CHAPTER 1 REVISIONARY MATHEMATICS

EXERCISE 1, Page 2

1. Convert the following angles to degrees correct to 3 decimal places (where necessary):

(a) 0.6 rad (b) 0.8 rad (c) 2 rad (d) 3.14159 rad

(a) 0.6 rad = 0.6 rad
$$\times \frac{180^{\circ}}{\pi \text{ rad}} = 34.377^{\circ}$$

(b) 0.8 rad = 0.8 rad $\times \frac{180^{\circ}}{\pi \text{ rad}} = 45.837^{\circ}$
(c) 2 rad = 2 rad $\times \frac{180^{\circ}}{\pi \text{ rad}} = 114.592^{\circ}$

(d) 3.14159 rad = 3.14159 rad
$$\times \frac{180^{\circ}}{\pi \text{ rad}} = 180^{\circ}$$

2. Convert the following angles to radians correct to 4 decimal places:

(a)
$$45^{\circ}$$
 (b) 90° (c) 120° (d) 180°

(a)
$$45^{\circ} = 45^{\circ} \times \frac{\pi \operatorname{rad}}{180^{\circ}} = \frac{\pi}{4} \operatorname{rad}$$
 or 0.7854 rad
(b) $90^{\circ} = 90^{\circ} \times \frac{\pi \operatorname{rad}}{180^{\circ}} \operatorname{rad} = \frac{\pi}{2} \operatorname{rad}$ or 1.5708 rad
(c) $120^{\circ} = 120^{\circ} \times \frac{\pi \operatorname{rad}}{180^{\circ}} \operatorname{rad} = \frac{2\pi}{3} \operatorname{rad}$ or 2.0944 rad
(d) $180^{\circ} = 180^{\circ} \times \frac{\pi \operatorname{rad}}{180^{\circ}} = \pi \operatorname{rad}$ or 3.1416 rad

1. Find the cosine, sine and tangent of the following angles, where appropriate each correct to 4 decimal places:

(a) 60° (b) 90° (c) 150° (d) 180° (e) 210° (f) 270° (g) 330° (h) – 30° (i) 420° (j) 450° (k) 510°

(a) $\cos 60^\circ = 0.5000$	$\sin 60^\circ = 0.8660$	$\tan 60^\circ = 1.7321$
(b) $\cos 90^\circ = 0$	$\sin 90^\circ = 1$	$\tan 90^\circ = \infty$
(c) $\cos 150^\circ = -0.8660$	sin 150° = 0.5000	tan 150° = - 0.5774
(d) $\cos 180^\circ = -1$	$\sin 180^\circ = 0$	$\tan 180^\circ = 0$
(e) $\cos 210^\circ = -$ 0.8660	sin 210° = - 0.5000	tan 210° = 0.5774
(f) $\cos 270^\circ = 0$	$\sin 270^\circ = -1$	$\tan 270^\circ = -\infty$
(g) $\cos 330^\circ = 0.8660$	sin 330° = - 0.5000	tan 330° = - 0.5774
(h) $\cos - 30^\circ = 0.8660$	$\sin - 30^\circ = -$ 0.5000	$\tan - 30^\circ = -$ 0.5774
(i) $\cos 420^\circ = 0.5000$	sin 420° = 0.8660	tan 420° = 1.7321
$(j)\cos 450^\circ = 0$	$\sin 450^\circ = 1$	$\tan 450^\circ = \infty$
(k) $\cos 510^\circ = -0.8660$	sin 510° = 0.5000	tan 510° = - 0.5774

1. If ab = 2.1 m and bc = 1.5 m, determine angle θ .

It is convenient to use the expression for tan θ , since sides ab and bc are given.

Hence, $\tan \theta = \frac{bc}{ab} = \frac{1.5}{2.1} = 0.7142857...$

from which, $\theta = \tan^{-1}(0.7142857...) = 35.54^{\circ}$

2. If ab = 2.3 m and ac = 5.0 m, determine angle θ .

It is convenient to use the expression for $\cos \theta$, since sides ab and ac are given.

Hence,

$$\cos \theta = \frac{ab}{ac} = \frac{2.3}{5.0} = 0.460$$

from which, $\theta = \cos^{-1}(0.460) = 62.61^{\circ}$

It is convenient to use the expression for $\sin \theta$, since sides bc and ac are given.

Hence,

 $\sin \theta = \frac{bc}{ac} = \frac{3.1}{6.4} = 0.484375$

from which, $\theta = \sin^{-1}(0.484375) = 28.97^{\circ}$

4. If ab = 5.7 cm and bc = 4.2 cm, determine the length ac.

From Pythagoras, $ac^2 = ab^2 + bc^2$ = 5.7² + 4.2² = 32.49 + 17.64 = 50.13

from which,

 $ac = \sqrt{50.13} = 7.08 m$

5. If ab = 4.1 m and ac = 6.2 m, determine length bc.

From Pythagoras,	$ac^2 = ab^2 + bc^2$
from which,	$bc^2 = ac^2 - ab^2$
	$= 6.2^2 - 4.1^2 = 38.44 - 16.81$
	= 21.63
from which,	$ac = \sqrt{21.63} = 4.65 m$

