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CHAPTER 12 THEORIES OF ELASTIC FAILURE 

 
EXERCISE 52, Page 282 

 

1. A submarine pressure hull, which may be assumed to be a long thin-walled circular cylinder, of 

external diameter 10 m and wall thickness 5 cm, is constructed from high tensile steel. Assuming 

that buckling does not occur, determine the maximum permissible diving depths that the submarine 

can achieve, without suffering elastic failure, based on the five major theories of yield and given the 

following: 
yp  = – 

ypc  = 400 MN/m 2    v = 0.3 

 Density of water = 1020 kg/m
3
 g = 9.81 m/s

2
 

 

  σypc = σyp 

 

Pressure, p = ρgh = 1020 × 9.81 × h = 10006 h = 0.01 h MPa 

 

  σ1 = – p 

 

  σ2 = – 
pR

2t
 = - 50p1 

 

  σ3 = – 
pR

t
 = - 100p2 

 

Maximum principal stress theory 

 

  – 100 p = – 400   or   p = 4 = 0.01 h 

 

i.e.                           h = 4/0.01 = 400 m 

 

Maximum principal strain 

 

    σ3 – υ (σ1 + σ2) = σypc 

 

  – 100 p – υ(– p – 50 p) = – 400 

 

i.e.                   – 100 p + 0.3(51)p = – 400 

 

or                    – 84.7 p = – 400 

 

i.e.                          p = 400/84.7 = 4.723 = 0.01 h 

 

from which,            h = 472.3 m 
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Total strain energy theory 

 

                p
2
 + 2500 p

2
 + 10000 p

2
 – 0.6 (50 + 100 + 5000) p

2
 = 400

2 

 

or                                      9411 p
2
 = 400

2
 

 

from which,                       p = 
2400

9411
 = 4.123 = 0.01 h 

 

i.e.                                      h = 412.3 m 

 

Maximum shear stress theory 

 

   σ1 – σ3 = σyp 

 

i.e.      – p + 100 p = 400 

 

or                                       p = 4.04 = 0.01 h 

 

i.e.                                      h = 404 m 

 

Shear strain energy theory 

 

   (σ1 – σ2)
2
 + (σ1 – σ3)

2
 + (σ2 – σ3)

2
 = 2σyp

2
 

 

i.e.    (49p)
2
 + (99p)

2
 + (50p)

2
 = 2 × 400

2
 

 

i.e.          14702 p
2
 = 2 × 400

2
            

 

and    p = 
22 400

14702


 = 4.665 = 0.01 h 

 

i.e.                              h = 466.5 m 

 

 

2. A circular-section torsion specimen, of diameter 2 cm, yields under a pure torque of 0.25 kN m. 

What is the shear stress due to yield? What is the yield stress according to (a) Tresca, (b) Hencky-

von Mises? What is the ratio 
yp /

yp  according to these two theories? 

 

Polar second moment of area, J = 
 

4
2

8 4
2 10

1.571 10 m
32




 

   

 

Yield stress, 
3 2

8

0.25 10 1 10

1.571 10





  
 




T r

J
 = 159.1 MPa 



 

© Carl Ross, John Bird & Andrew Little Published by Taylor and Francis 
 

 

1  = 159.1 MPa,  and  
2  = – 159.1 MPa  

 

(a) Tresca 

 

  σyp = 159.1 × 2 = 318.3 MPa 

 

(b) Hencky-von Mises 

 

   σ1
2
 + σ2

2
 – σ1σ2 = σyp

2
 

 

   159.1
2
 + 159.1

2
 + 159.1

2
 = σyp

2
 

 

     i.e.                 75938.43 = σyp
2
 

 

     and                  σyp = 275.6 MPa 

 

(c) Tresca ratio = 
159.1

318.3
 = 0.503 

 

     Hencky-von Mises ratio =
159.1

275.6
 4= 0.577 

 

 

3. A shaft of diameter 0.1 m is found to yield under a torque of 30 kN m. Determine the pure 

bending moment that will cause a similar shaft, with no torque applied to it, to yield, assuming that 

the Tresca theory applies. What would be the bending moment to cause yield if the Hencky-von 

Mises theory applied?  

 

 

Polar second moment of area, J = 
 

4

6 4
0.1

9.817 10 m
32




    

 

Now   
 T

r J
5 

 

from which, 
3

6

30 10 0.05

9.817 10

 
 




T r

J
 = 152.8 MPa 

 

 

Hence,   σ1 = 152.8 MPa,   and   σ2 = – 152.8 MPa 

 

and  σ1 – σ2 = σyp 

 

i.e.                   σyp = 305.6 MPa 
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Due to M: 

 

  I = 6 6 40.5 9.817 10 4.909 10 m      

 

Now,   1 
 M

y I
                       

 

and         σ2 = 0 

 

Tresca 

 

   σ1 – σ2 = 305.6 MPa 

 

i.e.              σ1 = 305.6 MPa 

 

Hence, pure bending moment,
6 6

1 305.6 10 4.909 10

0.05

  
 
 I

M
y

 = 30 kN m 

 

Hencky-von Mises 

 

   σ1
2
 + σ2

2
 – σ1 σ2 = σyp

2
 

 

   σ1 = σyp 

 

Hence, bending moment, M = 30 kN m 

 

 

 

 


