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FOREWORD

The geological survey of the area around Mt. Kenya, a dissected volcano which forms
Kenya’s highest mountain, took a total of nine months field work, during which time Mr.
Baker worked from camps which varied in altitude from below 5,000 ft. on the Equator to
above the snow line.

While the mountain had been visited by explorers, scientists and mountaineers on many
occasions since 1887 (the summit was not climbed until 1899), the geology of the mountain
was known in only the sketchiest detail before the present survey. The author here presents
a complete picture of the geology, and deduces from the evidence of the stratigraphic column
the history of the mountain from its beginnings in late Pliocene times.

Of particular interest is an account of the glaciology of the mountain, in which is des-
cribed each of the ten dwindling glaciers which still remain and the numerous moraines
of these and earlier glaciers. Mr. Baker also shows that Mt. Kenya was formerly covered
by an ice cap 400 sq. kms. in area, and that the present glaciers are the remnants of this
ice cap. This work enables the author to detail the changes in climate which took place
during the Pleistocene period, and he also discusses the correlation of climatic changes in
East Africa with those occurring in Europe during the Ice Age.

Nairobi, J. WALSH,
4th August 1966. Jor Chief Geologist.
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ABSTRACT

The report describes an area of approximately 1,200 square miles bounded by the equator
and latitude 0°30’S, and by longitudes 37°00’E. and 37°30°E. The area covers the greater
part of Mt. Kenya (17,058 feet) and includes a small part of the Aberdare dip-slope.

Physiographically the area is dominated by the large bulk of the dome-shaped Mt. Kenya
volcanic pile, which bears a system of ten small glaciers on its peaks.

The rocks exposed include small inliers of Precambrian Basement System mica gneisses,
amphibolites and hornblende gneisses, which are covered by the Simbara Series basalts
and agglomerates, the Nyeri Tuff and Laikipian Basalts. These volcanics are derived from
the west of the present area and are of presumed Miocene-Pliocene age.

The Mt. Kenya volcanics consist of basalts, rhomb porphyries, phonolites, kenytes and
trachytes which make up the main period of eruption, and the plug of the volcano is com-
posed of nepheline syenite and phonolite in the form of a ring structure. Satellite activity
from fissures resulted in the eruption of further phonolites, basalts, trachytes and mugearites,
and the activity on the mountain was brought to a close by further satellite eruptions of
trachytes, pyroclastics, basalts, and basaltic pumice from various vents on the slopes of the
original volcano. The Mt. Kenya volcanics are believed to be mainly of Pleistocene age.

Moraines are found up to 7,000 feet below the present glaciers and have been divided
into the products of an older and a younger glaciation. The retreat from the younger glaci-
ation maximum has been sub-divided into six stages on moraine evidence. An account
of the present glaciers is given.

The only economic deposits of the area are building stones and road surfacing materials.
An account of the water supply position with details of bore-holes is given.



I—INTRODUCTION

1. General Information

The area described in this report is bounded by the equator and latitude 0°30°S., and
longitudes 37°00’ and 37°30E., and is approximately 1,200 square miles in extent. It covers
parts of Nyeri and Kirinyaga Districts (Central Region) and parts of Embu and Meru
Districts (Eastern Region), and includes the greater part of Mt. Kenya. The Mt. Kenya
National Park, which is defined as that part of Mt. Kenya above the 11,000 feet contour,
falls in the area and is controlled by a National Park Warden based at Nyeri. Approximately
half of the remainder of the area between the 11,000 feet contour and levels between 5,000
and 7,000 feet is the Mt. Kenya Forest, which is controlled by Forest Officers situated
at Nanyuki, Gathiuru, Kabaru, Hombe, Ragati and Castle Forest Stations, and at Embu
Forest Station at Irangi.

Work in the area was begun when the writer was seconded to the 1.G.Y. Mt. Kenya
Expedition (leader: Dr. I. S. Loupekine) during December 1957 and January 1958. The
official survey was carried out between December 1958 and June 1959. Mr. D. J. Jennings
(Geologist) assisted the writer during the survey of the upper part of Mt. Kenya.

2. Communications

The Nairobi-Nanyuki railway line passes through the western part of the area—there
are stations at Karatina, Kiganjo (Nyeri Station), Naro Moru and Nanyuki. The Nairobi-
Nanyuki road follows the railway line more or less closely, there being a road leading to
Nyeri starting at the Marua bridge over the Sagana river.

The road system on the flanks of Mt. Kenya is much influenced by the number of rivers
and streams draining radially from the mountain. Most motor roads and tracks follow the
ridges and connect with the Sagana-Embu and Sagana-Nanyuki main roads. Other roads
which cross the drainage are the Karatina-Kagumo-Kerugoya road, and the Kianyaga-
Kiamutugu-Kirigi roads, which provide east-west access to the upper locations of Embu
District. An all-weather road connects Karatina, Ragati, Hombe, Ndathi, and Kabaru and
Kiganjo, and an earth track maintained by the Forest Department links the Naro Moru
track with Gathiuru, Nanyuki Forest Station and Ontulili Forest Station (the latter is
north of the present area).

Motor tracks providing access to the higher parts of the Mt. Kenya Forest are few, and
some have fallen into disuse and disrepair. The only motor track penetrating the whole of
the forest belt is the Sirimon track, which leaves the Nanyuki-Timau road to the north of
the present area, some eight miles north-east of Nanyuki, and runs up a ridge to the south
of the Sirimon river and ends on the moorland at an altitude just short of 13,000 feet. Saloon
cars have penetrated as far as the Forest Department Hut at 9,500 feet on this track, and
four-wheel drive vehicles have reached the end of it under dry conditions. The section of the
track above 9,500 feet is, however, difficult and in a poor state of repair. Two Forest Depart-
ment tracks from the Nanyuki Forest Station and Nanyuki Sawmills reach up to 8,000
and 8,400 feet respectively. At the end of the latter track is a fire-watchers’ tower.

The most direct access to the higher parts of the mountain is provided by the Naro Moru
track, which is maintained by the National Parks. It follows the Naro Moru river and ends
in a clearing at 10,000 feet. A well marked path continues up the mountain, following the
Teleki valley and reaching Top Hut (15,700 ft.). This is the route followed by many moun-
taineering parties. The Burguret track is not now motorable above Gathiuru. This track is
favoured by parties ascending the mountain with pack-animals.

* The Gunia track leaves the Hombe-Kabaru link road on the south-west slopes, and
reaches an altitude of 10,500 feet. It is somewhat overgrown and neglected, but is easily
motorable due to the absence of the steep gradients such as are found on most other forest
tracks. .



Several short motor tracks reach into the forest from Ragati Forest Station, and there
is a recently completed forest track linking Ragati and Chehe Forest Stations. None of
these tracks reaches above 7,600 feet.

Gunia and Chehe forest tracks were at one time joined in the vicinity of Gerere at
about 9,700 feet, but the uppermost two miles of the Chehe track is now overgrown.

