A Lithics Handbook
Mesolithic Deeside presents

A basic guide to identifying and recording prehistoric flint* tools

*other types of stone are flaked for example quartz, quartzite, tuff, pitchstone, rhyolite etc and you can use this guide for these materials too

This blade is found, located and bagged.
This handbook is dedicated to the memory of Caroline Wickham-Jones
Friend and mentor

How to use this handbook

We wanted to learn how to record the hundreds of flints we had picked up during our fieldwalking in Deeside. This handbook is a collaboration between a lithic specialist (AC) and members of the Mesolithic Deeside group and is distilled from the group’s participation in several talks and workshops over the last couple of years.

The handbook begins with a brief introduction to why archaeologists classify things. It then takes you through the various stages of recording including how to identify a worked flint; how to divide a lithic assemblage into the basic units of flakes, blades, cores, chunks, and retouched tools; how to identify the material and condition; and how to measure the flints.

A timeline of the archaeological periods along with a simple description of their most characteristic flint working techniques helps you place your lithics in their prehistoric context. There is a section on how you might use the information you have gathered to interpret the landscape. Finally there are links to online publications that will further your interest in lithic analysis and interpretation.

But for now, here are the basics. Like anything lithic identification takes practice and the more flints you look at, the more familiar you get, and the more confident you will be in identifying and recording your finds.

Ann Clarke www.annrocks.co.uk
Mesolithic Deeside www.mesolithicdeeside.org/

November 2022
INTRODUCTION

We collect the flints to find out what people did in the past.

Spotting the flint in the ploughsoil, marking its coordinates, and putting it in a correctly labelled bag are the first steps in the process.

At the end of the fieldwalking season there will be boxes full of flints, all jumbled together.

We now need to make sense of these finds and to do this we record specific bits of information for each flint.

The next few pages will take you through some ways of understanding why archaeologists record finds, how we do it, and the ways the information can be used.

Equipment

A laptop to enter information on the spreadsheet.
Use the same software so you can share and combine information.

An eye loupe x10 or magnifier for the detail that evades normal eyesight.

Callipers – plastic ones are nice and light – to measure the finds.

Marking pen and small bags.

Camera phone and scale. If you have a decent camera on your phone, then practise taking pictures. It can be useful to have a record of some of your nice pieces or even queries. Use natural light and try and get side lighting e.g., from a window; this creates shadows which enhance the detail of the flint. Remember to photograph the find with the bag too so we know where it is from.

Scales, callipers, bags, pens, and magnifiers can all be bought readily online, for instance from https://pasthorizons.com/
Taking the mystery out of flint working

A flint nodule is hit in order to take off flakes or blades.

The flakes or blades are then made into or used as tools.

If you want a special shape of flake, then the core is worked in a planned way to produce that flake.

It’s not unlike making a sandwich …
WHY CLASSIFY?

After fieldwalking you’ll end up with a bag full of flints. If you leave it at that then all you will know about the location is that there were worked flints. You might as well have left them in the soil. The next step is to identify the various types of worked flint to help understand what was happening there in prehistory.

Take out your cutlery drawer and empty it on the table. Sort it into different types e.g. knives, forks and spoons. This is what you aim to do when recording your flints. This pile of flint on the right has been sorted into the types of cores, flakes, blades and small flakes (below).

We can go further by classifying the types. The knives in the image below can be classified as e.g. fish knives, butter knives, fruit knives, dinner knives or paring knives. There are also other levels which archaeologists use to describe an object and these include: material (e.g. steel, silver); hafting materials (e.g. bone, plastic); and date (e.g. Victorian, 20th Century). From the knives in the image below we can identify a Victorian, silver, fish knife, an Edwardian, mother-of-pearl-handled, fruit knife, and a late 20th century, plastic-handled, child’s knife. There are many ways to combine and sort the information you have recorded and that all depends on what questions you want to ask.

In the image on the right are two rows of a type of retouched flake called ‘arrowheads’ or ‘points’. Just like the knives to the left we can arrange these into different forms e.g. barbed-and-tanged points at the top and leaf points below. A more detailed description can include date and material e.g. an Early Neolithic, pitchstone, leaf point (centre bottom row) or an Early Bronze Age, grey flint, barbed-and-tanged point (top left).
This is essentially what archaeologists do. They organise information so they can ask questions like.....

