from this variable to affect adjusted scores. Overall, the model accounted 

for very little of the variance in GJT scores (R2 = 8%, adjusted R2 = 6%). 

 

Performing	a	Two‐way	ANCOVA	with	Two	Covariates	in	R		
This section assumes you have already read the previous section of this paper describing how to 

call for a one-way ANCOVA with one covariate in R. To look at what might be different when 

we have two covariates along with two IVs in an ANCOVA, use the SPSS file 

LarsonHall2008.sav, imported into R as larsonhall2008. In this study I looked at whether 

exposure in childhood to formal English lessons resulted in Japanese college students being able 

to perform better on a test of the English R/L/W contrast and on a grammaticality judgment test 

in English. Since Japanese learners of English who began studying English at a younger age 

might have more hours of exposure, I wanted to use this variable as a covariate. In other words, I 

wanted to factor this out of the comparison between the group that had had early exposure and 

the group that hadn’t. I also thought it was possible language aptitude might be involved, so I 

measured that in order to statistically take that factor out of the equation.  

 

We’ll look at the question of scores on the grammaticality judgment test. My research question 

was whether the group that had had early exposure differs from the group that did not, and I 
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named this factor ErlyExp (for Early Exposure). To create an analysis with two IVs, I added the 

factor of Sex as well.  

 

First, I checked additional assumptions for ANCOVA that there was not a strong correlation 

between covariates. I checked the correlation between the two variables of language aptitude 

(aptscore) and total amount of input in English (totalhrs) by simply following the menu 

STATISTICS > SUMMARIES > CORRELATION MATRIX in R Commander and choosing those two 

variables. The correlation between these two covariates is r = 0.08. This is not cause for worry at 

all.  

 

I also wanted to check to see that there are strong correlations between the DV and the covariates, 

so I checked the correlation of the DV (gjtscore) with totalhrs and Aptitude (aptscore). There 

is a weak correlation between GJTscore and Aptitude (r = .08) and a stronger correlation 

between GJTscore and Totalhrs (r = .18). This is not ideal for an ANCOVA analysis, as I’d like 

to have stronger correlations between my covariates and my DV, but to illustrate the analysis I 

will continue. 

 

For the assumption that the regression slopes are equal we can test for the presence of an 

interaction between the covariates and the grouping variable (here, erlyexp and sex). We’ll test 

for an interaction between each covariate (aptscore and totalhrs) and the grouping variable one 

at a time. 

 

summary(aov(gjtscore~erlyexp*aptscore, data=larsonhall2008)) 
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summary(aov(gjtscore~erlyexp* totalhrs, data=larsonhall2008)) 

summary(aov(gjtscore~sex* aptscore, data=larsonhall2008)) 

summary(aov(gjtscore~sex* totalhrs, data=larsonhall2008)) 

 

In no case was the interaction statistical, so I may proceed with the ANCOVA analysis. In 

starting with the maximal model, I am going to start with interactions between the IVs but not 

between the covariates and anything else. This is because the model will be so complex with 4 

terms that I just don’t want to do it. I have already tested to see if there are interactions between 

each covariate and the IV, so I won’t get more complex than that. So here is my first model: 

 

LH1=aov(gjtscore~ aptscore + totalhrs + sex*erlyexp, data=larsonhall2008) 

 

summary(LH1) 

 

 

The summary shows that there is a statistical main effect for the IV of sex but not for the IV of 

early exposure, at least when the effects of aptitude and hours of exposure are factored out. We 

could stop at this step, as this is exactly the model that SPSS automatically creates, but to get to 

the minimal adequate model, let’s try removing the interaction between the two IVs, as it is not 

statistical. 
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LH2=update(LH1,~.-erlyexp:sex, data=larsonhall2008) 

summary(LH2) 

 

The summary shows that nothing has changed—the early exposure variable is still not statistical, 

nor is the covariate of aptitude score. Shall we keep this simpler model? 