The Kamweti track on the south side of the mountain reaches an altitude of 10,000 feet,
and a link road joining this track to Castle Forest Station has recently been completed.
The Irangi track on the south-east sector leads upwards from Irangi Forest Station and
ends at 7,600 feet. :

Although the highest levels on the mountain to which a vehicle can penetrate are reached
on the Sirimon track, it is the Naro Moru track which provides the most direct access to
the peaks; the distance from the end of this track to Top Hut is seven miles.

The path above the National Parks Camp is, however, in peat bog in the 2,000 feet above
the forest edge and in consequence this route is not favoured by those using pack animals.
The latter prefer the longer but less wet Burguret track, which leads to Two Tarn Hut by
a well-marked path.

Earlier routes of access to the mountain which were in favour before the recent con-
struction of motor tracks into the forest are the Ontulili path (Hook’s ‘old route’) and the
Chogoria path (Carr’s route). The former is a pleasant, dry path through cedar forest up
a ridge south of the Ontulili river. It gives access to the head of the Mackinder valley, and
is a good but long route for pack animals. The Chogoria path leaves Mutindua village
above Chogoria to the east of the area and follows a ridge north of the Nithi river to the
Urumandi Hut (10,100 ft.) at the forest edge. It continues as a well-marked path along the
north ridge of the Gorges valley to Hall Tarns and finally traverses the eastern and southern
slopes of Pt. Lenana to reach Top Hut. This route was the principal one up the mountain
in the 1920s, and is still used occasionally by persons with the assistance of Meru porters.
Its drawback is its length, for the ascent to Top Hut requires three days.

The recognized paths and routes which have been mentioned on the upper part of the
mountain are marked on the map (at end) and are suitable for pack animals. The map also
shows a new route linking the Ontulili and Burguret tracks in the Alpine zone, and a con-
venient route from Hall Tarns to Ithanguni is shown.

3. Vegetation
The vegetation on Mt. Kenya shows strong altitude zoning, and the flora of the higher
part of the mountain has been called an “Afro-Alpine” flora, which shows considerable
similarities to that of the other high East African mountains (Hedberg, 1951)*. The vege-
tational belts (based on Hedberg, op. cit.) are:—

“Nival” zone
4. The Alpine Belt Upper Alpine zone
3. The Ericaceous Belt Lower Alpine zone

Bamboo zone
Montane rain forest zone

2. The Montane Forest Belt
1. Savanna and cultivated Belt.

The lowermost belt, which extends up to the lower edges of the Mt. Kenya Forest at
altitudes between 6,000 and 7,000 feet, is the cultivated or pastoral belt. Whereas the forest
was evidently much more extensive than at present, especially towards the south, destruction
by fire and more recently encroachment by agriculturalists has raised the lower limit of
the indigenous forest to its present position.

{Hagenia-Hypericum zone

The second belt—the Montane rain forest—extends up to levels of 11,000 feet on the
west and south sides, and 10,000 feet on the eastern and northern sides. The Montane
rain forest zone reaches its maximum development on the south-east sector of the mountain.
It is distinguished by the occurrence of evergreen hardwood trees and some conifers. Cedars
(Juniperus procera) and podocarpus (P. gracilior, P. milanjanus) are important on the western
slopes, and camphor trees occur in the south and south-cast.

*References are quoted on page 76.



The Montane rain forest passes upwards into the bamboo zone (Arundinaria alpina),
which is best developed on the south-east slopes. The lower margin of the bamboo zone is
at approximately 8,000 feet in the south-east, 7,000 feet in the south, rising to 9,000 feet
in the north-west. The bamboo zone thins markedly in the north-west, and is absent in the
north. Podocarpus trees occur in the bamboo in the western and southern sectors, but in the
south-east there are large areas consisting exclusively of bamboo. Patches of bamboo occur
in sheltered places well above its normal level, for instance at 11,500 feet in the Sirimon
valley, at 10,500 in the Luguso valley, and at 11,000 in the Kazita valley.

The uppermost division of the Montane forest is the Hagenia-Hypericum zone, charac-
terized by Hagenia abyssinica and Hypericum leucoptychodes. The latter is a “‘giant” form
of St. John’s wort. This zone is generally narrow and well defined, covering an altitude
range of only a few hundred feet on the western slopes, but being rather deeper on the
east. The levels of this zone are about 10,500 to 11,000 on the west, and 9,500 to 10,000
on the east, but small patches occur higher in sheltered valleys.

The lower margin of the Ericaceous belt is generally well-defined, and is marked by the
transition to giant heather (Phillipia excelsa, Erica spp.). On the west the ericaceous forest
is thin, absent or dead, the higher parts of the belt containing only discontinuous patches
of shrubby heather obviously affected by fire and regenerating by means of basal shoots.
On the north and east sides, however, the belt is broader and has also notable amounts of
Protea sp. Large areas between 10,000 and 12,000 feet on Ithanguni and the north-east
slopes are covered by Erica and Protea forest, the trees reaching a height of 20 feet.

The upper margin of the Ericaceous belt is very ill-defined, and patches of “heather”
persist up to 13,500 feet on sheltered slopes. There is a marked inter-digitation with the
Alpine belt. On all sides of the mountain except to the north-east recurring fires have clearly
affected the highly inflammable heather plants, depressing the upper limit of these plants
and preventing the formation of Erica forests except in protected enclaves.

The Alpine belt is synonymous with “‘the moorland”, and is open, often marshy ground
characterized by the well known giant groundsel, tussock grasses, Alchemilla shrubs and
Helichrysum. The divisions of the alpine belt are gradational but certain associations are
characteristic of each zone. The lowermost zone is characterized by yellow-flowered Senecio
brassica and Lobelia keniensis which occur with tussock grass (Festuca pilgeri) in damp
ground. An Alchemilletum community occurs in drier, better drained areas. The upper
alpine zone is characterized by the tree-like Senecio keniodendron, which reaches up to 14,700
feet. In this zone the effects of solifluction and frost heaving are added to the extreme climate
in determining the flora. The zone contains species of Carex sedge and Agrostis grass, Carduus
platyphyllus, Arabis alpina, Senecio keniophytum, apparently sterile Lobelia telekii and two
species of Helichrysum.

This community persists up to approximately 15,200 feet on weathered old moraine
at the base of the main peaks of Mt. Kenya. In addition mosses and lichens cover most of
the weathered rock surfaces. There is, however, a sharp floral boundary at the outer edge
of a group of recent moraines which occur some few hundreds of feet below the present
ice margins. These moraines, which are approximately 100-300 years old, are very sparsely
colonized by Agrostis trachyphylla, Arabis alpina and stunted Senecio keniophytum. Mosses
and lichens occur sparingly on the practically unweathered rocks within these moraines.

4. Climate

The climate of Mt. Kenya is of interest on account of its bearing on the interpretation
of the glacial deposits, and because of its extreme range from the warm lowlands to the
severe alpine region with its very large diurnal temperature range.

. On the moorland zone a number of meteorological observations were made by S. E.
Brinkman, meteorologist of the 1957-58 1.G.Y. Mt. Kenya Expedition*, principally at
localities on the western slopes, which are tabulated overleaf.

