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Classic	Non‐Parametric	Statistics		
[I]t is easy to . . . throw out an interesting baby with the nonsignificant bath water.  

Lack of statistical significance at a conventional level does not mean that no real effect  

is present; it means only that no real effect is clearly seen from the data. That is why it  

is of the highest importance to look at power and to compute confidence intervals.  

William Kruskal (1978, p. 946)  

Throughout the main book I was constantly using non-parametric statistics. Non-parametric 

statistics include bootstrap analyses and other types of robust statistical tests. However, in this 

chapter I will give information about non-parametric statistics that mostly use ranking to 

estimate location instead of mean scores. These are the types of non-parametric statistics that 

have been in place for many years, are considered classics, and are one way to avoid the 

influence of outliers. I personally would rather turn to bootstrap analyses or means trimming as 

ways of looking at data that does not fulfill the ideals of parametric statistics, but I realize some 

of my readers may be interested in these classic rank-based statistics and so I present them 

briefly in this chapter. 

Why	Use	Non‐Parametric	Statistics?		
The first question I want to answer at the outset of this paper is why you would use non-

parametric statistics. Non-parametric statistics are also called distribution-free statistics (Howell, 

2002) because they do not require that the data be normally distributed. Maxwell and Delaney 

(2004) note that it is not accurate to say that nonparametric tests do not assume homogeneity of 

variances, however. They point out that classic non-parametric tests like the Kruskal-Wallis 

assume that population distributions are equal, which would clearly imply that variances are 
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equal as well. Other requirements of non-parametric tests are that sampling is random and 

observations are independent.  

 

But wait a minute, you might say. Did we see that most of the datasets used in this book didn’t 

satisfy the assumptions of parametric statistics? They weren’t perfectly normal, because they 

weren’t perfectly symmetrically distributed and/or they contained outliers. They often violated 

the assumption that the variances of the groups would be equal. And yet the authors of these 

studies continued to use parametric tests. So is it or isn’t it OK to just use parametric statistics 

even when your data do not satisfy the assumptions of parametric statistics? It’s hard to get a 

straight answer to this question when you consult the statistical experts. Some authors claim that 

parametric statistics are robust to violations of the assumptions, while others claim that even 

small violations can spell certain doom (OK, not certain doom, but cause you to conclude that 

there are no differences between groups or no relationship between variables when they do in 

fact exist). Statistical simulation studies have shown that problems with skewness, unequal 

variances, and outliers can have large effects on the conclusions you draw from statistical tests 

(Wilcox, 1998).  

 

You already know that I prefer the robust statistical methods that were presented as alternatives 

in every chapter of the book, which were thought up early in the twentieth century but have only 

become possible since the advent of strong computing power (Larson-Hall & Herrington, 2009). 

Howell predicted in 2002 that robust methods would soon “overtake what are now the most 

common nonparametric tests, and may eventually overtake the traditional parametric tests” (p. 

692), and to my way of thinking that day has come. The reason parametric and so-called non-
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parametric statistics (the ones I will show you in this paper) were the ones that became well 

known was because their computing requirements were small enough that people could compute 

them by hand. The usually unreasonable assumptions of the parametric statistics were put in 

place so that the statistical test would be much easier to compute by hand. Thus, there may not be 

strong reasons to use these classic types of non-parametric tests anymore, but I also do not know 

of any sources that assert that robust methods are preferable to these classic non-parametric 

statistics in all cases, so I am presenting that information here. 

 

Some authors assert that non-parametric statistics are less powerful than parametric statistics, but 

that is not always true. It really depends upon the problems that are found in the distribution of 

the data. If there are outliers, then a non-parametric test, which uses the median which is insensi-

tive to outliers, might result in more power to find a statistical result than a parametric test.  

Non‐Parametric	Statistics	Tests		
Table 1 lists the parametric counterpart to a number of non-parametric tests. The Spearman rank 

order correlation is also a non-parametric alternative to the parametric Pearson correlation, but 

this test has already been mentioned in Chapter 6 on correlation so I won’t discuss it further in 

this paper. The last 4 tests in Table 1 are the ones that I will consider in this paper. 
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Non‐parametric 
test 

Parametric counterpart  Statistic used 

Chi‐square    2 

Binomial    p‐value returned 
Runs    p‐value returned 
1‐sample K‐S    p‐value returned 
2 independent 
samples 

Independent‐samples t‐test (Chapter 8)  Mann‐Whitney U or  
Wilcoxon rank‐sum 
test W 

K independent 
samples 

One‐way ANOVA (Chapter 9)  Kruskal‐Wallis 2 

2 related samples  Paired‐samples t‐test (Chapter 8)  Wilcoxon signed 
ranks test Z 

K related samples  RM ANOVA with only one within‐subject 
independent variable (Chapter 11) 

Friendman 2 

 

Table 1 Non-parametric tests and their parametric counterparts. 

