CHAPTER 14 THE BUCKLING OF STRUTS

EXERCISE 56, Page 316

1. Determine the Euler buckling load for the axially loaded strut shown.

d7y
El —=-Py+M
dx? y

Let o = P/EI

2
Then O|—32/+052y=M
dx El

The complete solution is

y=A cos ax + B sin ax + M/(Ela?)

d .

—y:—(xAsmax+chosax
dx

d? .

d—¥:a2Acosaxa2Bsmax
X
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Atx=0,y=0

Hence, A =—MI/(Elo?)

Atx:O,j—y =0 hence, B=0

X
2
Atx=1, &Y =g
dx
Hence, —o®Acosal=0 or cosal=0
i.e. ol=n2
2
Hence, P, = z EI
4]

2. Determine the Euler buckling load for an initially straight axially loaded strut which is pinned at

one end and fixed at the other.

d<y R
W'Fazy:E(I—X)

The complete solutionisy = Acosa X+ Bsino x + %(I - x)
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Atx=0,y=0

Therefore, =—RI/P

Atx =0, g—y =0, therefore, B = R/oP

X

Hence, Y:E{—I cosozx+smaI +(I —x)}
P a

Atx = |, y= 0

Therefore, 0= E{—I CoSa X+ sinal }
P (04

or tanol = ol

Hence, o | =4.5 rads

so that P _ 20.2El

cr
|2

3. Find the Euler crushing load for a hollow cylindrical cast-iron column of 0.15 m external
diameter and 20 mm thick, if it is 6 m long and hinged at both ends. Assume that E = 75x10° N/m?

Compare this load with that given by the Rankine formula using constants of 540 MN/m?*and

1/1600. For what length of column would these two formulae give the same crushing load?

7z(0.154 —0.114)
64

| = =1.766x10°m*

A =8.168x10°m?

k?=2.162x10"° and k=0.046m

and P. = 363.1 kN
p__ OA _ 540x10°x8.16x10°°
' RS 14 1 36
Lral ¢ 1600\ 2.162x10°
107 _ ag6 7 kN
1+10.4
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iz

1307230 540x10°x8.168x10°°

ie.
|2 1 12
1+ -
1600\ 2.162x10
or 2.964 (1+0.289 1) =P
i.e. 2.964 +0.857 1> = I
from which, 1=455m

4. A short steel tube of 0.1 m outside diameter, when tested in compression, was found to fail under
an axial load of 800 kN. A 15 m length of the same tube when tested as a pin-jointed strut failed
under a load of 30 kN. Assuming that the Euler and Rankine-Gordon formulae apply to the strut,

calculate (a) the tube inner diameter, and (b) the denominator constant in the Rankine-Gordon

formula. Assume that E =196.5GN/m?

7°El

|2

(a) 30x10° =

~ 30x10° x15?

= — 95510 =3.48x10°m*
T X I X

72'2(0.14 —d“)
64

3.48x10° =

7.09x10° —0.1*=—d*
i.e. the tube inner diameter, d = v2.91x10°° = 0.0734 m

(b) A=3617x10°m?  and k’=9.62x107"
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800x10°
I 2

1+a(j }

(i

152
ta———
9.62x107

r:

=26.67

—4
and a=25.67 x 962107 =1.097x10™*
152

The denominator constant in the Rankine-Gordon formula is:

1_ % = 9117
a 1.097x10

5. A steel pipe of 36 mm diameter, 6 mm thick and 1 m long is supported so that the ends are

hinged, but all expansion is prevented. The pipe is unstressed at 0 °C. Calculate the temperature at

which buckling will occur. Assume the following: o, =325 MN/m?, a=1/7500, E = 200GN/m?

and o =11.1x107'%/°C.

| =6—’1[(36x103)4—(24x103)4}

i.e. | =6.61x10°m*
A=5655x10"m? and k’=1.17x10"*
oc=0alTE

Pr=oITEA=12554 T 1)

B 325x10° x5.655x10™* _183.79><10‘3
1 1? 2.1397
1+ -
7500( 1.17x10

= 85696 N @)

PR

Equating equation (1) and equation (2) gives:

i.e. the temperature at which buckling will occur, T =85696/1255.4 = 68.4°C
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6. The table below shows the results of a series of buckling tests carried out on a steel tube of
external diameter 35 mm and internal diameter 25 mm. Assuming the Rankine-Gordon formula to
apply, determine the numerator and denominator constants for this tube.