*Figures reproduced by courtesy of Dr. 1. S. Loupekine, leader of the Expedition.
3



. . Range of Range of

Locality Period of daily mean hourly mean
observation o )}

temperature—°C. | temperature—°C

End of Naro Moru track—

10,000 ft. .. .. 12-20/12/57 +64 — 491 +245 — 4139
Teleki Valley—13,700 ft. | 17/12/57-19/1/58 —02 — 444 —16 — +66
Top Hut—15,700 ft. .. | 20/12/57-16/1/58 —-42 — +02 —4:0 — —02

Observations by the writer with a maximum/minimum thermometer (partly shielded)
showed that minimum temperatures varied between —4°C. and 4-8°C. on the moorland,
and 15 measurements of maximum temperature all fall in the range 14°-25°C. (58°-76°F.).
It should be noted, however, that the writer’s observations of maximum temperature are
up to 39 per cent too high, due to insufficient shielding of the thermometers. Generally
during the period January-March 1959 the minimum temperatures are below freezing
above the 12,000 feet contour. The minimum temperatures were lowest, however, not at the
highest altitudes but in the valley floors between 13,000-14,000 feet (—4° to —8°C.). On
ridge tops the minimum temperatures were approximately 2°C. higher than in valley floors
at the same altitude, and this effect is due to the cold katabatic breezes that descend the
valleys at night.

The range between minimum and maximum temperatures decreases with altitude, being
11-5°C. at 10,000 feet, 7-5°C. at 13,700 feet and 4°C. at 15,700 feet.

On all sides of the moorland and alpine zones of the mountain the maximum temperatures
are reached between 9:00 and 12:00 a.m. On the western slopes the temperature drops
after noon due to the afternoon cloudiness, but this is less marked on eastern slopes. At levels
between 10,000 and 14,000 feet the relative humidity on the western slopes varies inversely
with the temperature, being at a minimum of approximately 35-45 per cent in the mid-
morning, but rising to a maximum at 7.00 p.m. in the early evening, when it reaches 70-90
per cent. At Top Hut (15,700 feet) however the relative humidity minima and maxima
are earlier in the day, at 7.00 a.m. and at 12.00-4.00 p.m. respectively.

Sunshine records made in the floor of the Teleki valley at 13,700 feet show the strong
correspondence of sunshine duration and temperature. The mean of observations covering
ten days in January 1958 show the sunshine duration maximum at between 9.00 a.m. and
noon, with a minimum at 3.00 p.m., and a second minor maximum at 5.00 p.m. The mid-
afternoon minimum is due to the afternoon cloudiness which is referred to below.

The weather changes in the afternoon which characterize the western slopes are the most
notable features of the climatic regime of the mountain. The mornings are generally clear
and sunny with little wind and rapidly rising temperature and low humidity. Generally
during the morning clouds begin to form at about 8,000-10,000 feet on the lower western
slopes, and these grow in height and begin to be carried eastwards up the valleys by noon,
bringing high humidity and a fall in air temperature. These clouds frequently reach the peak
area from the west by early afternoon, and rise vertically up the western side of the peaks
with a turbulent motion, and on reaching the level of the peaks are swept westwards and
dissipated in the dry easterly air stream rising over and round the mountain. It is this pheno-
menon which gives rise to the high level (at 14,000 feet) rainfall maximum on the western
slopes (see Fig. 1), and which protects the west-facing glaciers from the afternoon sun.

The distribution of rainfall on the mountain is indicated on Fig. 1. This shows the south-
easterly rainfall maximum of 70-90 inches which is due to orographic effect during the
south-east monsoon, and the minor maximum of 40-50 inches to the west of the peaksat an
elevation of 8,000-10,000 feet, which is due to the westerly reversed air flow of the western
slopes. The rainfall maximum is at different levels on different sides of the mountain, the
lowest being on the south-east and the highest on the west. There is a pronounced minimum
which coincides with the upper alpine zone. The seasonal distribution of rainfallis virtually
unknown at present since the rainfall figures-for the upper slopes are recorded by long-
term gauges read at infrequent and-irregular intervals. Observations suggest that the rainfall
is strongly-seasonal. and occurs mostly at changes of the monsoon in April-May and Nov-
ember-December as.in the remainder of eastern Kenya, e o

4
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The rainfall figures for the permanent gauging stations on the lower slopes are given
in the following tabulation:—

Number of years
Station Rainflaglls?nches Ar;ierl;?a.gﬁ iilrclzrlllléal over which
- - S | average taken
Tumu Tumu Mission .. .. 49-14 42-13 40
Embu, D.C.’s office .. .. 37-13 41-05 51
Ragati Forest Station .. .. 55-10 52-07 26
Kirinyaga Farm, Naro Moru .. 22-28 3142 21
Kerugoya Hospital .. .. 50-95 55-38 22
Kabaro .. .. .. .. 35:05 3381 17
Kevote School .. .. .. 51-62 59-75 13
Gathiuru Forest Station .. .. 43-36 38-99 13
Kadunie Estate, Nyeri .. .. 44-64 35-46 29
Forest Farm, Naro Moru .. 25-89 33-55 11
Hombe Forest Station .. - 50-41 46-52 11
Killard Farm, Nanyuki .. .. 28-91 33-50 11
Embu Forest Station, Irangi .. 69-97 76-52 6
Kamburaini Farm, Naro Moru 30-50 44-47 8
Castle Forest Station .. .. 84-48 — —
Kabaru Forest Station .. .. 34-50 — —

5. Maps

The 1:125,000 map (at end) is based on the four Survey of Kenya 1:50,000 maps covering
the area—numbers SK IT 121/1-2 (third edition), SK II 121/3 (seventh edition) and SK II
121/4 (sixth edition). Some of the motor tracks and paths shown in these maps in or above
the forest have been amended. Due to extensive land consolidation work in the Nyeri and
Embu Districts and the construction of villages during the Emergency large alterations
of the road system are taking place, and the writer has endeavoured to show on the map
the state of affairs at the time of the survey (December 1958 to June 1959). The positions
of the villages are sketched, as are some of the new roads. The positions of forest tracks
are not accurate, but are better than those indicated on the published maps.

The detailed maps of the upper parts of the mountain and the peak area are based on the
excellent 1:25,000 map number D.O.S. 302.

A few additional place names have been added to the maps, and the spelling of some
existing names has been modified to that employed by the local people.

6. Previous Work

The first European to see Mt. Kenya was Ludwig Krapf, who saw it on December 3rd
1849 (Dutton 1929, pp. 161-173), but on reporting his discovery he and Rebmann, who had
discovered Kilimanjaro the previous year, were attacked by several European geographers,
who maintained that what had been seen was not snow but calcareous earth. Krapf’s claim
was not confirmed until 1883, when Joseph Thomson (1887) saw the mountain from the
Laikipia plateau, and described it as the eroded remnant of an old volcano, the peak being
<. . . the column of lava which closed the volcanic life of the mountain . . .”

The first ascent to the upper part of the mountain was made in 1887 by Count Teleki
(von Hohnel, 1894, pp. 371-377), who reached an altitude of approximately 13,800 feet
in the Teleki valley. He described the head of the Teleki valley as a crater, and brought
back specimens which were subsequently identified as andesite and phonolite (Rosiwal,
1891, pp. 446-498).