 

anova(LH1, LH2) 

 

 

Yes. There is no difference between the models so we will keep the simpler one. At this point I 

don’t want to eliminate the variable of early exposure, however, because my main question is 

whether this variable is statistical when the effect of aptitude and input is factored out. My 

analysis has answered that question—it is not. 

 

To check effect sizes I like the relaimpo package: 

 

calc.relimp(LH2) 
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The output shows that only 8% of the variance in the data is accounted for by this four-term 

model, which is not very much. Of the 8%, the most important factor is sex, accounting for 4% 

of the variance. Next comes total hours of input, accounting for 3% of the variance, and then 

Early Experience and Aptitude; both account for only about ½% each. I could also get the partial 

eta-squared effect sizes: 

 

 

 

I could write up my results something like this: 

 

A two-way ANCOVA showed that there was no effect for the interaction between sex (male vs. 

female) and early experience (F1,194 = .006, p = .94) so I removed it, resulting in a model with 
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only 4 main effects. In that model the main effect of early experience was not statistical (F1,195 = 

2.51, p = .11), but there was a very small main effect for sex (gender), (F1,195 = 9.37, p = .002). 

The covariate of total hours of input was statistical (F1,195=4.30, p=.04), although again with a 

small effect size. This meant scores would be adjusted to take the effect of hours of study into 

account. The effect of the covariate of aptitude was not statistical (F1,195=.47, p=.49), meaning 

there was not enough influence from this variable to affect adjusted scores. Overall, the model 

accounted for very little of the variance in GJT scores (R2=8%, adjusted R2=6%), with sex 

accounting for 4% of that variance, hours of input accounting for 3%, and Early Experience and 

Aptitude both accounting for only about ½% each. 

Performing	a	Robust	ANCOVA	in	R	
As we have seen throughout the book, there are many techniques that can be used to robustly 

analyze data. Bootstrapping is one technique that we have used, and SPSS provides for 

bootstrapping in the ANCOVA dialogue box, but this bootstrapping is only performed on the 

mean scores and adjusted mean scores (“Estimated marginal means”) and then pairwise 

comparisons between the different levels of one independent variable. The R functions examined 

here did not provide bootstrapping, but the online document in Chapter 9 called “Bootstrapped 

One-Way ANOVA in R” provides information about performing robust one-way ANOVA 

analysis and you could use that method, although it does not provide adjustments for the 

covariate. 

 

Another technique that is called robust for ANCOVA is an approach where we eliminate the 

assumption of parametric models that the regression lines of all groups are parallel (Wilcox, 

2005). The method I will present in this section does not make any assumptions about the 
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linearity of regression lines, allows heteroscedasticity, and performs well even if data is non-

normal. The general idea of the method is to use a Loess smoother and then make comparisons 

between groups at specific points along the smooth line. This method also trims the data (20% is 

recommended) and bootstraps it with the recommended bootstrap-t. If you don’t want to trim 

data or bootstrap you can still use the function but specify that the values for these arguments 

should be zero. The function will pick 5 arbitrary points at first but a researcher can specify the 

points themselves as well, and will probably want to do so after looking at scatterplots with 

smooth lines that will result from the output. 

 

Wilcox’s (2005) function ancboot( ) from the WRS package can only be used with one 

covariate, and it can only examine two groups at a time, and your dataset as is will have to be 

massaged in order to use it. This function has been shown to have good power when ANCOVA 

assumptions are not met, but another advantage, Wilcox says, is that “[e]ven when ANCOVA 

has relatively good power, an advantage of using trimmed means with a running-interval 

smoother is that the goal is to determine where the regression lines differ and by how much, and 

this is done without assuming that the regression lines are straight” (2005, p. 526). 