 

There are four non-parametric tests listed in Table 1 that I will not cover in this paper. The chi-

square test is a non-parametric test, and information about that test can be found in the online 

chapter “Chi-square.” There is no parametric alternative to the test.  

 

The binomial test examines the proposition that the proportion of counts that you have fits a 

binomial distribution. It starts with the assumption that either of two choices is equally likely, 

although one can change that proportion to fit the circumstances. In the online chapter x “Chi-

square” I explained how to use this test. 

 

The runs test is designed to test whether a categorical level of your variable (with only two 

levels) is randomly distributed in your data. For example, you could use the runs test to see 

whether males and females were randomly distributed in your sample. This test is not frequently 
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used in the second language research field so I will not demonstrate how to use it in this paper.  

 

The one-sample Kolmogorov–Smirnov test is sometimes used to test whether a variable has a 

normal distribution. This test can also be used to compare the distribution of a variable with 

other distributions besides the normal distribution, such as the Poisson distribution. As I have 

discouraged the use of such tests throughout this book because they are usually not sensitive 

enough to detect deviances from the normal distribution with small sample sizes and too 

sensitive to deviances for large sample sizes, I also will not demonstrate how to use this test in 

this paper.  

Non‐Parametric	Statistics	Tests	in	SPSS	
The place to go to find ways to analyze statistics with non-parametric methods in SPSS is the 

ANALYZE > NONPARAMETRIC TESTS menu, shown in Figure 1. The first menu shows four 

choices. The first three choices (ONE SAMPLE, INDEPENDENT SAMPLES, and RELATED SAMPLES) 

are more general choices with a kind of statistical wizard that tries to guide you to the test you 

need. The fourth choice, LEGACY DIALOGS, allows you to directly choose the test you want, so I 

will be using this menu. You see eight different non-parametric tests in the LEGACY DIALOGS 

area, but I will only discuss the last four in this paper.  
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Figure 1 Non-parametric tests available in SPSS. 

Non‐Parametric	Statistics	Tests	in	R	
R Commander is able to conduct non-parametric statistics on the last 4 tests listed in Table 1, so 

I will use R Commander to do this. Figure 2 shows the choices in the STATISTICS > NON-

PARAMETRIC TESTS menu in R Commander. There are more choices of non-parametric tests 

available in R, but this chapter will focus on these 4 basic ones. 
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Figure 2 Non-parametric tests available in R Commander. 

Non‐Parametric	Alternative	to	the	Independent‐Samples	T‐Test		
Use an independent-samples t-test when you have two mean scores from two different groups or, 

in other words, two levels in your independent variable. In Chapter 8 I illustrated the use of the 

independent-samples t-test with Leow and Morgan-Short’s (2004) study of comprehension 

ability when participants had to engage in a think-aloud task. I used a parametric test for the 

recognition post-score test and found a non-statistical difference between the think-aloud and 

non-think-aloud groups with a p = .105. Actually, Leow and Morgan-Short analyzed this variable 

with the non-parametric Mann–Whitney U test because their data did not fit the assumptions of 

a parametric test. Let’s take the same variable and see if we get the same results as obtained in 

Chapter 8 with the parametric test (use the LeowMorganShort.sav file). The Mann-Whitney test 

(also known as the Wilcoxon's rank-sum test) tests the null hypothesis that “the two samples 

were drawn at random from identical populations (not just populations with the same mean)” 

(Howell, 2010, p. 673), so that rejection of the null hypothesis is “generally interpreted to mean 
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that the two distributions had different central tendencies, but it is possible that rejection actually 

resulted from some other difference between the populations” (ibid). Howell (2010) notes that 

we are not as certain in the result when we reject the null hypothesis of the non-parametric test, 

and this is the trade-off that we get for not having to fulfill all the assumptions of a parametric 

test. 

The	Mann–Whitney	Test	in	SPSS	(Two	Independent	Samples)	
Go to ANALYZE > NONPARAMETRIC TESTS > LEGACY DIALOGS > 2 INDEPENDENT SAMPLES. 

Move RECPOSTSCORE to the “Test Variable List” and GROUP to the “Grouping Variable” box. 

Just as with the independent-samples t-test, you’ll need to define the groups with numbers before 

moving on. I just called them 1 and 2, as shown in Figure 3. Notice that you have several choices 

for the type of test that you will use, but just keep the check on the default box, the “Mann–

Whitney U.” This test is exactly the same as the Wilcoxon Rank Sum Test that returns a statistic 

of W (Howell, 2002), in case you ever see that result and wonder what test it is. Open the EXACT 

button if you want to calculate the exact p-value of the test. You can choose how many minutes 

you want to let the exact calculation run, and the number of iterations will show at the bottom of 

the Output document. By default SPSS will use the asymptotic method, which is quicker if your 

dataset is large, but sometimes not as exact. If you have a small sample (less than 20 cases all 

together) SPSS will automatically calculate both the Asymptotic method and the Exact method. 