I (mm) 600 1000 1400 1800
P.(kN) 150 125 110 88

z((35><103)4 —(25><103)4)
64

| = =5.449x10°m*

A=4712x10"m?

k?=1.156x10"* m? = 115.6 mm?

| (mm) 600 1000 1400 1800
(I/K)? 3113 8650 16950 28020
1/Pg 6.667 8 9.09 11.36

Plotting 1/Pg against (P/k)* gives the following graph:

*
/
62

Y Pa

— %

(We)®
From the graph,

intercept:L =6.2 and i=6.2 hence, P, =0.162

oA P
) 0.162 5 .
from which, o. = A = 344 MN/m ° = the numerator constant of the Rankine-Gordon formula

Also from graph,
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From the graph,
2
(Lj =30000
R
1/Pr=11.25
and Pr =0.0889
—4
2 x 30000 = 345x4.712x10 1
0.0889
=0.829
and a =0.829/30000 = @ = the denominator constant of the Rankine-Gordon

formula

7. The result of two tests on steel struts with pinned ends were found to be:

Test number 1 2
Slenderness ratio 50 80
Average stress at failure (MN/m?) 266.7 194.4
A=1m?

(@) Assuming that the Rankine-Gordon formula applies to both struts, determine the numerator and
denominator constants of the Rankine-Gordon formula.
(b) If a steel bar of rectangular section 0.06 m x 0.019 m and of length 0.4 m is used as a strut with

both ends clamped, determine the safe load using the constants derived in (a) and employing a

safety factor of 4.
o A
@) P = A
{1+ a(j }
k
or B o _

ol
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Let o =350 MN/m?

For Gj =50 and a=1/8000

(b) KAR = f50 = 266.7
{1+(50)2}
8000
I
For (—j =80
k
Fo _ 350 =194.4

—R_
A1 L (s0)
8000
A=0.06x0.019=1.14x 103 m?

| =3.4295%x10°°

k =5.485x10"°
|

— =7293

k

350x1.14x107

A
[l+x x5318.6}
4 8000

i.e. Pr =342 kN
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EXERCISE 57, Page 324

1. A long slender strut of length L is encastré at one end and pin jointed at the other. At its pinned
end, it carries an axial load P, together with a couple M. Show that the magnitude of the couple at

the clamped end is given by the expression

M alL-sinalL
alLcosal —sinalL

Determine the value of this couple if P is one quarter of the Euler buckling load for this class of

strut.

- —~— ¢ ’ -
4 3{__/4-\ i
P VMO 7\;\//

2
El%z—Py+Mo—Rx
X

M Rx
y=Acosax +Bsinox +—2- - ——
a’El  o’El

d .
_y:—aAs1n(xx+(chosax— >
dX (04 EI
d? ;
d—gz—azACOSax—azBSInax

X

Atx=0, y=0, hence, A=—MJ/(c?El)
Atx =0, % =0, hence, uB =R/(c?El)
X

or B =R/(a®EI)
Atx=1y=0, hence, 0=A cosal+Bsinal+My(a®El) - RI/(cEl

ie. = — My/(oEI) cos a | + R/(oEI) sin o | + My/(o’El) — RP(oEl)
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ie. 0 = (My/oPEl) (1 — cos o) + R/(aon(Si” a —|]
a

—M, (1-cosal)
(sir;al _Ij

Taking moments about the left end gives:

from which,

M+ Rl =

M, —M
|

or R=

Equating equations (1) and (2) gives:

M,-M _ -M_ (1-cosal)
I (sinal _Ij
(24
M —Mol-(l—COSal)
° (smal _Ij
[0/

M,I 1 coS al

e

B s
s

sinal
M, | —lcosal +
a a

" X—
SII‘Iad_I a
a

M, (el cosal +sinal)
(sinal-al)

M (al -sinal)

o (alcosal —sinal)

0o —
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_ 20.25EI

R

r Iz
Therefore, pP= —5'0?23 El
, P 5.063
o =—=—-
El |2
and a= @
|
_ M(225-0.778)
° 2.25x(-0.628)-0.778
_ =1.472M
2.191
i.e. M, =-0.672m

2. A long strut, initially straight, securely fixed at one end and free at the other, is loaded at the free
end with an eccentric load whose line of action is parallel to the original axis. Deduce an expression

for the deviation of the free end from its original position.

