Formulae for further electrical and electronic principles

A.c. theory

$T=\frac{1}{f} \quad$ or $\quad f=\frac{1}{T}$
$I=\sqrt{\frac{i_{1}^{2}+i_{2}^{2}+i_{2}^{2}+\cdots+i_{\mathrm{n}}^{2}}{n}}$
For a sine wave: $I_{\mathrm{AV}}=\frac{2}{\pi} I_{\mathrm{m}}$ or $0.637 I_{\mathrm{m}}$
$I=\frac{1}{\sqrt{2}} I_{\mathrm{m}}$ or $0.707 I_{\mathrm{m}}$
Form factor $=\frac{\text { r.m.s. }}{\text { average }} \quad$ Peak factor $=\frac{\text { maximum }}{\text { r.m.s. }}$
General sinusoidal voltage: $v=V_{\mathrm{m}} \sin (\omega t \pm \phi)$

Single-phase circuits

$X_{\mathrm{L}}=2 \pi f L \quad X_{\mathrm{C}}=\frac{1}{2 \pi f C}$
$Z=\frac{V}{I}=\sqrt{\left(R^{2}+X^{2}\right)}$
Series resonance: $f_{\mathrm{r}}=\frac{1}{2 \pi \sqrt{L C}}$
$Q=\frac{V_{\mathrm{L}}}{V} \quad$ or $\quad \frac{V_{\mathrm{C}}}{V}=\frac{2 \pi f_{\mathrm{r}} L}{R}=\frac{1}{2 \pi f_{\mathrm{r}} C R}=\frac{1}{R} \sqrt{\frac{L}{C}}$
$Q=\frac{f_{\mathrm{r}}}{f_{2}-f_{1}} \quad$ or $\quad\left(f_{2}-f_{1}\right)=\frac{f_{\mathrm{r}}}{Q}$

Parallel resonance (LR-C circuit):
$f_{\mathrm{r}}=\frac{1}{2 \pi} \sqrt{\frac{1}{L C}-\frac{R^{2}}{L^{2}}}$
$I_{\mathrm{r}}=\frac{V R C}{L} \quad R_{\mathrm{D}}=\frac{L}{C R}$
$Q=\frac{2 \pi f_{\mathrm{r}} L}{R}=\frac{I_{\mathrm{C}}}{I_{\mathrm{r}}}$
$P=V I \cos \phi$ or $I^{2} R \quad S=V I \quad Q=V I \sin \phi$
power factor $=\cos \phi=\frac{R}{Z}$

Filter networks
Low-pass T or π :

$$
\begin{array}{rlrl}
f_{\mathrm{C}} & =\frac{1}{\pi \sqrt{L C}} & R_{0}=\sqrt{\frac{L}{C}} \\
C & =\frac{1}{\pi R_{0} f_{\mathrm{C}}} & L & =\frac{R_{0}}{\pi f_{\mathrm{C}}}
\end{array}
$$

See Fig. F1.

High-pass T or π :

$$
\begin{aligned}
f_{\mathrm{C}} & =\frac{1}{4 \pi \sqrt{L C}} & R_{0} & =\sqrt{\frac{L}{C}} \\
C & =\frac{1}{4 \pi R_{0} f_{\mathrm{C}}} & L & =\frac{R_{0}}{4 \pi f_{\mathrm{C}}}
\end{aligned}
$$

See Fig. F2.

Figure F1

Figure F2

D.c. transients

$\mathrm{C}-\mathrm{R}$ circuit $\tau=C R$
Charging: $v_{\mathrm{C}}=V\left(1-\mathrm{e}^{-t / C R}\right)$
$v_{\mathrm{r}}=V \mathrm{e}^{-t / C R}$
$i=I \mathrm{e}^{-t / C R}$
Discharging: $v_{\mathrm{C}}=v_{\mathrm{R}}=V \mathrm{e}^{-t / C R}$
$i=I \mathrm{e}^{-t / C R}$
L-R circuit $\tau=\frac{L}{R}$
Current growth: $v_{\mathrm{L}}=V \mathrm{e}^{-\mathrm{Rt} / L}$
$v_{\mathrm{R}}=V\left(1-\mathrm{e}^{-\mathrm{Rt} / L}\right)$
$i=I\left(1-\mathrm{e}^{-\mathrm{Rt} / L}\right)$
Current decay: $v_{\mathrm{L}}=v_{\mathrm{R}}=V \mathrm{e}^{-\mathrm{Rt} / L}$
$i=I \mathrm{e}^{-\mathrm{Rt} / L}$

Operational amplifiers
CMRR $=20 \log _{10}\left(\frac{\text { differential voltage gain }}{\text { common-mode gain }}\right) \mathrm{dB}$
Inverter: $A=\frac{V_{\mathrm{o}}}{V_{\mathrm{i}}}=\frac{-R_{\mathrm{f}}}{R_{\mathrm{i}}}$
Non-inverter: $A=\frac{V_{\mathrm{o}}}{V_{\mathrm{i}}}=1+\frac{R_{\mathrm{f}}}{R_{\mathrm{i}}}$
Summing: $V_{\mathrm{o}}=-R_{\mathrm{f}}\left(\frac{V_{1}}{R_{1}}+\frac{V_{2}}{R_{2}}+\frac{V_{3}}{R_{3}}\right)$
Integrator: $V_{\mathrm{O}}=-\frac{1}{\mathrm{CR}} \int V_{\mathrm{i}} \mathrm{d} t$
Differential:
If $V_{1}>V_{2}: V_{\mathrm{o}}=\left(V_{1}-V_{2}\right)\left(-\frac{R_{\mathrm{f}}}{R_{1}}\right)$
If $V_{2}>V_{1}: V_{\mathrm{o}}=\left(V_{2}-V_{1}\right)\left(\frac{R_{3}}{R_{2}+R_{3}}\right)\left(1+\frac{R_{\mathrm{f}}}{R_{1}}\right)$