EXERCISE 4, Page 5

1. If b = 6 m, c = 4 m and $B = 100^{\circ}$, determine angles A and C and length a.

Using the sine rule,
$$\frac{b}{\sin B} = \frac{c}{\sin C}$$
 i.e. $\frac{6}{\sin 100^\circ} = \frac{4}{\sin C}$

from which, $\sin C = \frac{4\sin 100^{\circ}}{6} = \frac{4 \times 0.98481}{6} = 0.65654$

and

$$C = \sin^{-1}(0.65654) = 41.04^{\circ}$$

Angle, $\mathbf{A} = 180^{\circ} - 100^{\circ} - 41.04^{\circ} = \mathbf{38.96^{\circ}}$

Using the sine rule again gives: $\frac{a}{\sin A} = \frac{b}{\sin B}$ i.e. $\mathbf{a} = \frac{b \sin A}{\sin B} = \frac{6 \times \sin 38.96^{\circ}}{\sin 100^{\circ}} = 3.83 \text{ m}$

2. If a = 15 m, c = 23 m and $B = 67^{\circ}$, determine length b and angles A and C.

From the cosine rule, $b^2 = a^2 + c^2 - 2ac \cos B$

 $= 15^2 + 23^2 - 2 \times 15 \times 23 \times \cos 67^\circ$

$$= 225 + 529 - 2(15)(23)\cos 67^{\circ}$$

= 484.3955

Hence,

length, b = $\sqrt{484.3955}$ = 22.01 m

Using the sine rule: $\frac{b}{\sin B} = \frac{c}{\sin C}$ i.e. $\frac{22.01}{\sin 67^{\circ}} = \frac{23}{\sin C}$

from which,

 $22.01 \sin C = 23 \sin 67^{\circ}$

and

nd
$$\sin C = \frac{23\sin 67^{\circ}}{22.01} = 0.96191$$

and

 $C = \sin^{-1}(0.96191) = 74.14^{\circ}$

Since $A + B + C = 180^{\circ}$, then $A = 180^{\circ} - B - C = 180^{\circ} - 67^{\circ} - 74.14^{\circ} = 38.86^{\circ}$

3. If a = 4 m, b = 8 m and c = 6 m, determine angle A.

Applying the cosine rule: $a^2 = b^2 + c^2 - 2bc \cos A$

from which, $2bc \cos A = b^2 + c^2 - a^2$

 $\cos A = \frac{b^2 + c^2 - a^2}{2bc} = \frac{8^2 + 6^2 - 4^2}{2(8)(6)} = 0.875$

Hence,

and

 $A = \cos^{-1} 0.875 = 28.96^{\circ}$

4. If a = 10.0 cm, b = 8.0 cm and c = 7.0 cm, determine angles A, B and C.

Applying the cosine rule: $a^2 = b^2 + c^2 - 2bc \cos A$

from which, $2bc \cos A = b^2 + c^2 - a^2$

$$\cos A = \frac{b^2 + c^2 - a^2}{2bc} = \frac{8.0^2 + 7.0^2 - 10.0^2}{2(8.0)(7.0)} = 0.11607$$

Hence,

and

$$\mathbf{A} = \cos^{-1} 0.11607 = \mathbf{83.33^{\circ}}$$

Applying the sine rule:	$\frac{10.0}{\sin 83.33^{\circ}} = \frac{8.0}{\sin B}$
from which,	$\sin \mathbf{B} = \frac{8.0 \sin 83.33^{\circ}}{10.0} = 0.794585$
Hence,	$\mathbf{B} = \sin^{-1} 0.794585 = \mathbf{52.62^{\circ}}$
and	$C = 180^{\circ} - 83.33^{\circ} - 52.62^{\circ} = 44.05^{\circ}$

5. PR represents the inclined jib of a crane and is 10.0 m long. PQ is 4.0 m long. Determine the inclination of the jib to the vertical (i.e. angle P) and the length of tie QR.

Applying the sine rule: $\frac{1}{\sin^2 2}$

$$\frac{PR}{\sin 120^\circ} = \frac{PQ}{\sin R}$$

from which, $\sin R = \frac{PQ \sin 120^{\circ}}{PR} = \frac{(4.0) \sin 120^{\circ}}{10.0} = 0.3464$

Hence, $\angle R = \sin^{-1} 0.3464 = 20.27^{\circ}$ (or 159.73°, which is not possible)

 $\angle P = 180^{\circ} - 120^{\circ} - 20.27^{\circ} = 39.73^{\circ}$, which is the inclination of the jib to the vertical.

Applying the sine rule: $\frac{10.0}{\sin 120^\circ} = \frac{QR}{\sin 39.73^\circ}$

from which, length of tie, $\mathbf{QR} = \frac{10.0 \sin 39.73^{\circ}}{\sin 120^{\circ}} = 7.38 \text{ m}$

EXERCISE 5, Page 6

1. Show that: (a)
$$\sin\left(x + \frac{\pi}{3}\right) + \sin\left(x + \frac{2\pi}{3}\right) = \sqrt{3} \cos x$$

and (b) $-\sin\left(\frac{3\pi}{2} - \phi\right) = \cos \phi$

(a) LHS =
$$\sin\left(x + \frac{\pi}{3}\right) + \sin\left(x + \frac{2\pi}{3}\right)$$