A further attempt to climb the mountain was made by Capt. Dundas and C. W. Hobley
in 1891. They attempted the ascent from the south but were turned back while still in the
forest by the difficulty of the country (Gedge 1892, pp. 527-528). Hobley noted only two
rock exposures—one of volcanic ash and the other of basalt.

The most comprehensive piece of work to be done on Mt. Kenya to date was carried
out by J. W. Gregory, during his remarkable expedition in 1893 (Gregory 1896). Gregory
climbed up as far as the Lewis Glacier, and reached a height of approximately 16,000 feet.
(Gregory’s height determinations were up to 2,000 feet too high). Gregory recognized the
evidences of former glaciation on the moorland zone, described the glacial geology, and
discussed the causes of the former greater extension of the glaciers (Gregory, 1894 (C)).
His sketch maps show that in 1893 the Lewis Glacier reached to levels several hundred
feet lower than the present day, and that the glaciers had previously descended to below
10,000 feet. He concluded that the former glaciation was due to the mountain having been
built up and uplifted to the height necessary for an ice dome to form, and that this uplift
resulted in the alteration of the climate of the surrounding areas, giving rise to enlarged
lakes in the rift valleys and a greater extension of the alpine flora and fauna. Gregory (1900,
pp. 205-222) also made observations on the volcanic geology, described the nepheline-
syenite of the peak, and proposed the new name kenyte for a variety of glassy phonolite.
He omitted to mention the nepheline phenocrysts that are ubiquitous in the kenytes of the
upper part of the mountain (Campbell Smith, 1931). He described the sections exposed
on the west face of Mt. Hohnel, and gave the general succession as:— phonolites, kenytes,
then basalts: a succession confirmed by later work. Gregory summarized his work on Mt.
Kenya in his book “Rift Valleysand Geology of East Africa” (1921, pp. 144-153). Many
of the topographical features of the mountain were named by Gregory (1894(D), pp. 408-424),
including the principal glaciers and valleys.

The summit of Mt. Kenya was climbed for the first time by H. J. Mackinder and two
Alpine guides on September 13th 1899 (Mackinder, 1900, pp. 453-486). Mackinder carried
out a circuit of the peak and named some of the glaciers and valleys on the northern sector
of the mountain. He proved that the nepheline-syenite discovered by Gregory on the peaks
extended to the summit of the mountain.

The upper part of the mountain was not visited again till 1908 when H. McGregor Ross
and D. E. Hutchins carried out a circuit of the mountain on the lower moorland to study
and evaluate the forest. Reference is made to the glaciation in the Hausburg valley, and
photographs of the Cesar and Tyndall glaciers were taken, showing them to be substantlally
longer than they are at the present day (McGregor Ross, 1909 1911).

) OrdefBrown (1918) ascended from the south-east, and reached a height of approximately
2,500 feet.

In the period between 1914 and 1927 much exploration was done by settlers and mis-
sionaries living in the vicinity of the mountain, but little scientific work was accomplished.
The principal figures involved in these explorations were J. W. Arthur, (1921, 1923), A. R.
Barlow, E. Carr, who built two huts on the mountain, and E. A.. T. Dutton and J. Melhuish (in
1926). In Dutton’s book (1929) is a detailed account of Dutton’s and Melhuish’s journey
and attempt on the peaks, together with appendices on the discovery of the mountain;
Shipton’s 1929 ascent; the geology (by J. W. Gregory); the flora (by M. Jex-Blake); the
forests (by S. H. Wimbush); glossary of place names, and a map (scale 1:21,120) of the
upper moorland. -

E. Nilsson examined the moraines of the Gorges valley in 1927 and returned in 1932 to
prepare a map of this area (Nilsson 1935, p. 10). He described the moraines and concluded
that the large terminal moraine near the Nithi waterfall marked the maximum extension
of the glaciers (Nilsson, 1931, pp. 19-23). He reported patches of older, eroded moraine
below the terminal moraine between the Nithi waterfall and the Urumandi hut. These he
interpreted as having been laid down by an earlier glaciation. The complex of moraines
behind the terminal moraine of the Gorges valley he interpreted as due to two re-advances
of diminishing extent soon after the beginning of the retreat of the glaciers from the maxi-
mum. He mentions four small moraine ridges above Lake Michaelson and the moraine
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oop which surrounds Harris Tarn, into which tarn the Kolbe glacier descended. The Kolbe
glacier has since disappeared. Nilsson (1931, pp. 3941, 90-91) noted the similarity of
the moraine sequence on Kilimanjaro, Mt. Kenya, Mt. Elgon and Ruwenzori and suggested
that the course of recession from the maximum was similar on all theseé mountains, and
that they were due to widespread climatic changes. He correlated the various moraine
groups on different mountains and suggested that the expansions of the glaciers and of the
lallccs were contemporaneous, but produced no concrete evidence in support of these cor-
relations.

During 1929 and 1930 the main peaks were ascended several times by E. E. Shipton, H. W,
Tilman, P. Wyn Harris, G. A. Sommerfelt and R. E. G. Russell (Shipton, 1943; Tilman,
1937).

The first glaciological work to be carried out on the mountain was that by C. Troll and
K. Wien in 1934 (1949). A photogrammetric survey of the Lewis Glacier was made, and the
rate of flow measured.

During the period 1930-1936 R. Hook was active on the mountain, exploring the northern
and eastern slopes. Hook and H. Slade stocked some of the streams and lakes with trout
during this period, and improved the existing maps.

P. C. Spink (1945, 1949) visited Mt. Kenya in 1944, and noted that the glaciers were
retreating.

In 1947 F. E. Zeuner (1948) made a brief journey on the north-west slopes of Mt. Kenya
and described frost soil structures.

An article summarizing the geology of Mt. Kenya was written by W. Pulfrey (Mines
& Geological Dept.) for the Royal National Parks in 1950, but it was not published.

In December and January 1957-1958 the writer was seconded to the 1.G.Y. Mt. Kenya
Expedition, leader Dr. I. S. Loupekine, to carry out a reconnaissance on the glacial geology,
and a report on this work is in preparation. Other members of this expedition carried out
studies in glaciology, vegetation, meteorology and hydrology.

II—PHYSIOGRAPHY

The commanding topographic feature of the area is Mt. Kenya, which is a large (partly
denuded) central volcano of Vesuvian type, the summit of which is at 17,058 feet. All but
the south-western corner of the area is formed of its volcanics. The volcanic pile is appro-
ximately 75 miles wide at the base, and is about 12,500 feet thick. Originally, however,
the crater must have been at a height exceeding 20,000 feet. The volcano is now in the
youthful stage of dissection—the upper part has suffered the greatest erosion, having been
subjected to at least two periods of glaciation.