LA

=P
J

-

]

Mo
47

l
|
|
|
;

F— K
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Let o = P/EI

Then —¥+a2y:a2%
dx

The complete solution is

0

y=Acosax+Bsinox+

d—y:—aAsinax+chosax
dx
d? )
—¥:—a2Acosax—a2Bsmax
dx
Atx=0,y=0
hence, 0=A+ M,
p
ie A= M,
P
_a Gy
Atx=0, dx_o
hence, 0=0B ie. B=0
d’y
Atx=1M=PA=El| ——
dx .
Hence, PA _ —a*Acosal
El
Therefore, A= —%xﬂsecm =—Asecal
El P
and M=—-Px—Asecal
and M, = PAsecal
Hence, y =—Asecal xcosax+ Asecal

Deflection at the free end = —Asec al xcos al + Asec al
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= A(secal-1) sincex=0

3. A tubular steel strut of 70 mm external diameter and 50 mm internal diameter is 3.25 m long. The
line of action of the compressive forces is parallel to, but eccentric from, the axis of the tube, as

shown below.

Deflected form
of strut

" i

Find the maximum allowable eccentricity of these forces if the maximum permissible deflection

(total) is not greater than 15 mm. Assume that: E =2x10"N/m®and P = 114.7 kN

Let A = eccentricity

d’y
El —=-P(y+A
dXZ (y )
2
Then d—¥+£y=—£A
dx° El El
Let o = P/EI
2
then % +a’y=—a’A

The complete solution is
y=Acosax+Bsinox—A

JP

—_

et

e

\
\

e T

Atx=0,y=0
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hence, 0=A - A from which, A=A

Atx=1y=0
i.e. O=Adcosal+Bsinal—-4
A2sin? al
. A(1-cosal B3
from which, B= ( - i ): I 2 I :Atanil from double angles
sina 2sin L cos & 2
2 2
. al .
le. y=4][cos ax+tan 7sm (ox) — 1]
The maximum deflection & occurs at X = 1/2,
le. éSzA(cosO[—I +tan05—|sin05—I -1)
2 2 2
= ACOS— 1+tan2a—|— !
2 al
COS—
2
= Acos & secza—l— L
2 al
COS—
2
i.e. 5=A[seca—l—1j
2
The maximum bending moment = Mpax
where Mmax =P (0 + 4)
P I
or Mmax = P 4 sec| ,|— —
i ( El 2]
7(70* -50°) \
Second moment of area, | = ———~ = 871790 mm

64

El = 1.744x10"
3
and o= 1’% =8.111x10™
1.744x10
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-4
Also, %': 8'111X12 X325 _1 318 x10°

CoS a_l =0.25
2

and sec %I =1/0.25=4

Now, 5:A(sec%l—lj

hence, 15=A4-1)

from which, maximum eccentricity, A =5 mm

4. The eccentrically loaded strut shown is subjected to a compressive load P. If EI =20 000 Nm?,
determine the position and value of the maximum deflection assuming the following data apply:

P=5000N, I=3m and A=0.01m
i o

1

Taking moments about A gives:

PA+RI=P x 44
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from which, R=3PAA

d?y
El —-=-P(4A+Yy)+Rx
dXZ ( y)

=—P(4A+y)+(3PA/1)x

= —PA(4—3I—XJ—Py
Let o = P/EI

2
then d—zl +a’y = —azA(4—%j
dx I
. . 3X
Ie. y = Acosax+ Bsmax—A(4—Tj (1)
and ﬂz—aAsinax+chosax+3—A
dx |