If you want a more exact p-value but you have a large sample, you can try the Monte-Carlo test 

method, as it will be quicker than the Exact method. The descriptive statistics returned by the 

choice of “Descriptive Statistics” in the OPTIONS button are not divided by group, so there is no 

need to open that button. The test will automatically return mean ranks (not the mean score) 

divided by groups without calling for descriptive statistics. 
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Figure 3 The Mann-Whitney test in SPSS (non-parametric alternative to the independent-

samples t-test). 

 

Your output will not show mean scores as it does not use mean scores, but instead will show 

mean ranks. The non-parametric test will rank the data for the whole dataset and then compare 

whether the ranks divided up by groups are different from the rank for the whole set. In this case, 

the mean rank of the non-think-aloud group is lower than the mean rank of the think-aloud 

group, but they are fairly similar (as shown in Table 2). The Test Statistics table in Table 2 

shows the U-value (663.5) and the associated p-value (p = .424). Because the p-value is above p 

= .05, we cannot reject the null hypothesis that there is no difference between groups. The result 

is the same as with the parametric test we saw in Chapter 8—we conclude that there is no 
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difference between the groups. 

 

 

Table 2 Results from the Mann-Whitney U Test in SPSS (alternative to independent-samples t-

test). 

The	Wilcoxon	U	Test	in	R	(Two	Independent	Samples)	
In Chapter 8 you imported the LeowMorganShort.sav file as leow into R. Use that data (or 

reimport it) and go to STATISTICS > NON-PARAMETRIC TESTS > TWO-SAMPLE WILCOXON TEST. 

This test is exactly the same as the Mann-Whitney Test that returns a statistic of U (Howell, 

2002). Split your data by the group variable, and choose recpostscore under “Response 

Variable.” In the OPTIONS tab, you can choose to have a two-sided or a one-sided hypothesis. 

You can also choose to have an exact test, which calculates an exact p-value but may take longer 

to compute than the default method, which is the normal approximation if your dataset is not 

quite small (in which case the exact method is used). There is an option to use a normal 
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approximation with a continuity correction. By default, if the program uses a normal 

approximation, it will include the continuity correction. 

 

Here is the R code for this test: 

 

wilcox.test(recpostscore ~ group, alternative="two.sided", data=leow) 

 

The syntax looks like a regression equation, with the response variable listed first, then modeled 

by the group division. The output looks like this: 

 

 

The default method is to try to calculate the exact p-value, but in this case because there are ties, 

the exact p-value cannot be computed, so it is approximated based on the normal approximation. 

The p-value shows that this test is not statistical and we cannot reject the null hypothesis that 

there is no difference between groups. The result is the same as with the parametric test we saw 

in Chapter 8—there is no difference between the groups.  

 

By the way, if you want to be able to choose the Monte Carlo method of calculating p-values 

(this was available in SPSS), or if you want the Z-score for calculating the effect size (see the 

next section in this document) you can try the wilcox_test( ) in the coin package (remember, to 
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install this package type install.packages("coin") in the R console and then type library(coin) 

to open the package). Use the argument distribution=c("approximate") to call for the Monte 

Carlo method of calculation. 

 

wilcox_test(recpostscore ~ group, alternative="two.sided", distribution=c("approximate"), 

data=leow) 

 

Here is the analysis of this command: 

wilcox_test(recpostscore ~ group, alternative="two.sided", 

distribution=c("approximate"), data=leow) 

wilcox.test(x ~ y) The command is set up to evaluate the 

dependent variable (x) modeled as a function 

of an independent variable (y) 

alternative="two.sided" This specifies a two-sided hypothesis and is 

the default (so you don’t actually need to type 

it); for a one-sided hypothesis, use either 

greater or less. For these tests greater means 

“true location shift is greater than zero,” and 

for less it means “true location shift is less 

than zero.”  

distribution=c("approximate") The default method of calculating the p-value 
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depends on the size of the sample; for small 

samples the exact method will be used, but 

one can always force the command to 

calculate the exact method (use exact), 

although it may take quite some time to 

calculate depending on the size of the dataset, 

and cannot be done if there are ties in the data. 

Other choices include 

approximate(B=9999), which calculates 

based on a Monte Carlo approximation 

(number of replicates set by the B); or 

(asymptotic), based on the normal 

distribution. If you don’t type anything, the 

default will be used. 

data= leow Specifies what dataset should be used 

 

Effect	Size	for	the	Mann–Whitney	or	Wilcoxon	Test		
You can calculate an effect size for any non-parametric test which returns a z-score (the capital 

“Z” in the output in Table 2 or the wilcox_test( ) output in the preceding section of this 

document) by using the following equation to turn it into a percentage variance measure of r:  
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where N = the total number of observations (Rosenthal, 1991, p. 19). The sign does not give any 

helpful information so just use the absolute value. For the Mann– Whitney U test we did for the 

Leow and Morgan-Short variable of recognition posttest, , a small effect size.  