 

To use the ancboot( ) function for Lyster, Quiroga and Ballinger’s (2013) one-way ANCOVA, 

first the data must be subsetted into separate dataframes for each group as shown below. Use the 

LQB.sav file imported into R as “LQB.” To carry out the one-way ANCOVA on the English 

MAT, let’s subset the data into groups for Condition only: 

 

LQB.Exp=subset(LQB,subset=Condition=="Experimental") 
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LQB.Compare=subset(LQB,subset=Condition=="Comparison") 

 

Now we will set up the data into separate variables, one for each group in the DV, and one for 

each group on the covariate as well: 

 

x1=LQB.Exp$MAT.post.EN 

y1=LQB.Exp$PA.post.Eng 

x2= LQB.Compare$MAT.post.EN 

y2= LQB.Compare$PA.post.Eng 

 

Now open the package and try the basic command: 

 

library(WRS) 

ancboot(x1,y1,x2,y2) 

 

Here is an analysis of this command: 

 

ancboot(x1,y1,x2,y2,fr1=1,fr2=1,tr=.2, nboot=599, plotit=T, pts=NA) 

ancboot (x1, y1, x2, y2) Performs an ANCOVA using trimming and a percentile 

bootstrap method; the data for group 1 are stored in x1 and 

y1, and the data for group 2 are stored in x2 and y2. I have 

put the data for the DV in X and the data for the covariate 

in Y. 
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fr1=1, fr2=1 The values of the span (f) for the groups, defaults to 1; 

span refers to how frequently data are sampled by the 

running-interval smoother, meaning how smooth the 

smooth line looks 

tr=.2 Specifies amount of trimming, default is 20% 

nboot=599 Specifies number of bootstrap samples to use; 599 is 

default 

plotit=T Plots a scatterplot with Loess smoothers drawn in 

pts=NA If not specified, the function will automatically choose 5 

points at which to compare groups. The points can be 

specified by the user, such as pts = c(1,3,5) 

 

The output returns the points where data are compared, confidence intervals for the test that 

trimmed means of the groups are equivalent at that point, and a p-values for the test. Wilcox says 

that the function determines “a critical value based on the Studentized maximum modulus 

distribution” (2005, p. 527). The plot that is returned is also very useful. Here is the text output 

from the command run above: 
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The results show that the Experimental and Comparison groups were tested at five points on the 

MAT posttest (we set it up so that the MAT was on the x-axis and the PA on the y-axis): 60, 69, 

78, 81, and 90 (we know this because they are listed in the column with “X”). The n1 and n2 

specify how many subjects were tested at each of those points. Notice that n1, the Experimental 

group, is always larger than n2, the Comparison group. If we decide we want to test at more 

intervals, we will find that the number of participants in those points changes.  

 

The “DIF” column gives the difference in scores at that point, and the “TEST” gives the test 

statistic for the hypothesis that the mean of one group is equal to the mean of the other at that 

point. The “p.value” column gives the p-value for the test. The “ci.low” and “ci.hi” columns give 

the lower and upper ends of the 95% confidence interval for the difference between the groups. 

The last part of the text output lists the critical value used to evaluate whether the test is 

statistical. If the value in the “TEST” column is below this critical value, the test will not be 

statistical. Wilcox notes that this critical value will be adjusted if fewer than 5 points appropriate 

for testing can be found. I’m not sure why the statisticality of the test differs here between the 

CIs (where it passes through zero for point 81 and as such should not be statistical) and the p-
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value (which is below .05 for point 81 and should thus be statistical, although the test statistic is 

lower than the critical value, which means it should not be statistical!). 

 

The plot that is called for is extremely helpful in understanding what is happening, and shows the 

points with the smooth lines on them (Figure 13). 
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Figure 13 Output from Wilcox’s ancboot function showing Loess smooth lines for robust 

ANCOVA comparison . 