Atx=0,y=0
hence, 0= Acos0+Bsin0—A(4-0)
from which, A=44
Atx=1,y=0
hence, 0= Acosal +Bsinal —A[4—3|—Ij
i.e. 0= Acosal +Bsinal —A
from which, B= Lcoswl

sinal

_ A-4Acosal  A(1-4cosal)
sinal sin ol

Hence, from equation (1),

y =44 cos ox + A4 (1 —4 cos al) sin ax/sin al — 4 (4 — 3x/l)

and dy =—4a sin ax + a4 (1 —4 cos al) cos ox/sin al + 34/

dx
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dy

For maximumy, —=0
dx

Hence,

Now,

or

0=-4o4 sin ox + a4 (1 —4 cos al) cos ax/sin al + 34 |

L /ﬂ
El \20000
0.5

a=Vu.

To calculate x:

Try x=15m, therefore, ox=42.97° and al =85.94°

Substituting these values gives:

or

=—4x0.5x0.682+0.5(1-0.2829) x 0.732/0.997 + 1

=—-1.364 + 0.263 + 1 =—0.101 which is incorrect

Try x=1.4m, therefore, ax=40.11°

or

=—1.288 + 0.3586 x 0.764/0.997 + 1 =—0.0129

Try x=1.35m, therefore, ox =38.67°

or

=—1.2498 + 0.3586 x 0.78/0.997 + 1 = + 0.003

Try x=1.38 m, therefore, ax = 39.53°

or

i.e.

and

= 1.273+0.3596 x 0.771 + 1 = 4.356x10°
Xx=138m

5=4x0.01x0.771 + 0.01 x 0.719 x 0.636 —0.01 (4 — 1.38)
= 0.03084 + 4.573x10°— 0.0262

8=9.21x10"m

5. Show that for the eccentrically loaded strut shown the bending moment at any distance x is given

by:

1+2 |
M =PA —2c03ax+(+_cia)sinax
sinal
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I l
R—> l
28|
A
=P
R
T
I
|
\ L
Y
=
=l 14 1.
Rt 1
tZA
RI=3PAa
l.e R:3P_A
|
At distance X,
Elﬂz—P(y+2A)+Rx
dx?
It may be shown that the complete solution is:
. Rx
y =Acos ax + B sin ox + F_ZA 1)
Atx=0,y=0 ie A=2A
Atx=1y=0
3PAI
ie. 0=2Acosaol+Bsinal + IL —24
ie. 0=2Acosal+Bsinal +A
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—A(1+2cosal)
sinal

from which, B=

Hence, from equation (1),

3PA y
A(1+2cosal) . |
y=2Acos oX — ————— = SinoX + ————2A
sinal P
A(1+2cosal
i.e. y=2Acosax—MSin ox + %—ZA
sinal I
1+2cosal
Then Q:A —2asinax—aMCOSaX+§
dx sinal |
2 1+2cosal) .
and d—zzAaz —2003ax+wsmax
dx sinal
2 1+2cosal
M =E19Y _pa| 2cosax+ LF28) Gio
dx sinal

6. An initially curved strut, whose initial deflected form is small and parabolic, is symmetrical about
its mid-point. If the strut is subjected to a compressive axial load P at its pinned ends, show that the

maximum compressive stress is given by:

P 1+A—zﬂ(secﬁl—lj
A k® PI 2

where A= initial central deflection and k = least radius of gyration

Determine A for such a strut, assuming the geometrical and material properties of worked problem

6 apply.

AA(1-x)  4AX  4x°A
Let Yo = 2 ST
then %—4_A_8X_A

dax 17 I?
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and

dx? |2
2 2
Now, % =+ ddx)go —-a’y

The complete solution to this is

y=ACOSax+BSinozx—82A|2 (1)
(94
dy .
and d—:—aAsmax+aBCOSax
X
Atx=0, y=0, ie. O:A—%
ol
8A
i.e A=
a’l’
Atx =1/2, ﬂzo,
dx
hence, 0=—a( SzAz)siniuchosﬁl
al 2 2

(SAjsinal
212
from which, B= ol 2 :( 8Azj al

From equation (1),

—(8—Aj coS ax + ( 8A Jtanilsin ox —8—A
y a’l? a’l? 2 a’l?