Remember, this is an r-family effect size, which is a percentage variance effect size, not the d-

family effect size, so we can estimate the percentage of variance it explains by squaring it. 

Non‐Parametric	Alternative	to	the	One‐Way	ANOVA		
Use a one-way ANOVA when you have three or more levels of your independent variable or, in 

other words, you want to compare three or more mean scores on one dependent variable. In 

Chapter 9 I illustrated the use of the one-way ANOVA with the Ellis and Yuan (2004) dataset, 

which looked for differences in groups that received differing amounts of planning and writing 

time (EllisYuan.sav, imported into R as EllisYuan). We examined group differences with the 

dependent variable of how much syntactical variety was found in each participant’s writing 

sample. With the one-way ANOVA we found a statistical result (F2,39 = 9.05, p = .0006), and 

further post-hoc tests showed that the pre-task planning (PTP) group was better than both the 

online planning (OLP) and no-planning (NP) groups. Let’s see what happens when we use the 

non-parametric alternative, the Kruskal–Wallis test. The null hypothesis tested by the Kruskal–

Wallis test is that “all samples were drawn from identical populations” (Howell, 2010, p. 683). 

Kruskal‐Wallis	H	Test	in	SPSS	(Alternative	to	the	One‐Way	ANOVA)	
To call for the test, go to ANALYZE > NONPARAMETRIC TESTS > LEGACY DIALOGS > K 

INDEPENDENT SAMPLES. Move the SYNTAXVARIETY variable to the “Test Variable List” and 

GROUP to the “Grouping Variable” box. Figure 4 shows that you can’t continue until you define 

your groups. Click the box under “Grouping Variable” that says DEFINE RANGE. For 
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“Minimum,” enter the number of the lowest level of your group (I put 1), and in “Maximum” put 

the number of the highest level of your group (I put 3 because I have 3 groups). Press CONTINUE. 

Leave the “Kruskal-Wallis H” test box ticked. Use the Jonckheere–Terpstra test to get more 

power if there is some a priori ordering to your groups (this is only available if you have the 

Exact Tests add-on module for SPSS). If you open the EXACT button you will be able to choose 

to calculate an exact p-value (see the explanation in the section of this chapter called “Why Use 

Non-Parametric Statistics?” about the different options here). The descriptive statistics do not 

split the data up between groups so I do not see any use calling for them in the OPTIONS button, 

as the regular command will call up mean rankings divided by groups. 

 

 

Figure 4 The Kruskal–Wallis test in SPSS (alternative to the one-way ANOVA test). 
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The Kruskal–Wallis test is an extension of the Mann–Whitney to the case of more than two 

levels, so the same type of ranking is taking place in this test and the first table of the output will 

show the rankings of the groups. The highest ranking is for the PTP group at 30.3; then there is 

20.9 for the OLP group, and 13.3 for the NP group. The output, shown in Table 3, returns a chi-

square statistic that has a probability of p = .001 at 2 degrees of freedom (for the Jonckheere–

Terpstra test you will get a J-H statistic and an associated p-value, which you can use in the same 

way). We conclude that there are statistical differences between the three groups. This is the 

same conclusion we drew from the parametric tests.  

 

 

Table 3 Results from the Kruskal–Wallis Test (alternative to one-way ANOVA). 

 

There’s just one problem, which is that the Kruskal–Wallis test does not provide post-hoc tests in 

the same way as the one-way ANOVA did, so we can’t be sure which groups are statistically 

different from one another, and this is probably something we want to figure out. If you want to 
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keep using a rank-based non-parametric test, your option would be to run Mann-Whitney tests 

and pit only two groups at a time against each other. Since there are three groups, you would 

need to do three tests. For three tests I won’t worry about the familywise error rate, but if you run 

a large number of tests you might consider doing something to minimize the error rate, such as 

using the FDR adjustment. Alternatively, although the Bonferroni is too conservative, it is easy 

to calculate—simply divide your alpha (.05) by the number of tests that you are using and that is 

your critical value. 

 

If you go back to the Mann–Whitney dialogue box (to ANALYZE > NONPARAMETRIC TESTS > 

LEGACY DIALOGS > 2 INDEPENDENT SAMPLES), move the SYNTAX VARIETY variable to the right 

as your dependent variable, and then the GROUP variable to the “Grouping Variable” box. This 

box gives you a place to define groups (see Figure 2), so we’ll first put in Groups 1 and 2, then 1 

and 3, and then 2 and 3 using the same independent and dependent variables that we used for the 

Kruskal–Wallis test. A faster way to do this would be to put the correct variable in the boxes for 

the Kruskal–Wallis test, define Groups 1 and 2, and then push the PASTE button. The syntax for 

the first comparison will be shown. Copy the line starting at NPAR TESTS twice more, changing 

the group numbers to cover all of the permutations needed, as shown in Figure 5. Then choose 

RUN > ALL from the menu.  
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Figure 5 Pasting in syntax to run three Mann-Whitney test as post-hocs for the Kruskal–Wallis 

test. 