= $\left(\sin x \cos \frac{\pi}{3} + \cos x \sin \frac{\pi}{3}\right) + \left(\sin x \cos \frac{2\pi}{3} + \cos x \sin \frac{2\pi}{3}\right)$ from compound angle formulae
= $\sin x \left(\frac{1}{2}\right) + \cos x \left(\frac{\sqrt{3}}{2}\right) + \sin x \left(-\frac{1}{2}\right) + \cos x \left(\frac{\sqrt{3}}{2}\right)$ by calculator
= $\cos x \left(\frac{\sqrt{3}}{2}\right) + \cos x \left(\frac{\sqrt{3}}{2}\right)$
= $\sqrt{3} \cos x = \text{RHS}$

(b) LHS =
$$-\sin\left(\frac{3\pi}{2} - \phi\right) = -\left[\sin\frac{3\pi}{2}\cos\phi - \cos\frac{3\pi}{2}\sin\phi\right]$$
 from compound angle formulae
= $-\left[(-1)\cos\phi - (0)\sin\phi\right]$
= $\cos\phi = \text{RHS}$

2. Prove that: (a)
$$\sin\left(\theta + \frac{\pi}{4}\right) - \sin\left(\theta - \frac{3\pi}{4}\right) = \sqrt{2} (\sin\theta + \cos\theta)$$

and (b) $\frac{\cos(270^\circ + \theta)}{\cos(360^\circ - \theta)} = \tan\theta$

(a) L.H.S.
$$= \sin\left(\theta + \frac{\pi}{4}\right) - \sin\left(\theta - \frac{3\pi}{4}\right) = \left(\sin\theta\cos\frac{\pi}{4} + \cos\theta\sin\frac{\pi}{4}\right) - \left(\sin\theta\cos\frac{3\pi}{4} - \cos\theta\sin\frac{3\pi}{4}\right)$$

 $= \left[\sin\theta\left(\frac{1}{\sqrt{2}}\right) + \cos\theta\left(\frac{1}{\sqrt{2}}\right)\right] - \left[\sin\theta\left(-\frac{1}{\sqrt{2}}\right) - \cos\theta\left(\frac{1}{\sqrt{2}}\right)\right]$
 $= \frac{1}{\sqrt{2}}\left[\sin\theta + \cos\theta + \sin\theta + \cos\theta\right] = \frac{2}{\sqrt{2}}\left(\sin\theta + \cos\theta\right)$

 $=\sqrt{2}(\sin\theta+\cos\theta)=$ R.H.S.

The diagram below shows an isosceles triangle where AB = BC = 1 and angles A and C are both

45°. By Pythagoras, AC = $\sqrt{1^2 + 1^2} = \sqrt{2}$. Hence, $\sin \frac{\pi}{4} = \sin 45^\circ = \cos 45^\circ = \frac{1}{\sqrt{2}}$.

(b) L.H.S. =
$$\frac{\cos(270^\circ + \theta)}{\cos(360^\circ - \theta)} = \frac{\cos 270^\circ \cos \theta - \sin 270^\circ \sin \theta}{\cos 360^\circ \cos \theta + \sin 360^\circ \sin \theta} = \frac{0 - (-1)\sin \theta}{(1)\cos \theta + 0}$$

$$=\frac{\sin\theta}{\cos\theta}=\tan\theta=\text{R.H.S.}$$

3. Prove the following identities: (a) $1 - \frac{\cos 2\phi}{\cos^2 \phi} = \tan^2 \phi$ (b) $\frac{1 + \cos 2t}{\sin^2 t} = 2 \cot^2 t$ (c) $\frac{(\tan 2x)(1 + \tan x)}{\tan x} = \frac{2}{1 - \tan x}$ (d) $2 \csc 2\theta \csc 2\theta = \cot \theta - \tan \theta$

(a) L.H.S. =
$$1 - \frac{\cos 2\phi}{\cos^2 \phi} = 1 - \left(\frac{\cos^2 \phi - \sin^2 \phi}{\cos^2 \phi}\right) = 1 - \left(\frac{\cos^2 \phi}{\cos^2 \phi} - \frac{\sin^2 \phi}{\cos^2 \phi}\right)$$

= $1 - \left(1 - \tan^2 \phi\right) = \tan^2 \phi = \text{R.H.S.}$

(b) L.H.S. =
$$\frac{1 + \cos 2t}{\sin^2 t} = \frac{1 + (2\cos^2 t - 1)}{\sin^2 t} = \frac{2\cos^2 t}{\sin^2 t} = 2\cot^2 t = \text{R.H.S.}$$

(c) L.H.S. =
$$\frac{(\tan 2x)(1 + \tan x)}{\tan x} = \frac{(\frac{2\tan x}{1 - \tan^2 x})(1 + \tan x)}{\tan x} = \frac{\frac{(2\tan x)(1 + \tan x)}{(1 - \tan x)(1 + \tan x)}}{\tan x}$$

$$= \frac{\frac{2 \tan x}{(1 - \tan x)}}{\tan x} = \frac{2 \tan x}{\tan x (1 - \tan x)} = \frac{2}{1 - \tan x} = \text{R.H.S}$$

(d) L.H.S. = 2 cosec
$$2\theta \cos 2\theta = \left(\frac{2}{\sin 2\theta}\right)(\cos 2\theta) = 2 \cot 2\theta = \frac{2}{\tan 2\theta} = \frac{2}{\frac{2 \tan \theta}{1 - \tan^2 \theta}}$$

$$=\frac{2(1-\tan^2\theta)}{2\tan\theta}=\frac{1-\tan^2\theta}{\tan\theta}=\frac{1}{\tan\theta}-\tan\theta=\cot\theta-\tan\theta=\text{R.H.S.}$$