Geologically and physiographically distinct from Mt. Kenya is the part of the Aberdare
dip-slope (Shackleton 1945, pp. 11-12) which occurs in the south-western corner of the
area where the Laikipian basalts crop out. It consists of a plateau sloping south-ecastwards
at approximately 50 feet per mile, which is incised to depths of 400-500 feet by the Chania,
Muringato and Sagana rivers. Rising above this plateau is Kailewa hill, which is an inlier
of metamorphic rocks.

Mt. Kenya can be divided into two main physiographic zones:—the lower cultivated or
forest-clad slopes, and the upper zone of open moorlands above 11,000 feet, a zone which
coincides generally with the area of former glaciation. The contrast between the two zones
is obvious when the mountain is viewed from a distance, for the lower slopes show in profile
the smooth upward steepening curve characteristic of a central volcano, but above 11,000-
12,000 feet the upper slopes lie well below the imaginary continuation of this line, see Fig.
2a. The changes in average slope, measured on the western sector, are indicated in the
following tabulation:—
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Fig. 2 (a)—Profile of Mt. Kenya showing inferred original shape and height.

(b)—Profiles of the Teleki valley at various elevations showing progressive change
from glacial to fluviatile form.

1. The Lower Slopes

The lower slopes of the mountain are incised to depths of up to 600 feet by a system of
radial and consequent streams. At levels between 6,000 and 7,000 feet the interfluves are broad
and smooth suggesting that at these levels lowering of the original volcanic surface has
been slight. At higher levels, however, the higher rainfall has resulted in a multitude of
sub-parallel streams, see Fig. 3, which results in narrow steep-sided interfluves.
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Fig. 3—Drainage pattern in the Mt. Kenya area.

Minor but significant differences of topography and drainage pattern occur on different
sectors of the mountain, and these differences are reflections of the nature and age of the
underlying volcanic rocks. The most marked differences are on the southern and south-
eastern slopes where the contour pattern brings out the varying degree of dissection. The
belt of youthful basalts between the Rumindi and Thuchi rivers contrasts with the more
dissected basalts to the west and phonolites to the east. The homogeneous contours and
drainage pattern on the western sector between the Ontulili and Sagana rivers, where phono-
lites and agglomerates predominate, is in contrast with the lesser stream density and reduced
dissection apparent on the north-eastern sector, which is composed of relatively younger
basalts, trachytes and pervious ashes and agglomerates.

The zone of fissile trachytes west of the Ragati valley forms an area of slightly higher
ground characterized by steep-sided, often flat-topped hills such as Tumu Tumu, Kiamucheru
and Niana. Some of the conical or flat-topped hills of this zone were wrongly interpreted
as volcanic plugs by Shackleton (1945, p. 4, Fig. 1). ) o

Among the relatively recent basalts forming the group on the southern slopes are those
which flowed down the Rupingazi and Ragati valleys. The Ragati valley-flow can be traced
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from near Gerere high on the south-western slopes, down the Ragati valley past Karatina
to a point near Sagana township in the area to the south. The floor of the valley is almost
flat and the Ragati river is incised no more than 10-20 feet, in contrast to the much more
deeply dissected and older volcanics which form the shoulders of the valley. A longer and
even more obvious valley flow is that found flooring the Rupingazi valley between Thambana
and a point well to the south of Embu township. Between Mwiria factory and the Njukiini
Forest the almost flat floor of the valley is most conspicuous in contrast to the steeply
incised neighbouring valleys. The junction of the various valley flows in tributaries of the
Rupingazi in the Mbubori-Thambana area is also notable.

The whole of the north-eastern sector of the mountain, between the Nithi and the Sirimon
rivers, is physiographically distinct from the remainder, being covered largely by ashes and
agglomerates. The ground is gently undulating and the streams run in narrow valleys of
steep V-profile. This sector is characterized by numbers of volcanic necks, cones and ex-
plosion craters. The largest of these is the volcano Ithanguni, which rises to over 12,700
feet, and is a squat flat-topped cone with a large crater-shaped depression occupied by Lake
Alice. Ithanguni formerly supported a small ice-cap, which covered the summit plateau
and extended down the sides of the hill, and destroyed the original crater.

Several circular stock-like bodies occur on the north-eastern slopes, notably the Giants’
Billiard Table, Rutundu, the circular plateau two miles east-south-east of Runtundu, and
the plateaux immediately south and north-east of Lake Ellis. The two best developed are
Rutundu and the Giants’ Billiard Table; they are circular and almost flat-topped, but with
slight central depressions. The outer margin is an unbroken circle of cliffs rising from almost
level ground. They are interpreted as the stocks of small vents which were surrounded
by low crater walls or unconsolidated ash, which have since been eroded away. The stocks
are composed of crudely columnar trachyte.

Other more recent small vents of pumiceous basaltic lava are found on the northern
slopes and still preserve their crater form. These low vents are part of an extensive field
covering much of the lower northern and north-eastern slopes, and which are part of the
Nyambeni volcanic chain (Mason 1955, pp. 3-5, Fig. 2, Shackleton 1946, Fig. 9, pp. 37-38).

On the slopes of the mountain there are several crater-shaped depressions of two main
types:—those not obviously connected with a volcanic vent, and some which are so con-~
nected. In the first category are the Kachimba depression one and a half miles south-east of
Chehe Forest Station, the Muthere depression two miles west of Castle Forest Station, ané the
depression one mile east of the upper end of the Kamweti track. Those of the second type
are the depressions occupied by Lake Alice (Ithanguni), Rutundu lake (Rutundu), and the
depression traversed by the Ruguti river at 7,800-8,000 fect. :

" The depressions of the first type are characterized by their basin-like form and only
slightly raised rims. The Kachima depression is 1,600 yards wide in a north-south direction
and 1,400 yards wide in an east-west direction, and of an average depth of 150 feet below
the surrounding country. Its floor is occupied by a swamp feeding the Ruiru river, which
breaks through the southern rim of the basin. Owing to the very poor exposure in this
area nothing could be discovered about the underlying structure. The depressions are,
however, regarded as phreatic explosion craters caused by the contact of groundwater
with the centres of still hot, thick lava flows, or possibly shallow dykes. A generally similar
explanation is invoked for the depressions of the second category. The fthanguni (Lake
Alice) and Rutundu basins are both alongside trachytic necks and are formed in relatively
unconsolidated volcanic ashes. Their proximity to necks which have evidently been pre-
dominantly explosive in their mode of eruption suggests that they are due to large phreatic
e;;%osions],(sprobably as a result of the contact of groundwater with the lower still hot parts
of the necks.

. 2. The Upper Slopes—the glaciated area

. The.upper slopes above the forest coincide in a general way with the area formerly affected
by glaciation, and can be subdivided into the moorland zone and the alpine zone above,
The two zones grade into one another at approximately the 14,000 foot contour. The main
topographic differences which distinguish the upper glaciated slopes from the lower slopes
are immediately clear from the maps. In the glaciated area the valleys are deeper, broader,
less closely spaced, and have fewer tributaries than those below. The ridges of the lower
part of the glaciated area are ice-smoothed, while higher up deep cirques are separated by

11



serrated rock ridges. The central group of peaks is of alpine aspect-—precipitous, with great
cliffs of ice-worn and frost shattéred rock. These peaks bear the small valley glaciers which
dte the remnants of the extensive ice-sheet that formerly covered the whole of the upper
slopes. : . : : ’ 2

(1) The Moorland Zone E

" The open, rounded valleys and ridges of the moorland zone, the ice-smoothed rock
bosses, trains of erratic blocks and the well-preserved moraines, testify to the fact that the
greater part of this zone was once covered by a mountain ice-sheet, of which the present
glaciers are the remnants. Projecting rock pinnacles and peaks are rare and even the ridge-
tops are ice-smoothed or carry lateral moraines. This zone of the mountain is reminiscent
of some of the less rugged parts of the Highlands of Scotland.