The results show that there is a difference between the PTP and NP groups (U = 25.0, p = .001, r 

= 0.64) and the PTP and OLP groups (U = 47.5, p = .02, r = 0.36), but not between the OLP and 

NP groups (U = 56.5, p = .054, r = 0.44), although this p-value is quite close to the cut-off point 

and may be argued to show that all of the groups showed differences from each other, especially 

as the effect size is even larger than the comparison between the PTP and OLP groups and in 

general is a fairly large effect size (r effect sizes are calculated as shown in the section called 

“Effect size for the Mann–Whitney or Wilcoxon Test”). This result is different from the one we 

received with the parametric test, and might be said to have more power to find differences than 

the parametric test. We might remember from Sections 9.4.5 and 9.4.6 of the book, however, that 
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confidence intervals, which we cannot get from SPSS for these tests, showed that the true 

difference may pass through or be quite close to zero for both the NP vs. OLP and PTP vs. OLP 

comparisons, so that a p-value analysis may be misleading. 

Kruskal‐Wallis	H	Test	in	R	(Alternative	to	the	One‐Way	ANOVA)	
In Chapter 9 you imported the EllisYuan.sav file as EllisYuan into R. Use that data (or reimport 

it) and in R Commander go to STATISTICS > NON-PARAMETRIC TESTS > KRUSKAL-WALLIS TEST. 

Choose the group variable under “Groups” and the syntaxvariety variable under “Response 

Variable.” Press OK. Here is the R code for this test: 

 

kruskal.test(syntaxvariety ~ group, data=EllisYuan

 

The output shows there is a statistical effect of group on the Syntax Variety variable, 2 =13.6, df 

= 2, p = .001. The Kruskal–Wallis test is an extension of the Mann–Whitney to the case of more 

than two levels, so the same type of ranking is taking place in this test, although R does not 

return any numbers for ranking, the way that SPSS does. 

 

There’s just one problem, which is that the Kruskal–Wallis test does not provide post-hoc tests in 

the same way as the one-way ANOVA did, so we can’t be sure which groups are statistically 

different from one another, and this is probably something we want to figure out. The “Pairwise 

Multiple Comparison of Mean Ranks Package” (PMCMR) will run multiple comparisons and 

control the error rate for rank-order statistics. The test we want is called 
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posthoc.kruskal.nemenyi.test( ) (the name Nemenyi is the researcher who proposed this test). 

The syntax is a little different from the Kruskal–Wallis test but puts the arguments in the same 

order, calling them “x” for the DV and “g” for the IV. 

 

install.packages("PMCMR") 

library(PMCMR) 

posthoc.kruskal.nemenyi.test(x=EllisYuan$syntaxvariety, g=EllisYuan$group, 

method="Tukey") 

 

The warning in the output shows that there were ties in the data, so p-values are not 

adjected to take into account that we have conducted more than one test. We can see 

from the p-values that there is a difference between the NP and PTP groups (p = 

.0007), but not between the NP and OLP groups (p = .23) or the PTP and OLP 

groups (p = .10). I do not know of any built-in function to calculate the mean rank of 

each group (SPSS gives it automatically in the output) to say which group did better 

than the other. 
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Effect	Sizes	for	the	Kruskal‐Wallis	H	Test	(Alternative	to	the	One‐Way	
ANOVA)	
The only way I know of to calculate effect sizes is for the two-way comparisons using the Z 

statistic. This means that to get effect sizes for the Kruskal–Wallis test we need to go back to the 

calculations for the r effect size given in the section called “Effect Size for the Mann–Whitney or 

Wilcoxon Test.” In the SPSS output I calculated individual Mann-Whitney tests for each of the 

three comparisons in the Ellis and Yuan (2004) data, and these are the Z-scores and associated N 

(total observations for the comparison) for those: 

 

NP-PTP, Z=-3.37, N=28 

NP-OLP, Z=-1.93, N=28 

PTP-OLP, Z= -2.33, N=28  

 

That means the for the NP-PTP comparison, r = .64, for the NP-OLP comparison, r = .36, and for 

the PTP-OLP comparison r = .44. 