4. Express as a sum or difference: 2 sin 7t cos 2t

$$\sin 7t \cos 2t = \frac{1}{2} \left[\sin(7t + 2t) + \sin(7t - 2t) \right]$$

Hence, $2 \sin 7t \cos 2t = [\sin 9t + \sin 5t]$

5. Express as a sum or difference: $4 \cos 8x \sin 2x$

$$\cos 8x \sin 2x = \frac{1}{2} [\sin(8x + 2x) - \sin(8x - 2x)]$$

Hence, $4 \cos 8x \sin 2x = 2[\sin 10x - \sin 6x]$

6. Express as a sum or difference: 2 sin 7t sin 3t

2 sin 7t sin 3t =
$$(2)\left(-\frac{1}{2}\right)\left[\cos(7t+3t) - \cos(7t-3t)\right]$$

= -[cos10t - cos4t] or cos4t - cos 10t

7. Express as a sum or difference: $6 \cos 3\theta \cos \theta$

$$6\cos 3\theta\cos\theta = 6\left\{\frac{1}{2}\left[\cos(3\theta+\theta)+\cos(3\theta-\theta)\right]\right\}$$

$$= 3[\cos 4\theta + \cos 2\theta]$$

8. Express as a product: $\sin 3x + \sin x$

 $\sin 3x + \sin x = 2\sin\left(\frac{3x+x}{2}\right)\cos\left(\frac{3x-x}{2}\right)$

9. Express as a product:
$$\frac{1}{2}(\sin 9\theta - \sin 7\theta)$$

$$\frac{1}{2}(\sin 9\theta - \sin 7\theta) = \frac{1}{2}(2)\cos\left(\frac{9\theta + 7\theta}{2}\right)\sin\left(\frac{9\theta - 7\theta}{2}\right)$$

 $=\cos 8\theta \sin \theta$

10. Express as a product: $\cos 5t + \cos 3t$

$$\cos 5t + \cos 3t = 2\cos\left(\frac{5t+3t}{2}\right)\cos\left(\frac{5t-3t}{2}\right)$$

 $= 2 \cos 4t \cos t$

1. Evaluate A given A = 3(2 + 1 + 4)

 $A = 3(2 + 1 + 4) = 3(7) = 3 \times 7 = 21$

2. Evaluate A given A = 4[5(2+1) - 3(6-7)]

$$A = 4[5(2 + 1) - 3(6 - 7] = 4[5(3) - 3(-1)]$$
$$= 4[15 + 3] = 4[18]$$
$$= 4 \times 18 = 72$$

3. Expand the brackets: 2(x - 2y + 3)

2(x - 2y + 3) = 2(x) - 2(2y) + 2(3)

= 2x - 4y + 6

4. Expand the brackets: (3x - 4y) + 3(y - z) - (z - 4x)

(3x - 4y) + 3(y - z) - (z - 4x) = 3x - 4y + 3y - 3z - z + 4x= 3x + 4x - 4y + 3y - 3z - z

=7x-y-4z

5. Expand the brackets: 2x + [y - (2x + y)]

2x + [y - (2x + y)] = 2x + [y - 2x - y]

$$= 2x + [-2x] = 2x - 2x = 0$$

6. Expand the brackets: $24a - [2{3(5a - b) - 2(a + 2b)} + 3b]$

 $24a - [2\{3(5a - b) - 2(a + 2b)\} + 3b] = 24a - [2\{15a - 3b - 2a - 4b\} + 3b]$

7. Expand the brackets: $ab[c + d - e(f - g + h\{i + j\})]$

 $ab[c+d-e(f-g+h\{i+j\})]=ab[c+d-e(f-g+hi+hj)]$

$$=ab[c+d-ef+eg-ehi-ehj]$$

$$=$$
 abc + abd - abef + abeg - abehi - abehj

1. Evaluate $\frac{1}{3} + \frac{1}{4}$

A common denominator can be obtained by multiplying the two denominators together, i.e. the common denominator is $3 \times 4 = 12$.

The two fractions can now be made equivalent, i.e. $\frac{1}{3} = \frac{4}{12}$ and $\frac{1}{4} = \frac{3}{12}$ so that they can be easily added together, as follows: $\frac{1}{3} + \frac{1}{4} = \frac{4}{12} + \frac{3}{12} = \frac{4+3}{12} = \frac{7}{12}$

2. Evaluate $\frac{1}{5} + \frac{1}{4}$

A common denominator can be obtained by multiplying the two denominators together, i.e. the common denominator is $5 \times 4 = 20$.