~The valleys of the zone have the radial consequent pattern characteristic of the whole
mountain, and at the lower margin of the zone grade upwards from forms of primarily
fluviatile to mainly glacial form (see Fig. 2b). The main valleys traverse the zone and head
on or near the central peaks, but there are numerous smaller, shallower valleys which ter-
minate in small incipient cirques. The valley floors are generally smooth and composed
of ground-moraine; rock outcrops are in the form of ice-worn bosses, lines of cliffs, and
inclined tabular bodies margined by cliffs. Much of the ridge-tops is composed of moraine
or frains of large erratics; an excellent example of the latter occurs between 11,500 and
12,000 fect two and a quarter miles north of the Highland Castle, between the Nanyuki
North and Liki South rivers. The southern ridges of the Mackinder and Hausburg valleys
are covered by long lateral moraines over much of their lengths, and lateral moraines also
curve down into the valleys, such as that between 13,000 and 14,000 feet on the north side
of the Teleki valley. ' )

_ The depths of the valleys increase markedly upwards in the moorland zone, but in contrast
to the alpine Zone the valley floors are rarely stepped and contain few lakes. Carr Lakes,
Lake Michaelson and Hook Tarn are among those which occupy glacially excavated rock
basins; Lake Hohnel on the other hand is a lake dammed by moraine. Some of the smaller
Takeés, for instance the Hall Tarns, the two small lakes on the east side of the Nyamindi
East valley; and Hook Tarn, occur on ice-scoured platforms of resistant rocks which project
from the valley sides. ‘

“The depth of glacial erosion iri the moorland has been insufficient to yield many good
examples of hanging valleys. The left bank tributary valley of the Nyamindi one and a half
miles south of Hiddem Tarn is, however, one such example, and there are several lesser
ones on the south side of the Gorges valley.

_.The Gorges valley exhibits many of the glacial land-forms typical of the mountain in a
particularly clear and impressive form. The terminal moraines which mark the maximum
extension of the glacier down this valley occur upstream of the Nithi waterfall, at 10,700
féet. The terminal moraine loop is cut through by the Nithi river to form an extremely
narrow canyon partly choked by large fallen blocks. The depth of the canyon is approximately
30 feet. Upstream of the canyon there is a complex of well-preserved lateral and terminat
moraines which extend up to two and a half miles west of the warfall. The average depth
of the valley in this region is 300400 feet. From the area of the Nithi waterfall up to Vivienne
Falls the valley floor has only a very gentle slope, and immediately east of Vivienne Falls
it.is practically flat-floored. The depth of the valley increases markedly, however, and up-
stream of a point one mile east of Vivienne Falls the valley sides are precipitous cliffs. At
Vivienne Falls is the first of the several steps which occur in the floor of.the valley. The
step above the Falls is occupied by a short flat section containing a swamp; the basin above
the second step is occupied by Lake Michaelson, and the ledge above the third step (at
13,700 feet) is occupied by the deposits of a lake which has since drained away. A fourth
step is surmounted by a partially dried up lake basin dammed by moraine at an elevation
of 14,350 feet. At the third step the Gorges valley is constricted by the Hall Tarns platform,
which is a flat-topped ledge half a mile wide projecting into the valley from its northern
side. This platform is composed of a resistant trachyte neck, the upper part of which is g
conspicuously ice-smoothed surface containing a number: of small rock-basins occupied
by lakes or'lake deposits. The north-western part of the platformis surmounted by an oval
moraine ridge 250 feet high. The southern margin-of the Hall Tarns ‘platform is a vertical
liff 600 feet high with a steep slope ‘covered by large erratic blocks at its base. This slopes
a further 500 feet down into Lake Michaelson. - -~ - o A
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In the floor of the narrow gorge below the Hall Tarns platform is an immense fallen block
of rock derived from the columnar trachyte cliffs immediately above. This block, which
is approximately 150, feet high and 300 feet long, has ice-smoothed and striated surfaces
on one vertical face, and exhibits good subhoriZontal columnar jointing. It is a large piece
of the upper part of the Hall Tarns cliff, where the ice-smoothed surface is horizontal and
the columnar jointing vertical, which has fallen off since the retreat of the glacier from this
part of the valley. <

Ithanguni mountain is a satellite volcano which supported a small ice-cap separate from
the main system to the west. It is a squat, flat-topped satellite vent margined by a deep
explosion crater occupied by Lake Alice on its north-west side. It supported a smail ice-cap
which smoothed the summit plateaun, giving rise to an undulating plateau surrounded by
cliffs of variable height. Shallow ice-cut valleys radiate from the plateau and the furthest
extent of the ice is marked by a lobed fringe of moraines. Below the ice-eroded level the
slopes are very nearly of ideal volcanic profile having only shallow canyons cut into un-
consolidated ashes and agglomerates. , .

(2) The Alpine Zone

The large cirques at the heads of the major valleys, their inter-connecting ridges, the
central group of peaks and the out-lying peaks of Tereri and Sendeyo constitute the alpine
zone. The main water-shed on this uppermost part of the mountain is on the ridge linking
Sendeyo-Simba Col-—Pt. Lenana—Tilman Peak, Grigg Peak and Hohnel Peak and coincides’
with the Uaso Ngiro-Tana River watershed. The central group of peaks lies entirely in the
Uaso Ngiro drainage area. The Mackinder, Hausburg and Teleki valleys have their heads
on the main peaks, while the remaining valleys on the eastern side—the Hobley and the,
Hinde—have their heads on the Lenana-Sendeyo ridge. The floors of the cirques at the
heads. of these valleys are ‘at elevations between 13,700 and-14;100 feet, and many of the-
inter-connecting ridges are some 1,200 feet higher, but locally the rise to the highest peaks
is much greater; the rise from Shipton’s cave in the Mackinder valley, and from Mackinder’s
Camp in the Teleki valley to the summit (Batian) is 3,350 feet.