 

For R, you would need to run the wilcox_test( ) command from the coin package to get the Z-

score, but this can only be done with two groups at a time. Here’s how you could modify your 

data from the EllisYuan dataset so you can run it for two groups at a time (I’m sure there is a 

more elegant way to do this, but this is how I figured it out!):  

 

1 Subset the EllisYuan dataframe by selecting one level of the group to exclude. Here I 

exclude the third group, “OLP,” by using the “not equal” syntax, “!=”: 

NP_PTP <- subset(EllisYuan, subset=group!="OLP") 
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2 You might think you're done here but you need to drop one of the group levels, as str( ) 

will still report 3 levels for the IV: 

NP_PTP$group <- factor(NP_PTP$group) 

levels(NP_PTP$group) #check the levels if you want, but it should work! 

3 Run the test to obtain the Z-score (remember, this test comes from the coin package): 

wilcox_test(syntaxvariety~group, data=NP_PTP) 

4 Use tapply( ) to get counts for your data: 

tapply(NP_PTP$group, list(group= NP_PTP$group), function(x) sum(!is.na(x))) 

 

Repeat the process for the other pairs to get the correct information. 

Non‐Parametric	Alternative	to	the	Paired‐Samples	T‐Test		
Use a paired-samples t-test when you have two mean scores you want to compare and these 

scores come from the same group of people. In other words, use a paired-samples t-test when 

your independent variable has only two levels and those levels are repeated measures. I 

illustrated the use of the paired-samples t-test with data from Kim (2013) (Kim2013.sav in SPSS, 

imported as kim2013 in R), which asked whether participants improved on their scores in 

understanding sarcasm from a pretest to a posttest when they were taught for 9 weeks about how 

to identify sarcasm. The parametric paired-samples t-test showed that there was a statistical 

difference between the pretest and immediate posttest, with a CI of [-14.4, -3.8]. Let’s see what 

happens when we use the Wilcoxon matched-pairs signed-ranks test to compare the two times 

the tests were taken. The null hypothesis for this test is that the two variables being compared 

came from identical populations (so there is no difference between the groups), and more 

specifically, “it tests the null hypothesis that the distribution of difference scores (in the 
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population) is symmetric about zero” (Howell, 2010, p. 678). 

Wilcoxon	Matched‐Pairs	Signed	Ranks	Test	in	SPSS	(Alternative	to	the	
Paired‐samples	T‐test)		
To call for the test, go to ANALYZE > NONPARAMETRIC TESTS > LEGACY DIALOGS > 2 RELATED 

SAMPLES. Move the variables PRETEST and POSTTEST to the right to form Pair 1, as shown in 

Figure 6. Leave the box ticked for test type as “Wilcoxon,” which will return the Wilcoxon 

signed ranks test. Use the McNemar test when you have nominal data and want to see how 

many people changed their categories over time and you only have two categories. If you want to 

calculate the exact p-value or use a Monte-Carlo approximation to the exact p-value, open the 

EXACT button (see the explanation in the section called “Why Use Non-Parametric Statistics?” 

about the different options here). Unlike the case with the non-parametric tests we’ve seen up 

until now, the descriptive statistics will be useful, so also open the OPTIONS button and tick 

“Descriptive statistics.”  

 

 

Figure 6 The Wilcoxon Signed Ranks test in SPSS (alternative to the paired-samples t-test). 
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Just like the Mann–Whitney and Kruskal–Wallis tests, the Wilcoxon signed ranks test ranks data. 

This is why we see mean ranks for the two groups in the output shown in Table 4, after the 

descriptive statistics give the mean score, standard deviation and counts. Positive ranks mean 

that an individual scored more highly at Time 2; negative ranks mean they scored lower at Time 

2. For those instances where an individual’s score did not change, these ties are dropped out of 

the analysis. From Table 4 you see that there’s quite a lot of difference between ranks for the 

pretest and posttest, with almost all of the participants gaining in scores rather than losing.  

 

Table 4 Results from the Wilcoxon Signed Ranks Test (alternative to the paired-samples t-test). 

 

The Z-score calculated as a statistic for this test has a probability of p = .02, so we conclude that 

the groups are different. 
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Wilcoxon	Signed	Ranks	Test	in	R	(Alternative	to	the	Paired‐samples	T‐
test)		
In Chapter 9 you imported the Kim2013.sav file as kim2013 into R. Use that data (or reimport 

it) and in R Commander go to STATISTICS > NON-PARAMETRIC TESTS > PAIRED-

SAMPLESWILCOXON TEST. Choose the pretest variable under “First variable” and posttest 

under “Second Variable.” If you want to calculate the exact p-value or test a one-sided 

hypothesis, open the Options tab (see the explanation in this document called “The Wilcoxon U 

test in R (Two independent samples)” about the different options here). The R code for this test 

is: 

 

wilcox.test(kim2013$pretest, kim2013$posttest, alternative='two.sided', paired=TRUE)) 

 

but I prefer the test from the coin package as it will return a Z-score: 

 

wilcoxsign_test(kim2013$pretest~ kim2013$posttest, zero.method=c("Pratt")) 