 

 

This scatterplot does not come with a legend, but Wilcox (2012) writes that Group 2 is indicated 

with a “+” and the dashed line for a smoother result, so we know that the open dots and the 

smooth Loess line represent Group 1, the Experimental group, and the plus signs and dashed 
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Loess represent Group 2, the Comparison group. The confidence intervals indicated no 

differences at any point, while the p-values for the test indicated that there were statistical 

differences at 81 and 90. The relationship between the Comparison group and PA scores is quite 

strong, indicating that those who scored higher on the MAT posttest were those who had higher 

PA scores on the posttest, while the Loess line for the Experimental group shows that PA was 

not very important to higher scores on the MAT. This makes sense logically, as the Comparison 

group did not get the same explanation that the Experimental group got, so those participants 

who were already high in analytical abilities (as evidenced by higher PA scores) performed 

better on the MAT (at least, at points 81 and 90). 

 

We might be interested to look at other points along the range of scores, although we will 

probably find the numbers are not so evenly divided as they were for the points the computer 

chose. But let’s say we decide to look at differences between the groups at points 45, 65, 85, and 

105. We would just enter these into the pts=c( ) argument like this: 

 

ancboot(x1,y1,x2,y2, pts=c(45, 65, 85, 105)) 
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The program made the comparisons at the points I chose, but notice that the critical value got 

larger. Still there is apparently a difference between the groups not only at 85 but also at 105, 

farther out in the data. If you ask me, this type of information is much more interesting than the 

results of the parametric ANCOVA, where we found that “the participants did not differ in their 

performance by the experimental group they belonged to, when scores were adjusted for posttest 

Phonological Awareness, (F1,62 = 1.18, p = .28).” The parametric analysis forced us to consider 

parallel regression lines, and found they were not different enough in intercept to say that the 

groups were different. The non-parametric ANCOVA lets us look at the way the data actually 

runs, and get a better sense of what is happening, which is an interaction between the DV and the 

covariate at higher levels of scores. 

 

 

Now let’s see what happens when we want to do a two-way ANCOVA with one covariate, as in 

Lyster, Quiroga and Ballinger’s (2013) two-way ANCOVA with the English MAT posttest as 

Tip: Sometimes when you run this program you may get an error message like this: 
 

 
 
I found the solution to this error was to pick a smaller number of points to test at where I had a larger number of 
participants. Wilcox says “the points among the covariates at which the groups will be compared are determined 
by the function; it finds a point among the x1 values that has the deepest halfspace depth, plus the points on 
the .5 depth contour, and the groups are compared at these points, provided that the corresponding sample sizes 
are at least 10” (2005, p. 533), so this error appears to generate when there are too few participants to test at a 
certain point. 
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the DV, the English MAT pretest as the covariate, and both Condition and Language dominance 

as the IVs. We can use both of these IVs by simply splitting the data by both of the variables, 

although in some cases this will result in very small samples. We have files already split by 

Condition, so now let’s split those by Language dominance: 

 

LQB.Exp.EN=subset(LQB.Exp,subset=Language=="English dominant") 

LQB.Exp.FR=subset(LQB.Exp,subset=Language=="French dominant") 

LQB.Exp.BI=subset(LQB.Exp,subset=Language=="Bilingual") 

 

Do the same with the LQB.Compare file. Now we can only compare two groups at a time, so the 

following code shows how we could compare the English-dominant Experimental group with the 

French-dominant Experimental group. 

 

x1=LQB.Exp.EN$MAT.post.EN 

y1= LQB.Exp.EN$MAT.pre.EN 

x2= LQB.Exp.FR$MAT.post.EN  

y2= LQB.Exp.FR$MAT.pre.EN 

ancboot(x1,y1,x2,y2, tr=0, pts=c(60)) #I changed trimming to zero since there are so few 

#variables, and tried to just choose one point 

 

I kept getting a warning error about the degrees of freedom. I could not get this analysis to work, 

so my suspicion is that there were just too few participants in each area. With larger numbers in 

each group this would probably work, but because only two groups can be compared at one time 
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on two variables, this robust ANCOVA is more limited than the parametric version, but I think 

that when it can work, it is an informative function. For another example of the robust ANCOVA, 

see my results in Larson-Hall (2008). 