How old is it?
What's it made of?
Did they make the tools here?
What were the tools used for?
What were the Prehistoric occupants doing here?

Bagged and ready to be recorded.

A small collection of flints found during fieldwalking.
FINDING YOUR WAY AROUND FLINT

There’s a reason why flint was used for tools - it is easily knapped* and it has sharp edges.

This is because flint is a cryptocrystalline material, and it has a conchoidal fracture when it is struck i.e. instead of shattering into bits the shock waves flow through the flint and create fractures with smooth curved surfaces.

The energy produced by the blow of a hammerstone on the nodule can be cleverly directed through the core by the knapper to produce the size and shape of the flake that is wanted.

Conchoidal fractures produce distinctive positive scars on the flakes called the bulb of percussion and ripples. Negative flake scars are left behind on the core when a flake is removed. Both positive and negative scars can be used to determine the direction and force of the flake removal.

We use these scars to find our way around worked flint.

Did you know that different types of hammers leave different scars? A hard hammer such as a stone leaves prominent bulbs of percussion and ripples. Soft hammers such as antler or bone create a different force to hard hammers and the bulb is less pronounced – or diffused. This means the bulb direction is less easy to identify and it can be more difficult to orient the flake.

Identifying the type of hammer which was used can help date flint working as broadly speaking, soft hammers were preferred in the Mesolithic and hard hammers in the Neolithic and Bronze Age.

*knapper is the term used for the person working the flint and knapping is the term used for working flint.
Fine parallel negative blade scars show the direction of removals from this single platform blade core. The blades were detached downwards from the platform at the top of the picture.

Negative flake scars on this multi-platform core show that flakes were detached from different platforms and in different directions.

Negative flake scars can be used to identify retouched* tools. On the retouched knife in the image on the left you can see fine negative flake scars around the edge of the flake and over part of the face. This shows that the flake has been retouched to shape the tool. The two leaf points in the image to the right have fine negative flake scars over the surface which indicate the flakes have been retouched in order to thin and shape the flake.

Fine negative flake scars down one side of a blade show how the edge has been blunted to make a microlith.

*retouching is a method of shaping a flake or blade around the edge and/or over the surface with flaking to make a distinctive tool form.
ORIENTING THE FLINTS

There is a simple but universal language that helps us describe worked flint. Using this correctly allows us to make comparisons with other worked flint assemblages anywhere.

The right orientation also allows the measurement of dimensions to be made correctly.

Flakes are placed so that the bulb of percussion is nearest you. This is the proximal end. The opposite end is the distal end.

The proximal end is the point at which the flake is hit to detach it from the core. This is also called the platform, or the butt end. There is lots of information here about how the core was shaped e.g. whether the knapper used a flat platform, a scalar platform, an isolated platform etc. This level of detail is not covered in the handbook but after looking at hundreds of flints you will begin to recognise that different methods were used to detach flakes from cores and want to learn more*.

Flakes also have a front and a back.

The ventral face has the bulb of percussion.

The dorsal face is the back of the flake – where the cortex* and/or negative flake scars are.

*recommended texts for learning more about flint working are given at the end of this book.

*cortex is the outer ‘skin’ of a nodule. It is usually a chalky surface or a rolled pebble surface.
GETTING DOWN TO THE RECORDING

In the box are all the fields* we collect information in.

The following pages discuss the separate fields in more detail.

The information to be recorded is highlighted in the relevant box of each field.

*a field is a column in the database that contains a particular type of information.

Site name; Grid reference; Find number. These will be present on your spreadsheet.

Number of pieces – usually one piece only but small flakes which aren’t measured can be grouped if they are from the same bag.

Material
Condition
Survival
Type
Sub-type
Classification
Description – A place for your thoughts on a piece especially if you are not sure of material, type, classification etc.

Dimensions Maximum length; Maximum width; Maximum Thickness – in millimetres only and to the nearest mm.