The two fractions can now be made equivalent, i.e. $\frac{1}{5} = \frac{4}{20}$ and $\frac{1}{4} = \frac{5}{20}$ so that they can be easily added together, as follows: $\frac{1}{5} + \frac{1}{4} = \frac{4}{20} + \frac{5}{20} = \frac{4+5}{20} = \frac{9}{20}$

3. Evaluate $\frac{1}{6} + \frac{1}{2} - \frac{1}{5}$

 $\frac{1}{6} + \frac{1}{2} - \frac{1}{5} = \frac{5 + 15 - 6}{30} = \frac{14}{30} = \frac{7}{15}$

4. Use a calculator to evaluate $\frac{1}{3} - \frac{3}{4} \times \frac{8}{21}$

 $\frac{1}{3} - \frac{3}{4} \times \frac{8}{21} = \frac{1}{3} - \frac{1}{1} \times \frac{2}{7}$ by cancelling $= \frac{1}{3} - \frac{2}{7} = \frac{7 - 6}{21} = \frac{1}{21}$ **5.** Use a calculator to evaluate $\frac{3}{4} \times \frac{4}{5} - \frac{2}{3} \div \frac{4}{9}$

 $\frac{3}{4} \times \frac{4}{5} - \frac{2}{3} \div \frac{4}{9} = \frac{3}{1} \times \frac{1}{5} - \frac{2}{3} \times \frac{9}{4}$

$$=\frac{3}{1}\times\frac{1}{5}-\frac{1}{1}\times\frac{3}{2}=\frac{3}{5}-\frac{3}{2}=\frac{6-15}{10}=-\frac{9}{10}$$

6. Evaluate $\frac{3}{8} + \frac{5}{6} - \frac{1}{2}$ as a decimal, correct to 4 decimal places.

 $\frac{3}{8} + \frac{5}{6} - \frac{1}{2} = \frac{9 + 20 - 12}{24} = \frac{17}{24} = 0.7083$ correct to 4 decimal places

7. Evaluate $8\frac{8}{9} \div 2\frac{2}{3}$ as a mixed number.

 $8\frac{8}{9} \div 2\frac{2}{3} = \frac{80}{9} \div \frac{8}{3} = \frac{80}{9} \times \frac{3}{8} = \frac{10}{3} \times \frac{1}{1} = \frac{10}{3} = 3\frac{1}{3}$

8. Evaluate $3\frac{1}{5} \times 1\frac{1}{3} - 1\frac{7}{10}$ as a decimal, correct to 3 decimal places.

 $3\frac{1}{5} \times 1\frac{1}{3} - 1\frac{7}{10} = \frac{16}{5} \times \frac{4}{3} - \frac{17}{10} = \frac{64}{15} - \frac{17}{10}$

 $=\frac{128-51}{30}=\frac{77}{30}=2\frac{17}{30}=2.567$ correct to 3 decimal places

9. Determine $\frac{2}{x} + \frac{3}{y}$ as a single fraction.

 $\frac{2}{x} = \frac{2y}{xy} \quad \text{and} \quad \frac{3}{y} = \frac{3x}{xy}$ Hence, $\frac{2}{x} + \frac{3}{y} = \frac{2y}{xy} + \frac{3x}{xy} = \frac{2y + 3x}{xy} \text{ or } \frac{3x + 2y}{xy}$

1. Express 0.057 as a percentage.

 $0.057 = 0.057 \times 100\% = 5.7\%$

2. Express 0.374 as a percentage.

 $0.374 = 0.374 \times 100\% = 37.4\%$

3. Express 20% as a decimal number.

$$20\% = \frac{20}{100} = 0.20$$

4. Express $\frac{11}{16}$ as a percentage.

$$\frac{11}{16} = \frac{11}{16} \times 100\% = \frac{1100}{16}\% = 68.75\%$$

5. Express $\frac{5}{13}$ as a percentage, correct to 3 decimal places.

 $\frac{5}{13} = \frac{5}{13} \times 100\% = \frac{500}{13}\% = 38.461538...$ by calculator = **38.462%** correct to 3 decimal places

6. Place the following in order of size, the smallest first, expressing each as percentages, correct to 1 decimal place: (a) $\frac{12}{21}$ (b) $\frac{9}{17}$ (c) $\frac{5}{9}$ (d) $\frac{6}{11}$

(a)
$$\frac{12}{21} = \frac{12}{21} \times 100\% = \frac{1200}{21}\% = 57.1\%$$
 (b) $\frac{9}{17} = \frac{9}{17} \times 100\% = \frac{900}{17}\% = 52.9\%$

(c)
$$\frac{5}{9} = \frac{5}{9} \times 100\% = \frac{500}{9}\% = 55.6\%$$
 (d) $\frac{6}{11} = \frac{6}{11} \times 100\% = \frac{600}{11}\% = 54.6\%$

Placing them in order of size, the smallest first, gives: (b), (d), (c) and (a)

7. Express 65% as a fraction in its simplest form.

 $65\% = \frac{65}{100}$ and by dividing the numerator and denominator by 5 gives: $65\% = \frac{65}{100} = \frac{13}{20}$

8. Calculate 43.6% of 50 kg.

43.6% of 50 kg =
$$\frac{43.6}{100} \times 50$$
 kg = **21.8 kg**

9. Determine 36% of 27 m.

36% of 27 m =
$$\frac{36}{100}$$
 × 27 m = **9.72 m**

10. Calculate correct to 4 significant figures:(a) 18% of 2758 tonnes(b) 47% of 18.42 grams(c) 147% of 14.1 seconds

(a) 18% of 2758 t =
$$\frac{18}{100} \times 2758$$
 t= **496.4** t
(b) 47% of 18.42 g = $\frac{47}{100} \times 18.42$ g = **8.657** g
(c) 147% of 14.1 s = $\frac{147}{100} \times 14.1$ s = **20.73** s

11. Express: (a) 140 kg as a percentage of 1 t (b) 47 s as a percentage of 5 min

(c) 13.4 cm as a percentage of 2.5 m

It is essential when expressing one quantity as a percentage of another that both quantities are in the same units.