 

Application	Activities	for	ANCOVA	for	R	(No	Answers	Given)	
1 Class Time. Use the dataset I have called ClassTime.sav (import into R as “classtime”; 

this dataset was taken from Howell (2002, p. 629), but I adapted it to reflect a design that 

will be associated with the second language research field). Let’s pretend that a 

researcher who is in charge of teaching Arabic at the university level notices that there 

seems to be a difference in how students in her 8 a.m. class respond to her teaching 

versus how students in the later classes respond. At the start of a new school year she 

gives them an initial test of their enthusiasm and motivation for learning Arabic. There 

are 30 items that contain a ten-point Likert scale, where a higher score is more positive 

about the class. The researcher averages their answers together for a score out of 10. She 

then administers the same test at the end of the semester. The researcher has five classes, 

Performing a Robust ANCOVA 

1 Wilcox (2012) lists several possible commands for performing robust ANCOVAs. In this section I focus 
on just one, ancboot( ), which does not assume that groups have parallel regression lines, uses means 
trimming and also a bootstrap-t procedure. 

2 Data need to be arranged so that data for only one group are in a data frame. The subset( ) command is 
useful for this. 

3 The basic ANCOVA command is: 
ancboot(x1,y1,x2,y2,fr1=1,fr2=1,tr=.2, nboot=599, plotit=T, pts=NA) 
where x1, y1, x2 and y2 must have your data for your two groups for the DV and the covariate. The rest 
of the specifications are default but can be changed. 

4 Errors might arise if there are too few data points at specific points of comparison, but you can try to 
control this via the pts=c( ) term of the command. A scatterplot called from this command helps show 
visually what points of comparison are of interest. 
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one at 8 a.m., one at 10 a.m., one at 11 a.m., one at 1 p.m., and one at 2 p.m. This study 

could be analyzed with an RM ANOVA (if the data were arranged in the “wide” format) 

but the researcher decides to analyze it with an ANCOVA using the pretest scores as a 

covariate so that any differences among the posttest scores due to variability in pretest 

scores will be controlled. Use PreTestScores as the covariate, PostTestScores as the 

dependent variable, and TimeOfClass as the independent variable. First check the special 

assumptions for ANCOVA. Even if the data violates the assumptions, go ahead and 

perform the ANCOVA. What are the results of the parametric ANCOVA?  

2 Lyster, Quiroga and Ballinger (2013). Use the data for the French posttest MAT as the 

DV and run a one-way ANCOVA with Condition as the IV. First check the special 

assumptions for ANCOVA. Even if the data violates the assumptions, go ahead and 

perform the ANCOVA. What are the results of the parametric ANCOVA?  

3 Using the same data as in #2, run a robust ANCOVA for the French posttest MAT. 

Explain the results of your tests and the scatterplot. Compare to the robust one-way 

ANCOVA for the English posttest MAT as explained in the section of this chapter called 

“Performing a robust ANCOVA in R”—are results similar? 

4 Lyster, Quiroga and Ballinger (2013). Use the data for the French posttest MAT as the 

DV and run a two-way ANCOVA with Condition and Language as the IVs. First check 

the special assumptions for ANCOVA. Even if the data violates the assumptions, go 

ahead and perform the ANCOVA. What are the results of the parametric ANCOVA?  

5 The first edition of the book featured data from Lyster’s (2004) object identification task. 

Lyster (2004) investigated the question of whether conditions involving the provision of 

form-focused instruction had differing effects on the post-task results of participants 
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taking an object identification task. Because groups were found to differ statistically on 

the pretest, the pretest was used as a covariate in an ANCOVA analysis. Use the 

Lyster.Oral.sav file (import as lysterO into R) and run a one-way ANCOVA with 

PostObjectID as the DV, Condition as the IV, and PreObjectID as the covariate. First 

check the special assumptions for ANCOVA. Even if the data violates the assumptions, 

go ahead and perform the ANCOVA. What are the results of the parametric ANCOVA?  