As is commonplace in alpine terrain the most conspicuous peaks (horns) occur at the
intersections of the ridges bounding three or more cirques. Examples are Tereri, Sendeyo, -
Pt. Lenana, and the Coryndon, Delamere and Macmillan group. Numerous rock pinnacles
(gendarmes in mountaineering terminology) occur-on the higher ridges, and are well developed
on the ridge between Sendeyo and Simba Col, and some others have been named, such as
the Tooth, Thomson Flake and Pt. Thomsob. -

The main peaks of Mt. Kenya (Batian, Nelion, etc.) are in a separate category from the:
remainder, for. their characteristic form and extra height is due largely to the peculiarities
of the nepheline-syenite of which they are composed. The summit massif (see Fig. 10 at’
end) is composed of Batian (the summit, 17,058 ft.), Nelion (17,022 ft.) and Point Piggott
(over 16,100 ft.), and is in the form of a reversed letter E, which faces south-westwards.
The principal ridge is that connecting Pt. Piggot-Firmin Col-Petit Gendarme-Grand Ger-'
darme-Batian-Gate of the Mists-Nelion-Mackinder’s Gendarme-Pt. John and Midget
Peak. A steep buttress descends from ‘Batian to the south-west, and another descends:
northwards from the Petit Gendarme and carries Points Dutton and Peter. The north face
is a precipitous cliff cut by narrow gullies and stone-chutes, and lies' between: the Krapf
and Northey glaciers. - s

- A subsidiary group of small peaks occurs in the head of the Hausburg valley to the west
of the main massif, and comprises Arthur’s Seat and the Eastern and Western Terminals.
These peaks together with the main massif are all composed of the phonolites and syenites
which form the sub-circular plug of the Mt. Kenya volcano. The steep conical form of many
of the minor peaks such as Pt. Dutton, Midget Peak and Pt. John (see plates I and ),
is found repeated on nearly all the ridges, and accounts for the pleasant symmetrical-outlines
which characterize the central peaks, particularly when seen from the west. These forms
are controlled largely by the joint system within the nepheline syenite. e

.The most important joints are concentric planes with a very steep outward dip, such as
those which form the greater part of the north-east faces of Batian and Nelion. Frequently ‘
nearly vertical intersecting joints give rise to crude columnar jointing, such. as in thié western:
face of the south ridge of Nelion, and on the north-west ridge of Batian, A subsidiary set
of joints is:ificlined at approximately 45 degrees to form ‘an intersecting systém,: but thesg,
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are comparatively widely spaced and only locally exert a notable effect. Such places are
on the lower south face of Batian, north-west of the Darwin glacier, on the eastern face
of the south ridge of Nelion, and very conspicuously on the west face of Batian.

A basaltic dyke, which due to its more easily eroded nature forms a narrow gulley, cuts
across the eastern face of the north ridge of Batian and forms the Gate of the Mists. It
passes beneath the Diamond glacier and bisects the buttress between the two snow and ice
couloirs that descend to the Darwin glacier. A further phonolite dyke forms a narrow chim-
ney on the north face of Pt. John.

The concentric steep joints are most marked in the area between Arthur’s Seat, Western
Terminal and Emerald Tarn, where they show particularly well on air photographs. It is
in this area that the ring structure of the central plug is best developed.

Around the foot of the main peak are a number of small lakes situated mostly in the
floors of the large cirques. Among the rock-basin lakes are Oblorg, Hausburg, Fmerald
and Nanyuki Tarns in the head of the Hausburg valley, and Gallery and the larger of the
Thompson Tarns in the Hobley valley. Other small lakes dammed by moraine are Tyndall
Tarmn, Harris Tarn and Kami Tarn. Both the Curling Pond and the Lewis Tarn are small
pro-glacial pools, the former being the only body of water to be permanently frozen over.
The rich sapphire colour of many of the small lakes on the mountain is due to the presence
of algae, while diatoms form a very high proportion of the sediment deposited in these
lakes. Lakes Hohnel and Ellis are, however, of a brown shade due to the abundance of
lacustrine vegetation and the resulting humus-stained water.

The base of the main peaks is incompletely fringed by comparatively recent moraine-
loops, which occur at distances of a few hundred feet below the present glaciers. These
moraines are well-preserved and commonly comprise a closely spaced double loop appro-
ximately 10-30 feet thick (see plate II, Fig. 1).

3. Erosion Surfaces

Although the only erosion surface that can be inferred in the present area is limited to
parts of the Sagana valley, brief consideration of the erosion history of the neighbouring
areas is desirable in that it permits estimations of the ages of the various volcanic groups
to be made in the absence of evidence from fossils.

The metamorphic floor beneath the Simbara Series is exposed at intervals in the Sagana
and Nairobi valleys. In the Sagana valley one and a quarter miles west of Tumu Tumu hill
the volcanic/Basement System junction is at 5,150 feet, and it occurs also in the Nairobi
and Sagana valleys at the latitude of Kiganjo at 5,550 feet. The northernmost exposure of
the junction is in the Thego river one mile south-east of Ngondi, at 5,650 feet. The Basement
System inliers at Marua and Kailewa rise well above the level of this junction. The exposures
of the sub-volcanic floor mentioned above are co-planar with the conspicuous bevel which
ocecurs on the belt of metamorphic hills west of the Sagana valley in the area to the south
(Fairburn, 1966), and can be traced as far as the latitude of Sagana township. It can be
traced further south, across the Maragua gap, and finally merges with the surface defined
by the base of the Yatta phonolite. The sub-volcanic surface in this part of Kenya has
been sl)Jown to approximate to the sub-Miocene erosion surface (Pulfrey, 1960; Fairburn,
op. cit.).

The sub-volcanic surface beneath the older phonolites of Mt. Kenya is exposed between
Meru and Embu, and south-east of Embu (Schoeman, 1951; Bear 1952), and occurs at
elevations usually between 3,000 and 4,000 feet. Bear (1952, pp. 4-5) describes the phonolites
of the Munyori and Kavukumo areas resting on a peneplain at 3,800 feet, and recognizes
residuals of this plain south of the Tana river. In the Embu-Meru area, however, the
sub-phonolite floor is seen to be irregular, and the phonolites rest on an inclined surface
which slopes much more steeply than any of the erosion surfaces known in central Kenya.
Furthermore the whole of the exposed sub-phonolite floor is lower than the elevation of the
sub-Miocene erosion sutface in this area, for the latter is at elevations between 4,000 and
4,500 feet along the eastern and south-eastern margins of the Mt. Kenya volcanic field.
The writer therefore disagrees with the statements of Bear and Schoeman (op. cit.), that
the Mt. Kenya phonolites rest on the sub-Miocene peneplain. It is more likely that the
phonolites rest on. an undulating surface lowered in many places well below the level of
this plain, and, in places such as the sector east of Chuka, lowered even below the projected
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level of the end-Tertiary (mid-Pliocene) erosion surface. On this evidence therefore the
age of the Mt. Kenya phonolites of the south-eastern sector of the mountain is no older
than Upper Pliocene.

Shackleton (1945, p. 5) showed that the basalts erupted from vents low on the northern
slopes of Mt. Kenya flowed through valleys in the Loldaika hills and spread out on the
end-Tertiary erosion surface south of the Uaso Ngiro river. For this reason he believed
them to be of Lower Pleistocene age. A similar situation is presented by the basaltic field
on the lower southern slopes of the mountain. These basalts extend into the area to the
south as far as latitude 0° 45’ S., and can be seen to rest on a well-marked erosion surface
locally. The furthest tongue of these basalts descended the Thiba valley south-east of Embu,
however, where it lies considerably below the erosion surface. The erosion surface, which
lies at elevations between 3,600 and 4,000 feet in the Fort Hall-Embu area (cf. Fairburn,
1966), is believed to be part of the end-Tertiary (mid-Pliocene) bevel. Both the basalts
of the northern and southern slopes of Mt. Kenya are known to be among the youngest
volcanic rocks of the area, and since they appear to rest on, or locally below the end-Tertiary
bevel, they must be considered as wholly Pleistocene in age.