(a) 1 tonne = 1000 kg, hence 140 kg as a percentage of 1 t = $\frac{140}{1000} \times 100\% = 14\%$

(b) 5 minutes = $5 \times 60 = 300$ s, hence 47 s as a percentage of 5 minutes = $\frac{47}{300} \times 100\% = 15.67\%$

(c) 2.5 m = $2.5 \times 100 = 250$ cm, hence 13.4 cm as a percentage of 2.5 m = $\frac{13.4}{250} \times 100\% = 5.36\%$

12. A computer is advertised on the Internet at £520, exclusive of VAT. If VAT is payable at 20%, what is the total cost of the computer?

VAT = 20% of $\pounds 520 = \frac{20}{100} \times 520 = \pounds 104$

Total cost of computer = $\pounds 520 + \pounds 104 = \pounds 624$

13. Express 325 mm as a percentage of 867 mm, correct to 2 decimal places.

325 mm as a percentage of 867 mm = $\frac{325}{867} \times 100\%$ = **37.49%**

14. When signing a new contract, a Premiership footballer's pay increases from £15,500 to £21,500 per week. Calculate the percentage pay increase, correct to 3 significant figures.

Percentage change is given by: $\frac{\text{new value} - \text{original value}}{\text{original value}} \times 100\%$

i.e.

% increase = $\frac{21500 - 15500}{15500} \times 100\% = \frac{6000}{15500} \times 100\% = 38.7\%$

15. A metal rod 1.80 m long is heated and its length expands by 48.6 mm. Calculate the percentage increase in length.

% increase = $\frac{48.6}{1.80 \times 1000} \times 100\% = \frac{48.6}{1800} \times 100\% = 2.7\%$

1. Evaluate $2^2 \times 2 \times 2^4$
$2^2 \times 2 \times 2^4 = 2^{2+1+4} = 2^7$ by law 1 of indices
= 128
2. Evaluate $3^5 \times 3^3 \times 3$ in index form.
$3^5 \times 3^3 \times 3 = 3^{5+3+1} = 3^9$ by law 1 of indices
3. Evaluate $\frac{2^7}{2^3}$
$\frac{2^7}{2^3} = 2^{7-3} = 2^4$ by law 2 of indices
= 10
4. Evaluate $\frac{3^3}{3^5}$
$\frac{3^3}{3^5} = 3^{3-5} = 3^{-2}$ by law 2 of indices
$=\frac{1}{3^2}$ by law 5 of indices
$=rac{1}{9}$
5. Evaluate 7^0
$7^0 = 1$ by law 4 of indices

6. Evaluate $\frac{2^3 \times 2 \times 2^6}{2^7}$

 $\frac{2^3 \times 2 \times 2^6}{2^7} = \frac{2^{3+1+6}}{2^7} = \frac{2^{10}}{2^7} = 2^{10-7} = 2^3 = \mathbf{8} \qquad \text{by laws 1 and 2 of indices}$

7. Evaluate $\frac{10 \times 10^6}{10^5}$

 $\frac{10 \times 10^6}{10^5} = 10^{1+6-5} = 10^2 = 100$ by laws 1 and 2 of indices

8. Evaluate $10^4 \div 10$

 $10^4 \div 10 = \frac{10^4}{10^1} = 10^{4-1} = 10^3 = 1000$ by law 2 of indices

9. Evaluate $\frac{10^3 \times 10^4}{10^9}$

 $\frac{10^3 \times 10^4}{10^9} = 10^{3+4-9} = 10^{-2} = \frac{1}{10^2} = \frac{1}{100} = 0.01$ by law 2 of indices

10. Evaluate $5^6 \times 5^2 \div 5^7$

 $5^6 \times 5^2 \div 5^7 = \frac{5^6 \times 5^2}{5^7} = 5^{6+2-7} = 5^1 = 5$ by laws 1 and 2 of indices

11. Evaluate $(7^2)^3$ in index form.

 $(7^2)^3 = 7^{2\times 3} = 7^6$ by law 3 of indices

12. Evaluate $(3^3)^2$

 $(3^3)^2 = 3^{3\times 2} = 3^6 = 3 \times 3 \times 3 \times 3 \times 3 \times 3 = 729$

13. Evaluate
$$\frac{3^7 \times 3^4}{3^5}$$
 in index form.

$$\frac{3^7 \times 3^4}{3^5} = 3^{7+4-5} = 3^6$$
 by laws 1 and 2 of indices

14. Evaluate
$$\frac{(9 \times 3^2)^3}{(3 \times 27)^2}$$
 in index form.

 $\frac{(9\times3^2)^3}{(3\times27)^2} = \frac{\left(3^2\times3^2\right)^3}{\left(3\times3^3\right)^2} = \frac{\left(3^4\right)^3}{\left(3^4\right)^2} = \frac{3^{12}}{3^8} = 3^{12-8} = 3^4 \text{ by laws 1, 2 and 3 of indices}$

15. Evaluate $\frac{(16 \times 4)^2}{(2 \times 8)^3}$

$$\frac{(16\times4)^2}{(2\times8)^3} = \frac{(2^4\times2^2)^2}{(2\times2^3)^3} = \frac{(2^6)^2}{(2^4)^3} = \frac{2^{12}}{2^{12}} = \mathbf{1}$$
 by laws 1, 2 and 3 of indices