The information goes on an Excel sheet with each field as a separate column.
Material

Tools can be made from different kinds of stone but along the Dee in Aberdeenshire flint was the most common material used. The flint came from different sources: the east coast and the areas around the large Buchan gravel deposits running inland from Peterhead; as well as from flint deposits further south or west; and even, in the Late Upper Palaeolithic, as far as Scandinavia and Europe. These flint sources have flint of differing colours and textures. It has been a challenge to find a simple but effective way of recording the flint which would highlight these potential sources and hence differences in use.

Colour is the main descriptive tool, but there are problems with how to record it.

The original flint colour can be affected by patination, burning and chemical alteration. This may mean that the surface colour is obscured or is lighter or darker than the original, or the processes may have altered the flint to a different hue.

Naming a colour has several issues around it not least in relation to colour blindness where perhaps red and brown are difficult to tell apart from grey. Room lighting can also affect colour identification and where possible we would advise daylight as the best option. Personal colour sensitivity, language and culture also play roles in how a colour is perceived and recorded.

A wide range of flint colours were used along the Dee. The three images of flint colour below were taken by Roslyn Hay to use as an aid for her own recording. She laid out an assemblage according to the flint colour assigned to the lithics by specialist AC. You can see that each colour group overlaps with others and thus shows the difficulties faced with using colour as an identifier. The number of colour categories can probably be reduced to simpler descriptions. For now it is enough that you assign a colour to the flint and as you progress you will begin to notice what are common materials and what may be different from the norm.
Other materials such as quartz, agate, rhyolite and pitchstone have been recorded along the Dee and some examples of these are illustrated below.

Quartz
Quartzite
Rhyolite
Agate
Pitchstone

Agate comes in many colours and has distinctive stripes.

Worked rhyolite found at the Chest of Dee, Aberdeenshire.

A pitchstone leaf point. Pitchstone is a volcanic glass from Arran.

A fine quartz flake.
Condition

A lot happens to flint before and after it has been left behind in the soils. The flint may have been burnt before deposition; the changing soil chemistry will alter the surface of the flint causing patination or discolouration; sometimes mechanical activity such as movement in the soils will make the edges of the flint look rounded and rolled; exposure to the elements can cause abrasion or thermal fracture. Some of these physical changes are evident on the surface of the piece.

Burnt Burning is common, it can leave crazed lines or spalling on the surface of the piece.

Calcined The flint is burnt but the surface changes leave a white, crazed surface similar to burnt bone.

Patinated The alteration of the surface of flint by exposure to the chemicals in the soils to produce a cloudy or white surface. The original colour of the flint is hidden by patination.

Heat/frost shattered Flints lying in the surface soil for centuries are prone to temperature changes. Spalling and cracking on the surface but without discolouration may be shatter from frost or heat damage.

Rolled The original sharp edges of the flints are rounded from mechanical weathering.

OK If the surface of the flint appears unaltered then mark it as OK.
Survival

Here we record which part of the piece survives.

Complete The whole piece survives.

Proximal survives The proximal end of the flake or blade survives.

Distal survives The distal end of the flake or blade survives.

Segment The middle section of a flake or blade survives.

Fragment A fragment of the flake or blade or core survives.

A complete barbed-and-tanged point.
Type, Sub-type and Classification

Using our observations of the flake scars and the orientation language we can start to categorise the worked flints.

We use a three-step process to describe the flints:

TYPE these are the basic products of flint working.
SUB-TYPE records how much cortex remains on the flint.
CLASSIFICATION this provides more detail for retouched tools and cores.

TYPE

- **Blades** are long, thin removals with parallel sides. The length is at least twice the width.
- **Flakes** are removals which, when compared to blades, are wider in relation to their length.
- **Small flakes** are flakes that are less than 15mm in maximum dimension.
- **Pebbles** are complete, halved, or quartered pebbles.
- **Cores** are pebbles of flint from which a sequence of removals has been taken. These are identified by the negative flake scars showing that flakes were taken off the pebble.
- **Retouched tools** are flakes, blades and occasionally cores or chunks, which have been modified with further flaking. Retouch can occur along an edge or across the surface of the flake to shape specific tool forms such as scrapers, knives, or arrowheads.
- **Chunks** are removals with no evidence for having been deliberately removed i.e. they have no platform or flake scars. They are generally the unintentional by-products from knapping.
- **Spalls** look like flakes but don’t carry any flake scars. These pieces may have pinged off a nodule due to temperature differences or else are general shatter from knapping.