6 Using the same data as in #5, run a robust ANCOVA for the PostObjectID. Explain the 

results of your tests and the scatterplot. Compare to the results of the parametric one-way 

ANCOVA in #5. 

7 Larson-Hall (2008). Use the SPSS file LarsonHall2008.sav (import into R as 

larsonhall2008). In previous sections of this document you saw an analysis with two 

covariates (aptscore and totalhrs) with the dependent variable of grammaticality judgment 

test scores. Perform the same analysis using the dependent variable of the phonemic 

discrimination test scores (rlwscore). Start by seeing whether the model satisfies the 

special ANCOVA assumptions. Even if the data violates the assumptions, go ahead and 

perform the ANCOVA. Is early exposure a statistical factor for GJT scores when the 

effects of aptitude and input are factored out?  

Reporting	the	Results	of	an	ANCOVA		
In a parametric ANCOVA you’ll want to report specifically about whether the assumptions of 

ANCOVA were satisfied. You should then report the results of the test and be sure to include the 

F-value, the p-value, the degrees of freedom and the effect size (post-hoc power is unnecessary; 

see Section 4.3.4 of the book for more information). You will probably want to report adjusted 

means and standard errors for your variables. If post-hoc comparisons are made you can then 
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include confidence intervals. Whether you report about the covariate depends on whether you are 

just trying to factor its influence out or whether you are still interested in its effect on the 

dependent variable. Make comments about what it means to have a statistical or non-statistical 

covariate, and about the size of the effect sizes. In each section I have included some reporting of 

results so I won’t report any specific result here.  

 

For a non-parametric ANCOVA, report the level of trimming and what type of bootstrap was 

used (bootstrap-t for the Wilcox ancboot function), then report at what points comparisons 

between the DV and the covariate were made and whether they were statistical (use p-values 

and/or confidence intervals). Show the scatterplot and explain the results. 

Summary		
Use an analysis of covariance when you want to control for the effect of some variable. Your 

covariate will most likely be a continuous variable. Ones we saw in this chapter used in second 

language research designs were pretest scores, language proficiency, intelligence, amount of 

input in the L2, and reading ability. When you factor the effects of these variables out you will 

then be able to test for the effect of other independent variables, disregarding the effects of the 

covariate. Remember that basically the covariate is just another independent variable. In some 

cases it may be of interest to report whether the covariate was statistical, meaning that it had a 

statistical effect on the dependent variable. In other cases, the goal may just be to factor the 

effects of that variable out of the equation, although your reader may be interested to know 

whether mean scores are being adjusted, which they are if the covariate is statistical. ANCOVA 

can be used with any of the ANOVA research designs, including one-way, factorial, and RM 

ANOVA. ANCOVA should be used with caution, however, as it contains even more 
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assumptions than a regular ANOVA, and these assumptions may not accurately describe the 

data.  

 

In the case where your ANCOVA violates the assumption that there is no interaction between the 

dependent/response variable and the covariate, you could use the robust ANCOVA shown here 

to model your data. Even when data conform to the assumptions of ANCOVA, this robust 

ANCOVA that does not assume parallel lines for the different levels of the IV can add 

interesting information to your analysis. 

 

Howell (2002) warns against a use of the ANCOVA when it would result in a situation that 

would go against logic or common sense. If controlling for your covariate results in a design that 

does not exist in reality, then it doesn’t make much sense to test for it statistically. For example, 

you probably wouldn’t want to factor age of acquisition out of a research design involving early 

and late bilinguals. Would you really want to examine, say, context of acquisition (naturalistic, 

instructed, or both) while ignoring the effects of age? Age is an important factor and it would be 

silly to ignore it while examining the effects of a different variable.  