16. Evaluate $\frac{5^{-2}}{5^{-4}}$

 $\frac{5^{-2}}{5^{-4}} = 5^{-2-(-4)} = 5^{-2+4} = 5^2 = 25$ by law 2 of indices

17. Evaluate $\frac{3^2 \times 3^{-4}}{3^3}$

 $\frac{3^2 \times 3^{-4}}{3^3} = 3^{2+-4-3} = 3^{2-4-3} = 3^{-5} = \frac{1}{3^5} = \frac{1}{243}$ by laws 1, 2 and 5 of indices

18. Evaluate $\frac{7^2 \times 7^{-3}}{7 \times 7^{-4}}$

 $\frac{7^2 \times 7^{-3}}{7 \times 7^{-4}} = \frac{7^{2-3}}{7^{1-4}} = \frac{7^{-1}}{7^{-3}} = 7^{-1-3} = 7^{-1+3} = 7^2 = 49$ by laws 1 and 2 of indices

19. Simplify, giving the answer as a power: $z^2 \times z^6$

 $z^2 \times z^6 = z^{2+6} = z^8$ by law 1 of indices

20. Simplify, giving the answer as a power: $a \times a^2 \times a^5$

 $a \times a^2 \times a^5 = a^{1+2+5} = a^8$ by law 1 of indices

21. Simplify, giving the answer as a power: $n^8 \times n^{-5}$

 $n^8 \times n^{-5} = n^{8-5} = n^3$ by law 1 of indices

22. Simplify, giving the answer as a power: $b^4 \times b^7$

 $\mathbf{b}^4 \times \mathbf{b}^7 = \mathbf{b}^{4+7} = \mathbf{b}^{11}$ by law 1 of indices

23. Simplify, giving the answer as a power: $b^2 \div b^5$

 $b^2 \div b^5 = \frac{b^2}{b^5} = b^{2-5} = b^{-3}$ or $\frac{1}{b^3}$ by laws 2 and 5 of indices

24. Simplify, giving the answer as a power: $c^5 \times c^3 \div c^4$

 $c^5 \times c^3 \div c^4 = \frac{c^5 \times c^3}{c^4} = \frac{c^{5+3}}{c^4} = \frac{c^8}{c^4} = c^{8-4} = c^4$ by laws 1 and 2 of indices

25. Simplify, giving the answer as a power: $\frac{\text{m}^5 \times \text{m}^6}{\text{m}^4 \times \text{m}^3}$

 $\frac{m^5 \times m^6}{m^4 \times m^3} = \frac{m^{5+6}}{m^{4+3}} = \frac{m^{11}}{m^7} = m^{11-7} = \mathbf{m^4} \qquad \text{by laws 1 and 2 of indices}$

26. Simplify, giving the answer as a power: $\frac{(x^2)(x)}{x^6}$

 $\frac{(x^2)(x)}{x^6} = \frac{x^{2+1}}{x^6} = \frac{x^3}{x^6} = x^{-3} \text{ or } \frac{1}{x^3} \text{ by laws 1, 2 and 5 of indices}$

27. Simplify, giving the answer as a power: $(x^3)^4$

 $(x^3)^4 = x^{3\times 4} = x^{12}$ by law 3 of indices

28. Simplify, giving the answer as a power: $(y^2)^{-3}$

 $(y^2)^{-3} = y^{2x-3} = y^{-6}$ or $\frac{1}{v^6}$ by laws 3 and 5 of indices

29. Simplify, giving the answer as a power: $(t \times t^3)^2$

 $(t \times t^3)^2 = (t^{1+3})^2 = (t^4)^2 = t^8$ by laws 1 and 3 of indices

30. Simplify, giving the answer as a power: $(c^{-7})^{-2}$

 $(c^{-7})^{-2} = c^{-7 \times -2} = c^{14}$ by law 3 of indices

31. Simplify, giving the answer as a power: $\left(\frac{a^2}{a^5}\right)^3$

 $\left(\frac{a^2}{a^5}\right)^3 = \left(a^{2-5}\right)^3 = \left(a^{-3}\right)^3 = a^{-9}$ or $\frac{1}{a^9}$ by laws 3 and 5 of indices

$$\left(\frac{1}{b^3}\right)^4$$

 $\left(\frac{1}{\mathbf{b}^3}\right)^4 = \left(\mathbf{b}^{-3}\right)^4 = \mathbf{b}^{-12}$ or $\frac{1}{\mathbf{b}^{12}}$ by laws 3 and 4 of indices

33. Simplify, giving the answer as a power:

$$\left(\frac{b^2}{b^7}\right)^{-2}$$

$$\left(\frac{b^2}{b^7}\right)^{-2} = \left(b^{2-7}\right)^{-2} = \left(b^{-5}\right)^{-2} = b^{10}$$
 by laws 2 and of indices

34. Simplify, giving the answer as a power: $\frac{1}{(s^3)^3}$

 $\frac{1}{\left(s^{3}\right)^{3}} = \frac{1}{s^{3\times3}} = \frac{1}{s^{9}} \text{ or } s^{-9} \text{ by laws 3 and 5 of indices}$

35. Simplify, giving the answer as a power: $p^3qr^2 \times p^2q^5r \times pqr^2$

$$p^{3}qr^{2} \times p^{2}q^{5}r \times pqr^{2} = p^{3+2+1} \times q^{1+5+1} \times r^{2+1+2} = p^{6} \times q^{7} \times r^{5} = p^{6}q^{7}r^{5}$$

36. Simplify, giving the answer as a power: $\frac{x^3y^2z}{x^5yz^3}$

$$\frac{x^3 y^2 z}{x^5 y z^3} = x^{3-5} y^{2-1} z^{1-3} = x^{-2} y z^{-2} \text{ or } \frac{y}{x^2 z^2}$$

1. If 5 apples and 3 bananas cost \pounds 1.45 and 4 apples and 6 bananas cost \pounds 2.42, determine how much an apple and a banana each cost.