Blades come in a wide range of widths and lengths.

Flakes. The top and bottom rows are secondary flakes and the centre row is composed of inner flakes.
Primary this is the first flake removed from the nodule. It has cortex all over the back of the flake i.e. the dorsal face.

Secondary the flake, blade or chunk has cortex on just part of dorsal face.

Inner there is no cortex on the dorsal face meaning this flake, blade or chunk was detached later on in the core reduction sequence.

For cores we simply record if there is any cortex remaining:

With cortex

Without cortex

Primary flakes showing the pebble cortex over the entire dorsal face.

Secondary flakes showing pebble cortex on just part of the dorsal face.

Inner flakes have no cortex on the piece. The original colouring on these inner and secondary flakes is obscured by patination.
CLASSIFICATION

Pebbles, cores and retouched tools have more information that can be collected at this stage. Identifying the details of the cores and retouched tools can help us date the pieces.

Pebbles

Pebbles are found complete or roughly halved or quartered. The fractured face(s) provide the platform from which to start flaking.

<table>
<thead>
<tr>
<th>Complete</th>
<th>Halved</th>
<th>Quartered</th>
<th>Fragment</th>
</tr>
</thead>
</table>

Cores

There are several different types of cores to be identified. Recording the number and position of platforms, and the orientation and type of negative flake scars – whether flake scars, blade scars or a mix of both - can let us know a lot about the technology used, and ultimately the date of the core working.

Number and position of platforms

- **SP** Single platform – one platform only. Scars going in one direction.
- **OP** Opposed platform – two platforms on opposite ends of the core. Scars going in opposite directions.
- **RA** Platforms at right-angles – two platforms placed at right angles to each other. Scars going at right-angles to each other.
- **MP** Multi-platform – three or more platforms with different directions of flaking. Scars going in multiple directions.
- **B** Bipolar core – a nodule, chunk or thick flake which is placed on an anvil and hit from above. Flakes are detached from both ends simultaneously, sometimes from both faces, and the platforms are crushed. Scars going in opposite directions. Occasionally the core is turned 90 degrees and worked again.
- **CF** Core fragment – the core is broken and has no clear detachment characteristics. Scars visible.
- **A** Amorphous core – It’s a core with negative flake scars but it is unclassifiable.
Type of negative scar

Record whether flakes (F), blades (B), or a mix of both (FB) have been removed from the core. You can identify these by the shape of the negative scar.

Cores are classified by combining the two stages of identification: Number and position of platforms/Type of negative scar

Here are a few common examples.

- **SP/B** single platform blade core
- **MP/F** multi-platform flake core
- **A/FB** an amorphous core with mixed removals
- **B/F** bipolar core with flake removals

Other combinations of platform and negative scar will be observed and you record them accordingly.

The following illustrations show some of the common core types.

- **SP/B** Single platform blade core showing cortex on the back of the core (to the left of the image) and heavy step-fractions down the worked face. Step-fractions are the result of either flaws in the material or mis-hits. A core will often be abandoned if there are too many step-fractions.
- **MP/F** Multi-platform flake core showing the typical crushed edge platform with flake removal from both faces.
Retouched tools

As you work through an assemblage your eye will be drawn to those pieces that have been modified further. Perhaps the edge has been made steeper, or there is a distinctive notch on one side, or the side is shaped at an angle. You might not recognise the specific tool forms but notice where the edge modification is placed e.g. on the distal end, along an edge etc. and whether it is steep or shallow, nibbling, or over the face.

There will be damage along some of the edges too. This could be a result of movement in the ploughsoil, but it could also be from the original use of the flake or blade as a tool. If in doubt mention it in the Description column.

There are images of retouched tools in other parts of the handbook and here are a few more to show the range of retouched tools collected from fieldwalking by Mesolithic Deeside. It is not a comprehensive list and there are illustrations of other examples of retouched pieces from along the Dee in Wickham-Jones et al 2021. You can compare your finds against these to determine if you have a retouched tool.

Scraper made on a primary flake.

Scraper made on an inner flake.

End scrapers made on blades. The broken pieces are distal fragments.

Knife form made on a secondary flake.
An oblique arrowhead (left) and a barbed-and-tanged point (right).

