
 

© Carl Ross, John Bird & Andrew Little Published by Taylor and Francis 
 

CHAPTER 10 MEMBRANE THEORY FOR THIN-WALLED 

CIRCULAR CYLINDERS AND SPHERES 

 
EXERCISE 44, Page 234 

 

1. A thin-walled circular cylinder of internal diameter 10 m is subjected to a maximum internal 

pressure of 50 bar. Determine its wall thickness, if c  = 0.8 and L = 0.4.  

Assume that the maximum permissible stress is 300 MPa. (Note that 1 bar = 510 Pa.)                 
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i.e.                 wall thickness, t = 0.208 m = 208 mm 
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i.e.                 wall thickness, t = 0.052 m = 52 mm 

 

and       design wall thickness = 208 mm – the larger of the two design thicknesses 

 

 

2. Assuming that a submarine pressure hull of external diameter 12 m, and wall thickness 5 cm, can 

be designed using internal pressure theory, and neglecting failure due to buckling, determine its 

permissible diving depth for a safety factor of 2.  

Assume that the density of sea water = 1020kg/m
3
, g = 9.81 m/s

2
, L  = 0.48, c = 0.5 and the 

yield stress of the material of construction is 400 MPa.                                                
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i.e.    P = 1.6 MPa 

 

    P = ρgh 
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i.e.    P = 3.333 MPa 

 

Hence, design pressure = 1.6 MPa 

 

Therefore, diving depth, h
61.6 10

1020 9.81

P

g


 


 = 159.9 m 

 

 

3. Design the wall thickness for an aircraft fuselage of internal diameter 6 m, subjected to an 

internal pressure of 0.5 bar. Assume thatL  = 0.48, c = 0.5 and  yp
= 200 MPa. (Note that 1 bar = 

510 Pa.)                                                                                                              
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i.e.                 wall thickness, t = .  3
1 56 10 m = 1.56 mm 
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from which,      
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i.e.                 wall thickness, t = .  4
7 5 10 m = 0.75 mm 

 

Hence, the design wall thickness = 1.56 mm – the larger of the two design thicknesses 
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EXERCISE 45, Page 239 

 

1. A boiler, which may be assumed to be composed of a thin-walled cylindrical shell body of 

internal diameter 4 m, is blocked off by two thin-walled hemispherical dome ends. Neglecting the 

effects of discontinuity at the intersection between the dome and cylinder, determine suitable 

thicknesses for the cylindrical shell body and the hemispherical dome ends. 

The following may be assumed: 

maximum permissible stress = 100 MN/m
2

, design pressure = 1 MPa, 

longitudinal joint efficiency = 75% and circumferential joint efficiency = 50% 

 

For the cylinder 
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For the dome 
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2. If the vessel of Problem 1 is just filled with water, determine the additional water that is required 

to be pumped in, to raise the pressure by 1 MPa. The following may be assumed to apply: 

Length of cylindrical portion of vessel = 6 m, E = 11 22 10 N / m , v = 0.3 and K = 9 22 10 N / m   

 

For the cylinder 

 

  σH = 
61 10 2

0.0267

 
5 = 74.91 MN/m

2
    

 

  σL = 37.455 MPa 

 

  εH = 
1

E
6(σH – υσL) = 3.184 410  

 

  w = 6.367 410 m 
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  δV1 = 2πRwL = 0.048m
3
 

 

  σL = 37.455 MN/m
2
 

 

  εL = 
1

E
7(σL – υσH) = 7.491 510  

 

  u = 4.495 410  

 

  δV2 = πR
2
 u = 0.0056 m

3
 

 

For the sphere 

 

  σ = 37.455 MN/m
2
 

 

  ε = 
1

E
8(σ – υσ) = 1.311 410  

 

  w = 2.622 410  

 

  δV3 = 4πR
2
 w = 0.0132 m

3
 

 

For the water 

 

  Volume = πR
2
 L = 

4

3
9 πR

3
 

 

                                                 = 75.4 + 33.5 

 

i.e.  Volume  = 108.91 m
3
 

 

  δV4 = 
pV

K
10 = 0.055 

 

  δV = δV1 + δV2 + δV3 + δV4 

 

i.e.  δV = 0.122 m
3
 

 

 

3. A copper pipe of internal diameter 1.25 cm and wall thickness 0.16 cm is to transport water from 

a tank that is situated 30 m above it. Determine the maximum stress in the pipe, given the 

following: density of water = 1000 kg/m3,  g = 9.81 m/s
2

.                                  

 

  p = ρgh = 1000 × 9.81 × 30 = 0.294 MPa 
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Hence, maximum stress, σH = 
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4. What would be the change in diameter of the pipe of Problem 3 due to the applied head of water? 

Assume that for copper: E = 11 21 10 N / m , v = 0.33 and  K = 9 22 10 N / m . 
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Now r = 0.625 210  

 

   w = 11
r

E
(1.15 – 0.33 × 1.15/2) 610  

 

i.e.   w = 6 810  

 

   δ = 12 810  

 

i.e.   δ = 1.2 710  

 

                                      = 0.12 micrometres 

 

 

5. A thin-walled spherical pressure vessel of 1 m internal diameter is fed by a pipe of internal 

diameter 3 cm and wall thickness 0.16 cm. Assuming that the material of construction of the 

spherical pressure vessel has a yield stress of 0.7 of that of the pipe, determine the wall thickness of 

the spherical shell.                                                                                                       
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Therefore,   
σ

p
 = 9.37513 

 

For the spherical shell 

 

   
p
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Now,   
p


 = 
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r
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Hence,   6.5625 = 
0.5

2t
14 

 

from which, wall thickness, t = 0.0381 m = 3.81 cm 

 

 

6. A spherical pressure vessel of internal diameter 2 m is constructed by bolting together two 

hemispherical domes with flanges. Assuming that the number of bolts used to join the two 

hemispheres together is 12, determine the wall thickness of the dome and the diameter of the bolts, 

given the following:  Maximum applied pressure = 0.7 MPa, 

                                   Permissible stress in spherical shell = 50 MPa 

                                   Permissible stress in bolts = 200 MPa 
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2
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i.e. wall thickness of the dome, d = 0.0342 m = 3.42 cm 

 

 

7. A thin-walled circular cylinder, blocked off by inextensible end places, contains a liquid under 

zero gauge pressure. Show that the additional liquid that is required to be pumped into the vessel, to 

raise its internal gauge pressure by P, is the same under the following two conditions: 

      (a) when axial movement of the cylinder is completely free, and 
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      (b) when the vessel is totally restrained from axial movement. 

It may be assumed that Poisson’s ratio (v) for the cylinder material is 0.25. 
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(b) 
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EXERCISE 46, Page 242 

 

1. A circular cylinder is to be blocked off by hemispherical ends and the whole is subjected to an 

internal pressure. Given that the internal diameter of the cylinder and hemisphere are 5 m, and the 

internal pressure is 2.5 bar, and if the joint efficiency is 100%, determine suitable thicknesses for 

the cylinder and hemispherical ends, assuming that the cylinder ends deflect the same as the 

hemispherical ends. Assume that the yield stress = 200 MPa and v = 0.3. (Note that 1 bar = 510 Pa.) 
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i.e. cylinder thickness, 
cyl

t = 3.125 mm   

 

From the formula,  0.412 0.412 3.125s ct t      (from equation (10.25) in the textbook) 

 

i.e. hemispherical end thickness = 1.288 mm 

 