 

In this test, put the first observation first in the formula (the pretest) and the second observation 

after the tilde (the posttest). Here I have specified the default method, which is the Pratt method, 

which differs from the Wilcoxon method in how it evaluates ties. Please read the help files for 

the wilcoxsign_test( ) command if you would like to know more about these methods. The 

other arguments for this test are the same as they are for the Wilcoxon W test (the analog of the 

independent samples t-test), so see the earlier section entitled “The Wilcoxon U test in R (Two 

Independent Samples)” for more detail about different choices such as one-sided hypotheses or 

exact p-values. Here is the output from the wilcoxsign_test( ) command: 
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The p-value is p = .01, so we reject the null hypothesis and assume there is a difference between 

groups. This is the same as was found for the parametric test. 

Effect	Size	for	the	Wilcoxon	Signed	Ranks	Test	(Alternative	to	the	Paired‐
samples	T‐Test)		
The effect size for the tests can be calculated the same way as stated in the section “Effect size 

for the Mann–Whitney or Wilcoxon Test” where N will be the total number of negative and 

positive ranks, with the ties dropped out. This value is given explicitly in the SPSS output, but I 

don’t know of any way to calculate it for R, and so I would just use the number of rows (which is 

probably the number of participants) used in the calculation. For the sarcasm pretest-posttest, r = 

2.43/sqrt(9) = 0.81, which is quite a large effect size, accounting for 64% of the variance.  

Non‐Parametric	Alternative	to	the	One‐Way	RM	ANOVA	Test		
Use a one-way RM ANOVA test when you have tested the same people more than once. You 

would need to use a one-way RM ANOVA when the one independent variable that you have has 

more than two levels (if you only had two levels that were repeated measures you could use a 

paired-samples t-test). The parametric RM ANOVA can be used with any number of 

independent variables, but for the non-parametric alternative you can only use the Friedman test 

when there is just one independent variable. The null hypothesis tested in a Friedman test is that 

scores for different levels of the independent variable were “drawn from identical populations” 
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(Howell, 2010, p. 685). We saw an RM ANOVA illustrated through the data of Murphy (2004) 

and Lyster (2004). However, both of these ANOVAs used more than one independent variable, 

so we would not be able to apply a non-parametric test to either design as a whole. However, to 

illustrate the non-parametric test we could ask if there were differences between verb similarity 

for the Murphy (2004) data for just regular verbs for the NNS adults. This would give us just one 

independent variable of verb similarity, with three levels (prototypical, intermediate, distant).  

 

In the parametric RM ANOVA that was conducted in Chapter 11 of the book there was a stat-

istical difference for the simple main effect of similarity, but we didn’t care too much about that 

since there was a statistical three-way interaction between verb type, similarity, and group. In the 

analysis in Chapter 11 I didn’t specifically test whether the levels of similarity were statistically 

different for the regular verbs for the NNS adults. We can look at a means plot with the data (see 

Figure 7) and see that, as far as the mean score goes, there is not that much difference in the 

scores on similarity for the NNS adults for the regular verbs (only about .3 points of difference 

on a 1–5 scale). We may suspect that the comparison would not have shown any effect, but let’s 

see what the non-parametric tests do.  
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Figure 7 Means plots for the Murphy (2004) data. 

 

 

 The data for a Friedman’s test will need to be arranged in the “wide” format, the same as was 

necessary to run the RM ANOVA. In other words, there needs to be one column with the data for 

the regular verbs that are prototypical, one column for regular verbs that are intermediate, and 

one column for regular verbs that are distant if I want to test those three levels of similarity. 

Friedman	Test	in	SPSS	(Alternative	to	the	One‐way	RM	ANOVA)		
Use the SPSS dataset Murphy.RepeatedMeasures.sav. In order to test just the NNS adults I need 

to select only specific cases of the Murphy (2004) dataset. I go to DATA > SELECT CASES, hit the 

“If condition is satisfied” radio button, and push the IF button. I want to select only cases where 

the group = NNS adults, so I move the group variable to the right. I can’t actually remember 

what number the NNS adults are, but looking back I see they are Group 3. So inside the IF 

button I say “GROUP = 3” and press CONTINUE (remember, I want to choose who I want to 

keep, not throw away!). I’ll leave the “Output” button alone to simply filter out the cases I don’t 

want, and press OK. Checking, there are lines over all cases except those where the group is 3. 
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Now I can run the non-parametric test.  