Obliquely blunted blades showing the distinctive angled distal end along which there is nibbling retouch.

Leaf points.

Shouldered point made on a blade.

This notched blade has a deep notch worked on one side at the distal end.

Backed blade microliths made on narrow blades.

A gun flint. Made of flint from Brandon in Suffolk. Dating from 18th - 19th Century, these are modern examples of flint working.
DIMENSIONS

Dimensions are in millimetres.

Flakes and blades

The maximum length follows the axis at right angles through the bulb of percussion.

The maximum width is the maximum dimension at right angles to the length.

The maximum thickness is the maximum dimension at right angles to the width.

Cores

The maximum length is the longest dimension through the platform to the core base. If there is more than one platform then choose the longest dimension.

The maximum width is measured at right angles to the length.

The maximum thickness is measured at right angles to the width.

For chunks and spalls use the maximum dimension then measure at right angles as above for width and thickness.

Small flakes are <15mm in maximum dimension and do not need to be measured.
ENTERING THE DATA

Ensure the correct site and location details from the bag are entered. Add the find number from the bag in the relevant column.

Enter the information in column order and develop the routine of using the step-by-step identification process laid out above.

Use the correct terminology from the handbook. This allows the information to be sorted, counted, and compared more easily. It also makes the data entry quicker as Excel will anticipate your entry from the input of the first letter(s).

Make good use of the Description column. Here you can add in your observations about the piece – perhaps it is a particular type of scraper, or you are not sure of material type, or there are other finds made of a similar material, or you think it might date to a particular period. Don’t be afraid to put your thoughts down here!

This group of flints look like they were knapped from the same pebble.

This large, crested blade most likely dates to the Late Upper Palaeolithic.
TIMELINE FOR SCOTTISH ARCHAEOLOGY

Here is a timeline to help you place the lithic technology practices with archaeological periods. It is based on Archaeology Scotland’s excellent guide to Scotland’s archaeological time periods and ages* which has lots of useful information about the periods for you.

As you can see from the table there were broad changes in the lithic manufacturing processes over 12000 years – from the production of long blades in the Late Upper Palaeolithic, the use of blades in the Mesolithic which became a narrow blade technology in the Later Mesolithic and the continued use of blades in the Early Neolithic. This changed to the manufacture of flakes in the Neolithic and Bronze Age.

*website https://www.archaeologyscotland.org.uk/heritage-resources-portal/2021/07/05/an-easy-guide-to-scotlands-archaeological-time-periods/

<table>
<thead>
<tr>
<th>Time span</th>
<th>Period</th>
<th>Technology</th>
<th>Main types of tools</th>
<th>Common core types</th>
</tr>
</thead>
<tbody>
<tr>
<td>12000BC - 10,800BC</td>
<td>Late Upper Palaeolithic</td>
<td>Long blade technology</td>
<td>Long blades</td>
<td>Blade cores - Opposed platform blade cores</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Crested blades*</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Blade end scrapers</td>
<td></td>
</tr>
<tr>
<td>10,800BC - 4,100BC</td>
<td>Early Mesolithic</td>
<td>Blade technology</td>
<td>Blades</td>
<td>Blade cores</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Geometric microliths</td>
<td></td>
</tr>
<tr>
<td>4,100BC to 2,500BC</td>
<td>Early Neolithic</td>
<td>Blade and flake technology</td>
<td>Leaf points</td>
<td>Blade and flake cores</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Serrated blades</td>
<td></td>
</tr>
<tr>
<td>2,500BC to 800BC</td>
<td>Early Bronze Age</td>
<td>Flake technology</td>
<td>Oblique arrowheads</td>
<td>Multi-platform flake cores</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Scrapers</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Knives</td>
<td>Disc cores*</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Levallois-like cores*</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*a crested blade is shaped and removed to direct the force of the blow through the core and to direct further blade removals from the core.

*disc cores and Levallois-like cores are products of specialised core working to produce distinctive broad flakes for knives and scrapers.

See Edmonds et al https://www.orkneystonetools.org.uk/
How to Use the Data

Your spreadsheet is a mine of information. Here is what we can do with the basic information that has been recorded. Since all the finds have coordinates, they can be plotted onto maps to give us some immediate information about how the landscape was used in prehistory.

