Formulae for basic electrical and electronic principles

General:

Charge $Q=I t$ Force $F=m a$
Work $W=F s \quad$ Power $P=\frac{W}{t}$
Energy $W=P t$
Ohm's law $V=I R$ or $I=\frac{V}{R}$ or $R=\frac{V}{I}$
Conductance $G=\frac{1}{R} \quad$ Resistance $R=\frac{\rho l}{a}$
Power $P=V I=I^{2} R=\frac{V^{2}}{R}$
Resistance at $\theta^{\circ} \mathrm{C}, R_{\theta}=R_{0}\left(1+\alpha_{0} \theta\right)$

Terminal p.d. of source, $V=E-I r$

Series circuit $R=R_{1}+R_{2}+R_{3}+\cdots$
Parallel network $\frac{1}{R}=\frac{1}{R_{1}}+\frac{1}{R_{2}}+\frac{1}{R_{3}}+\cdots$

Capacitors and Capacitance:

$E=\frac{V}{d} \quad C=\frac{Q}{V} \quad Q=I t \quad D=\frac{Q}{A}$
$\frac{D}{E}=\varepsilon_{0} \varepsilon_{\mathrm{r}} \quad C=\frac{\varepsilon_{0} \varepsilon_{\mathrm{r}} A(n-1)}{d} \quad W=\frac{1}{2} C V^{2}$
Capacitors in parallel $C=C_{1}+C_{2}+C_{3}+\cdots$
Capacitors in series $\frac{1}{C}=\frac{1}{C_{1}}+\frac{1}{C_{2}}+\frac{1}{C_{3}}+\cdots$

Magnetic Circuits:

$B=\frac{\Phi}{A} \quad F_{\mathrm{m}}=N I \quad H=\frac{N I}{l} \quad \frac{B}{H}=\mu_{0} \mu_{\mathrm{r}}$
$S=\frac{\text { m.m.f. }}{\Phi}=\frac{l}{\mu_{0} \mu_{\mathrm{r}} A}$
Electromagnetism:
$F=B I l \sin \theta \quad F=Q v B$

Electromagnetic Induction:
$E=B l v \sin \theta \quad E=-N \frac{\mathrm{~d} \Phi}{\mathrm{~d} t}=-L \frac{\mathrm{~d} I}{\mathrm{~d} t}$
$W=\frac{1}{2} L I^{2} \quad L=\frac{N \Phi}{I}=\frac{N^{2}}{S} \quad E_{2}=-M \frac{\mathrm{~d} I_{1}}{\mathrm{~d} t}$
$M=\frac{N_{1} N_{2}}{S}$
Measurements:
Shunt $R_{\mathrm{S}}=\frac{I_{\mathrm{a}} r_{\mathrm{a}}}{I_{\mathrm{S}}} \quad$ Multiplier $R_{\mathrm{M}}=\frac{V-I r_{\mathrm{a}}}{I}$
Power in decibels $=10 \log \frac{P_{2}}{P_{1}}$

$$
\begin{aligned}
& =20 \log \frac{I_{2}}{I_{1}} \\
& =20 \log \frac{V_{2}}{V_{1}}
\end{aligned}
$$

Wheatstone bridge $R_{\mathrm{X}}=\frac{R_{2} R_{3}}{R_{1}}$
Potentiometer $E_{2}=E_{1}\left(\frac{l_{2}}{l_{1}}\right)$