Let an apple = A and a banana = B, then:

	5A + 3B = 145	(1)	
	4A + 6B = 242	(2)	
From equation (1),	5A = 145 - 3B		
and	$A = \frac{145 - 3B}{5}$	= 29 – 0.6B	(3)
From equation (2),	4A = 242 - 6B		
and	$A = \frac{242 - 6B}{4}$	= 60.5 - 1.5B	(4)
Equating (3) and (4) g	gives:	29 - 0.6B = 60.5	– 1.5B
i.e.		1.5B - 0.6B = 60.5 -	- 29

and 0.9B = 31.5

and

Substituting in (3) gives: A = 29 - 0.6(35) = 29 - 21 = 8

Hence, an apple costs 8p and a banana costs 35p

2. If 7 apples and 4 oranges cost £2.64 and 3 apples and 3 oranges cost £1.35, determine how much an apple and an orange each cost.

Let an apple = A and an orange = R, then:

$$7A + 4R = 264$$
 (1)

 $B = \frac{31.5}{0.9} = 35$

$$3A + 3R = 135$$
 (2)

Multiplying equation (1) by 3 gives: 21A + 12R = 792 (3)

Multiplying equation (2) by 4 gives	: $12A + 12R = 540$	(4)
Equation (3) – equations (4) gives:	9A = 252	
from which,	$A = \frac{252}{9} = 28$	
Substituting in (3) gives:	21(28) + 12R = 792	
i.e.	12R = 792 - 21(28)	
i.e.	12R = 204	
and	$B = \frac{204}{12} = 17$	

Hence, an apple costs 28p and an orange costs 17p

3. Three new cars and four new vans supplied to a dealer together cost £93000, and five new cars and two new vans of the same models cost £99000. Find the respective costs of a car and a van.

Let a car = C and a van = V, then working in $\pounds 1000$'s:

	3C + 4V = 93	(1)
	5C + 2V = 99	(2)
Multiplying equation (2) by 2 gives:	10C + 4V = 198	(3)
Equation (3) – equations (1) gives:	7 C = 105	
from which,	$C = \frac{105}{7} = 15$	
Substituting in (1) gives:	3(15) + 4V = 93	
i.e.	4V = 93 - 3(15)	
i.e.	$4\mathbf{V} = 48$	
and	$V = \frac{48}{4} = 12$	

Hence, a car costs £15000 and a van costs £12000

4. In a system of forces, the relationship between two forces F_1 and F_2 is given by: $5F_1 + 3F_2 = -6$ $3F_1 + 5F_2 = -18$ Solve for \mathbf{F}_1 and \mathbf{F}_2 $5F_1 + 3F_2 = -6$ (1) $3F_1 + 5F_2 = -18$ (2) $25F_1 + 15F_2 = -30$ Multiplying equation (1) by 5 gives: (3) $9F_1 + 15F_2 = -54$ Multiplying equation (2) by 3 gives: (4) $16F_1 = -30 - 54 = -30 + 54 = 24$ Equation (3) – equation (4) gives: $F_1 = \frac{24}{16} = 1.5$ from which, Substituting in (1) gives: $5(1.5) + 3F_2 = -6$ $3F_2 = -6 - 5(1.5)$ i.e. $3F_2 = -13.5$ i.e. $F_2 = \frac{-13.5}{3} = -4.5$ and

Hence, $\mathbf{F}_1 = \mathbf{1.5}$ and $\mathbf{F}_2 = -4.5$

5. Solve the simultaneous equations:	a + b = 7 $a - b = 3$		
	a + b = 7	(1)	
	a - b = 3	(2)	
Adding equations (1) and (2) gives:	2a = 10		
from which,	$a = \frac{10}{2} = 5$		

Substituting in (1) gives:	5 + b = 7
i.e.	b = 7 - 5 = 2

Hence, $\mathbf{a} = \mathbf{5}$ and $\mathbf{b} = \mathbf{2}$

6. Solve the simultaneous equations:	8a - 3b = 51 $3a + 4b = 14$	
	8a - 3b = 51	(1)
	3a + 4b = 14	(2)
Multiplying equation (1) by 4 gives:	32a - 12b = 204	(3)
Multiplying equation (2) by 3 gives:	9a + 12b = 42	(4)
Equation (3) + equations (4) gives:	41a = 246	
from which,	$a = \frac{246}{41} = 6$	
Substituting in (1) gives:	48 - 3b = 51	
i.e.	48 - 51 = 3b	
i.e.	-3 = 3b	
and	b = - 1	
Hence, $\mathbf{a} = 6$ and $\mathbf{b} = -1$		