Bibliography	
Beech, J. R., & Beauvois, M. W. (2005). Early experience of sex hormones as a predictor of 

reading, phonology and auditory perception. Brain and Language, 96(1), 49–58.  

Clark, M. (2014). Tests of equivalence (PPT). Retrieved from RSS Notes Online website: 

www.unt.edu/rss/class/mike/5700/Equivalence%20testing.ppt. 

Cohen, J. (1968). Multiple regression as a general data-analytic system. Psychological Bulletin, 

70(6), 426–443.  



 97

Crawley, M. J. (2007). The R book. New York: Wiley.  

Culatta, B., Reese, M., & Setzer, L. A. (2006). Early literacy instruction in a dual-language 

(Spanish–English) kindergarten. Communication Disorders Quarterly, 27(2), 67–82.  

Cumming, G. and S. Finch. (2005). Inference by eye: Confidence intervals, and how to read 

pictures of data. American Psychology, 60, 170–180. 

Fairley, D. (1986). Cherry trees with cones? The American Statistician, 40(2), 138–139. 

Fraser, C. A. (2007). Reading rate in L1 Mandarin Chinese and L2 English across five reading 

tasks. The Modern Language Journal, 91(3), 372–394.  

Howell, D. C. (2002). Statistical methods for psychology (5th ed.). Pacific Grove, CA: 

Duxbury/Thomson Learning.  

Larkin, J. H. & Simon, H. A. (1987). Why a diagram is (sometimes) worth 10,000 words. 

Cognitive Science, 11(1), 65–100. 

Larson-Hall, J. (2008). Weighing the benefits of studying a foreign language at a younger 

starting age in a minimal input situation. Second Language Research, 24(1), 35–63.  

Lee, J. H. & Macaro, E. (2013). Investigating age in the use of L1 or English-only instruction: 

Vocabulary acquisition by Korean EFL learners. The Modern Language Journal, 97(4), 

887–901. 

Lim, K.-M., & Hui Zhong, S. (2006). Integration of computers into an EFL reading classroom. 

ReCALL, 18(2), 212–229.  

Lyster, R. (2004). Differential effects of prompts and recasts in form-focused instruction. Studies 

in Second Language Acquisition, 26(3), 399–432. 



 98

Lyster, R., Quiroga, J., & Ballinger, S. (2013). The effects of biliteracy instruction on 

morphological awareness. Journal of Immersion and Content-Based Language Education, 

1 (2), 169–197. 

Miranda Casas, A., Soriano Ferrer, M. & Baixauli Fortea, I. (2013). Written composition 

performance of students with attention-deficit/hyperactivity disorder. Applied 

Psycholinguistics, 34, 443–460. 

Peters, E., Hulstijn, J. H., Sercu, L. & Lutjeharms, M. (2009). Learning L2 German vocabulary 

through reading: The effect of three enhancement techniques compared. Language 

Learning, 59(1), 113–151. 

Tabachnick, B. G., & Fidell, L. S. (2001). Using multivariate statistics (4th ed.). Boston, MA: 

Allyn & Bacon.  

Tufte, E. (2001). Envisioning Information. Cheshire, CT: Graphics Press. 

Van Beuningen, C. G., De Jong, N. H. & Kuiken, F. (2012). Evidence on the effectiveness of 

comprehensive error correction in second language writing. Language Learning, 62(1), 

1–41. 

Wilcox, R. (2005). Introduction to robust estimation and hypothesis testing. San Francisco: 

Elsevier.  

Wilcox, R. R. (2011). Modern statistics for the social and behavioral sciences: A practical 

introduction. New York: Chapman & Hall/CRC Press. 

Wilcox, R. R. (2012). Introduction to robust estimation and hypothesis testing (3rd ed.). San 

Diego, CA: Academic Press. 

 

 


