

Chapter 9

One-Way Between Groups ANOVA

Analysis of Variance (ANOVA)

Two Levels

One Independent Variable (X) Three Levels

One Independent Variable (X) > Two Levels

One-way ANOVA

Why not "multiple " t-tests? A vs. B; A vs. C; B vs. C

Increased (inflated) Type I error (α).

Partition the variance (ANOVA): Between Group means Within the cells

One Independent Variable (X) Three Levels

С

В

Α

$$H_{0}: \ \mu_{1} = \mu_{2} = \mu_{3} = \dots = \mu_{N}$$
$$H_{1}: \ \mu_{1} \neq \mu_{2} \neq \mu_{3} = \dots \neq \mu_{N}$$

Statistics IN HUMAN PERFORMANCE

One-way ANOVA

One-way ANOVA

Statistics IN HUMAN PERFORMANCE

One Independent Variable (X) Three Levels

Assumptions Normality Homogeneity of variance Continuous measurement Independent observations

Statistics IN HUMAN PERFORMANCE

Source of Variation	Sum of Squares (SS)	Degrees of Freedom (df)	Mean Squares (MS)	F-ratio
Between Groups	SS _B	J - 1	SS _B /df _B	MS _B /MS _W
Within Groups	SS _w	N - J	SS _w /df _w	
Total		N - 1		

If Null is TRUE then F-ratio is expected to be = 1.0.

If Null is NOT TRUE then F-ratio is expected to be > 1.0.

BUT....is it "significantly larger"?

SPSS One-way ANOVA

One-way ANOVA

One Independent Variable (X) Four Levels

Independent Variable (X) Levels

- A = Pedometer Only
- **B** = Pedometer and Written Support
- **C** = Pedometer and Personal Support
- D = Pedometer, Personal, and Computer Support

Dependent Variable (Y) is Steps per Week

$$H_{o}: \mu_{A} = \mu_{B} = \mu_{C} = \mu_{D}$$
$$H_{1}: \mu_{A} \neq \mu_{B} \neq \mu_{C} \neq \mu_{D}$$

200 - 4 = 196

200 - 1 = 199

SSw

Within Groups

Total

SS_w/df_w

SPSS ANOVA Output

Steps Per Week (Nearest 1000)

	И	Mean	Std. Deviation
Pedometer Only	50	31420.00	9994.059
Pedometer and Written Support	50	36820.00	13745.040
Pedometer and Personal Support	50	42080.00	15891.006
Pedometer, Personal and Computer Support	50	50660.00	18736.857
Total	200	40245.00	16442.407

ANOVA

INTRODUCTION TO Statistics IN HUMAN PERFORMANCE

Steps Per Week (Nearest 1000)

	Sum of Squares	df	Mean Square	F	Sig.
Between Groups	10072535000.0	3	3357511667	15.049	.000
Within Groups	43727660000.0	196	223100306.1		
Total	53800195000.0	199			

Reject H_o at α < .001