Plotting the finds from fieldwalking in the set of fields illustrated in the map above shows the extent and different concentrations of the lithic scatters across the area. Since they are plotted by artefact type we can see whether the flakes, blades and cores were made or used in specific areas.

At a larger scale the finds-mapping shows the different densities of the scatters along the Dee. This map shows the red hotspots of prehistoric activity.

Using simple statistical techniques such a flake to blade ratios we can make pie charts for each field. The charts are sized according to assemblage volume and plotted across a wide landscape. The higher the ratio of blades to flakes the more likely it is that we have a blade-producing Mesolithic site. The map below shows two large concentrations of finds along the Dee with an emphasis on blade production. Away from the river the sites are smaller and dominated by flakes.

Similarly core types show up differences in lithic technology. The map below shows the same sites as above with an emphasis on blade cores at the larger sites and later prehistoric core types such as flake cores and bipolar cores away from the river.
USEFUL INFORMATION AVAILABLE ONLINE

The Mesolithic Deeside group have a website and Facebook page through which you can find out about their work and opportunities for volunteering.

http://www.mesolithicdeeside.org/
https://www.facebook.com/groups/979549128814393/

There is a lot of useful information about prehistoric lithics readily available online. The links below will lead you to more detailed information about lithic technology and dating and they have illustrations to help in your identification and naming of the tools.

In 2021 a large report on the most recent archaeological work along the Dee was published. This discusses all the lithic scatters recorded by Mesolithic Deeside and contains interesting details about the prehistoric landscape.

Heather Sabnis has put together a website based on lithics collected from her extensive fieldwalking around the area of Crathes, Deeside.

Stone Age Crathes http://www.stoneagecrathes.com/

The following links centre around the flaked lithics from the Late Upper Palaeolithic, Mesolithic, Neolithic and Bronze Age in Scotland.

Ballin, TB 2021 Classification of Lithic Artefacts from the British Late Glacial and Holocene Periods
https://www.archaeopress.com/Archaeopress/download/9781789698695

Saville, A (ed) 2004 Mesolithic Scotland

Wickham-Jones, CR 1990 Rhum: Mesolithic and later sites at Kinloch
https://archaeologydataservice.ac.uk/archives/view/sas_books_2016/content.cfm?mono=1369696

A useful website with lots of photographs and description of tool types was produced in 2017 and centres on stone tools from Orkney. You will find it useful for information on Neolithic and Bronze Age flint work.

Edmonds, M, Anderson-Whymark, H, Clarke, A, and Thomas, A, Working stone
https://www.orkneystonetools.org.uk/
ACKNOWLEDGEMENTS

This handbook is the result of a collaboration between AC and Mesolithic Deeside. It draws on chats, comments and questions raised during the lithic workshops and talks given by AC to Mesolithic Deeside members over two years — your enthusiasm to learn about flint tools inspired this handbook. I would particularly like to thank Roslyn Hay, June Armstrong, Elaine Lindsay, Angela Groat and Premala Fawcett who read and commented on the text as it was produced and to Roslyn Hay for sharing her photographs of lithics, many of which are used here. Other photographs are from Mesolithic Deeside and Ann Clarke. We are grateful to Irvine Ross for producing the fabulous distribution maps.

Many thanks to Paul Musgrove for the work in designing the handbook and the layout using InDesign for publication on Issuu.

Ali Cameron and Sheila Duthie have been supportive throughout.

Finally, Mesolithic Deeside thank their funders and partners for the welcome support over the years.

Mesolithic Deeside funders and partners
Aberdeenshire Council
Kincardine and Mearns Area Committee
Marr Area Committee
Aberdeenshire Council Archaeology Service
National Lottery Heritage Fund
Bread of Life, Torphins
King George V Wind Turbine Panel
Aboyne Highland Games
ScotMid Community Fund
Skinner Charitable Trust
Live Life Aberdeenshire
Arnold Clark Community Fund
Mid Hill Wind Farm
Leys Charitable Trust
Crathes, Drumoak and Durris Community Council
Cameron Archaeology
Universities of Aberdeen, St Andrews, and Stirling
Large scatters of Mesolithic flints are found along the River Dee.