The maximum deflection occurs at x = 1/2,
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1-cos? 4
8A al
% cos?+ p -1
@ cos
i 2
8A al
e COS—+ I—cos?—l
@ cos
. 8A al
ie. 0=| —=||sec—-1 2
) =5 @
M, . =Ps
Therefore, oy, = iﬁ’
Ak
S
(direct) A
Hence, O rax :E 1+5—2/
A k
P 8AY al .
=—|14+| —= || sec=—-1 from equation (2
o1 S e 1] mequaionco
e O rax _P 1+A—3_/ 8£2| secil—l since o = P/EI
A ke \ Pl 2 ]
Now, P. = 7°EI/I

Therefore, Oy = P +A_2y( 8|23e ]{secil—l}
A ke \ 7P 2

and as o = P/EI,

al_1 /F’_'Z_l Pr” _z [P
2 2VEl 2\ P 2\PR
Therefore, omaX:E 1+A_2y 859 sec| = i -1
Al k*\z°P 2\ P,
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or o= 1+A—2y 8E2| sec @ _1|| where P, = ZEIR
A k* \_PI 2

El =2x10" x6.594x10° =1.318x10, I=10m, al =69.88°, o =-75MPa,
P =0.196 MN, A=9327x10°m?, y =125cm
Hence. o 1x10f 0.196x10° ><12.5><18-2 x8x 2x10" A {Sec al 1}
0.196x10° x100 2
or —75x10° =—21x10° —2000x10°. A x 0.2199
i.e. —54x10° =—-439.8x10° A

from which, 4=0.123m=12.3cm

7. An initially curved strut, whose initial deflected form is small and circular, is subjected to a
compressive axial load P at its pinned ends. Show that the total deflection y at any distance x is

given by:

8A al .
y=——|Cosax+tan—sinax-1
ol 2

where A is the initial central deflection.

Determine A for such a strut, assuming the geometrical and material properties of worked problem

6 apply.
H——
e Mo da T TS
! fo ——f——ljz ]
|2
A(2R —A)=—
( 0 ) 4
|2
i.e 2RA-A* =—
4
but A0
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Therefore, R =—

° 8A
2
However, i=d—¥
R, dx
2 2
Therefore, El d_Z_d_{o - Py
dx dx
. d’y 8A
becomes: El w =—Py
d? 8A
or Kzlﬂzzyzl—z
The solution is: y=Acos ox +Bsinax+ BTAlz
a
Atx=0,y=0, therefore, A= %
a’l
%:—aASinax+aBCOSax
X
Atx=1/2, d—y:O
dx
Hence, O=—¢>¢As,inﬁl+achosOl—I
2 2
ie. 0:—0{ 82A2jsin1|+ochosO{—I
a’l 2 2
from which, (%}sinﬂlz Bcosa_l
a’l 2 2
sinﬁl
and B:(82A2j 2|:(82A2)tanil
a’l” ) g ol 2
2
Hence, y= % c05ax+tana—|sinax—1
a’‘l 2
d?y 2 2p i
Now, W:_a Acosax—a“Bsinax
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2
i.e. a7y =—q? [S—A]cosocx—oc2 [S—A tan %Ijsin ax

dx? a?l? a’l?
. d’y 8A al .
i.e. — =—| — || cosax+tan—sin ax
dx | 2

Mmax OCcurs at x = 1/2

: d’y 1
l.e. Mmax: El [W—R—oj

| d’y  2x10"x6.594x10° x8A

E 2
dx 100

[0.8197 +0.6986 + 0.5727]

=1286925A

Bl 510" %6.504x10° x 22 = 1055040 A
R 100

0

2
Hence, Mmax= EI (3_2,_%] = (1286925 + 1055040)A
X

0

=231885A

53.96x10° x6.594x107°

However, Mpax = = 28465 Nm
e 12.5x102

Hence, 231885/ = 28465

from which, A =28465/231885=0.123m=12.3cm
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