 

To call for the Friedman test, go to ANALYZE > NONPARAMETRIC TESTS > LEGACY DIALOGS > K 

RELATED SAMPLES. Move the variables that represent your levels to the box labeled “Test Vari-

ables.” In my case I am testing the three levels of similarity within the regular verbs, so I move 

REGPROTO, REGINT, and REGDISTANT to the right as shown in Figure 8. It’s worth choosing the 

descriptive statistics for this box, so open the STATISTICS button and tick “Descriptive.” Leave 

the test type box at “Friedman.” Kendall’s W is used for looking at the agreement between raters, 

and in that case each separate variable would be one judge’s ratings for all of the people they 

rated. Cochran’s Q is used when your data are dichotomous, and in that sense is like an extension 

to any number of levels of the McNemar test (for more information about these tests, open the 

HELP button when you are looking at the dialogue box that is shown in Figure 8).  

 

 

Figure 8 The Friedman test in SPSS. 
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The mean scores in the descriptive statistics (not shown) are not very different from one another. 

They are Regular Prototypical, X = 4.8 (sd = 0.5), Regular Intermediate, X = 4.75 (sd = 0.4), and 

Regular Distant, X = 4.65 (sd = 0.5). The mean ranks are not very different either, as shown in 

the output in Table 5. A chi-square statistic is returned, and the associated probability of this chi-

square value given the degrees of freedom is p = .42. We cannot reject the hypothesis that there 

is no difference between verb similarities for regular verbs among the NNS adults.  

 

 

Table 5 Results from the Friedman test (alternative to the one-way RM ANOVA test). 

 

The result is 2 = 1.75, df = 2, p = .42, so there is no effect for differences between the different 

verb similarities. 

 

If we had found a statistical difference, we would be left in the situation of not having post-hocs 
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to ascertain where the difference lay, and we would need to go back to the test with only two 

levels, in this case the Wilcoxon signed ranks test, and test only two levels at a time.  

Friedman	Test	in	R	(Alternative	to	the	One‐way	RM	ANOVA)		
In Chapter 11 you imported the Murphy.RepeatedMeasures.sav file as murphy.wide into R. Use 

that data (or reimport it) and we'll subset the data so that only NNS adults are in it: 

 

NNS <-subset(murphy.wide, subset=group=="NNS adults") 

NNS$group <- factor(NNS$group) 

 

Now you are ready to work with the data. In R Commander with NNS as the active dataset, go to 

STATISTICS > NON-PARAMETRIC TESTS > FRIEDMAN RANK-SUM TEST. Choose the reg_distant, 

reg_int, and reg_proto variables and press OK. Here is the R code for this test: 

 

.Responses <- na.omit(with(NNS, cbind(reg_distant, reg_int, reg_proto))) #removes NAs 

and puts the three variables into one object named .Responses 

apply(.Responses, 2, median) #asks for medians for columns (the 2 represents columns) 

friedman.test(.Responses) 

remove(.Responses) 

 

 

The result is 2 = 1.75, df = 2, p = .42, so there is no effect for differences between the different 
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verb similarities. If we had found a statistical difference, we would be left in the situation of not 

having post-hocs to ascertain where the difference lay. In this case there is a convenient function 

that needs the data in exactly the same arrangement as the friedman.test( ) command did, so we 

can go back and input the lines that R Commander created, all except the last one that removes 

the data in the correct form (remove(.Responses)), and then use that object in the command 

that will test multiple comparisons of the groups: 

 

friedmanmc(as.matrix(.Responses)) 

 

remove(.Responses) 

 

The way to interpret this output is that the difference between Group 1 (Regular Distant) and 

Group 2 (Regular Intermediate) is 3.0 points, but it would need to be at least as big as 15.14 to be 

statistical, so this means we can’t reject the null hypothesis that there is no difference between 

groups. The “difference” column says FALSE, meaning the p-value is above .05. Of course, we 

didn’t find a main effect for differences between verb similarities, so it does not surprise us that 

we do not find any differences between paired groups. 

Effect	Size	for	the	Friedman	Test	(Alternative	to	the	One‐sample	RM	
ANOVA)		
I wouldn’t recommend giving an effect size for the Friedman test, as it is an omnibus test, and I 

also don’t know how to do one! So I recommend you give an effect size for the individual 
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pairings of groups, and this can be done using the Wilcoxon Signed Ranks Test, obtaining Z-

scores and N, and then using the equation given in the section called “Effect Size for the Mann–

Whitney or Wilcoxon Test” that involves the z-score statistic and the total N that has been used 

throughout this paper.  

Summary		
In this document I have shown how to perform the non-parametric tests that are available in 

SPSS and R as counterparts to some of the parametric tests demonstrated in this book. These 

tests are the classic rank-based parametric tests and are well-known and accepted. The reason to 

use such tests is if your data do not fulfill the requirements of parametric tests, then you lose 

power to find differences, and since the non-parametric tests avoid the assumption that the data 

are normally distributed, you can gain power to find differences in some cases. However, 

through the entire book I have provided, in each chapter, other and I think better ways to handle 

data that does not satisfy parametric assumptions. However, because these non-parametric tests 

are well-known, I provided information about how to use them in SPSS and R. 
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