The evidence summarized above suggests that the vulcanicity of Mt. Kenya began shortly
before the maturation of the end-Tertiary (mid-Pliocene) erosion surface, and continued
for a considerable time after it had begun to be incised by a new erosion cycle. For these
reasons the Mt. Kenya volcanics are cousidered to be Plio-Pleistocene in age. Since they are
lagg!:,lly if not wholly Pleistocene they have been tentatively classified as such in various
tabulations.

II.—SUMMARY OF GEOLOGY

The geology of the area can be summarized in the following tabulation:—
Maximum observed

thickness, feet.
Recent Superficial deposits—soils, laterites, ashes, younger
moraines, glaci-fluvial deposits, older moraines.
basaltic pumice cones .. .. .. 200-300
Thiba Basalts .. .. .. .. >500
8
.8 | & @ | Ithanguni and other trachytic volcanics
3 gs and necks . P .
9 & 7~ | agglomerates .. .. .. .. > 600
§ P &, @| riebeckite trachytes .. .. . 80
S |3 88| olivine basalts .. .. .. .. 700
> |& @ | mugearites, olivine trachytes .. .. 800
Pleistocene s
3 nepheline syenite and phonolite of the
M| e plug .. .. .. .. .. —_—
§ ‘E.o | kenytes, phonolites and pyroclastics . . >1,800
8 | 23 | phonolites and trachytes .. .. >1,600
= | 2-Z | rhomb porphyries .. .. .. 1,100
‘2 &' | phonolites R 0-400
= unexposed volcanics .. .. e 9,500
lower basalts .. . .. .. C 150
Pliocene Laikipian Basalts—olivine basalts, basanites, olivine
nephelinites .. .. .. .. .. .. ¢ 400
Nyeri Tuff——trachytic tuffs and agglomerates .. 100
Miocene (D Simbara Series—basalts and agglomerates .- .. >250
Pre-Cambrian Basement System—micaceous and grabhitic gneis-
ses, amphibolites, quartzo-felspathic gneisses,
and pegmatites .. .. .. .. .. —
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IV.—~DETAILS OF GEOLOGY

1. Basement System

__Metamorphic gneisses and schists of the Basement System outcrop at the southern
-eastern and northern margins of the Mt. Kenya volcanic field, and occur as inliers in the
south-west. part of the Mt. Kenya area (see sketch-map of the Mt. Kenya suite, at.end),
Blocks of metamorphic rocks are common high on Mt. Kenya in the trachytic agglomerates
west of Ithanguni, and it is clear that Basement System rocks form the foundation of the
volcanics in the area.

- Basement System -inliers beneath the Simbara Series basalts and agglomerates oceur
in the Sagana, Nairobi and Thego valleys, and project-above the volcanics at Marua and
Kailewa. Further inliers occur at the southern boundary of the area in the Miseri river
‘and in the area 1mmed1ate1y west of Kabonge village. _Exposures in the latter area are of
hornblende-biotite gneisses with numerous patches, irregular veins and strmgers of peg-
‘matite and aplite. In more leucocratic zones felspar augen are developed.

The scattered exposures in the Nairobi and Thego rivers are mostly of coarse streaky
biotite gneisses, with occasional thin quartzo-felspathic granulites. In the Thego river two
‘miles east of Kiganjo there is a series of muscovite-biotite-graphite schists- ‘totalling 75 feet
in thickness exposed in the river bank. A few thin bands are moderately rich in graphite,
but- the flakes are very fine and the graphite content too low to warrant economic con-
sideration, There are no exposures on the upper part of the Kailewa inlier, but sandy soil
and the presence of loose pieces of quartz, pegmatite and coarse biotite gneiss point
to the constitution of the hill. There are exposures in the small valley one and a half miles
south-west of nga village. They are of mass1ve quartzo-felspathlc granuhtes w1th scattered
iron oxide grains. .

"nghly ‘weathered muscov1te-b10t1te gnelss is belng dug in a quarry 1mmedxately north-
west of the Marua building stone quarries, and is being used as the basis of the cement-
stabilized foundation of the new Karatiria-Nyeri road. The gneisses are overlain uncon-
formably by the uppermost member of the Nyeri Tuff. .

In a.ditch beside the new road at a point half a mile north—west of Kaiyaba village gritty
quartzose soils outcrop beneath a two foot layer of dark grey swampy clays. This occurrence
is suggestive of a Basement inlier in the vicinity. - )

" “The Basement Systemrintiers of the south-western part of the area appear to represent
the exposed parts of a sub-volcanic ridge extending from the Ithanga and Kakuzi hills in
the area to the south, through -the Fort Hall-Sagana region into the Marua-Kailewa-Ngondi
area.’

e 20 Simbara Serles ¢ -

The Simbara Series (Shackleton 1945, p. 2) and its equivalent to the north, the Samburu
Series (Shackleton 1946, pp. 29-31) are the oldest of the volcanic rocks over a wide area
cast of the Rift Valley. Representatwes of the Series outcrop in the sides of the main valleys
in the south-westérn cornier of the afea, where they rest on Basemeént System rocks and are
overlain by the Nyeri Tuff. The maximum thickness of the Series in the present area is
developed in the Sagana valley below Kathangeini quarry west of Tumu Tumu, the thickness
here being 250 feet. The Series thins towards the north, and in the Ngondi-Kiganjo-Chieni
Forest area the overlying Nyeri Tuff rests directly on the Basement System.

The best sections in the Simbara Series are found in the vicinity of the Sagana Falls
Power station, where nearly 100 feet of the Series is exposed at the falls. The following
account is based partly on an unpublished report by A. Huddleston. The succession at the
Falls and in the immediate neighbourhood is as follows:—

. ' Jeet
soft grey tuffs (Nyeri Tuff) - .. .. ¢ 80-100
- .. lenticular boulder beds . .. oon . 0-15
columnar olivine basalt (Sagana Falls basalt) - 40
brown basaltic tuffs . . .. .- e - 35
basaltic conglomerate .. .. .. .. 2-4
- . basaltic agglomerate . . .. . . eeoe - 230

The Sagana Falls basalt forms the lip of the waterfall and can be traced as a feature
which locally forms columnar cliffs as far down the Sagana valley as the confluence with the
Karuarua Kamu stream, and it outcrops in_the river upstream of the Falls as far as the
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Marua bridge, and at the Sagana-Ghania ‘confluence: It does not appear, however, in-the
Chania river at the same level. It.forms the upper member of the Simbara Series: in the
Sagana valley, and the lenticular boulder beds above are regarded as marking the uncon-
formity between the Series and the overlying Nyeri Tuff. Co -

Occupying the floor of the Sagana valley downstream of the falls, and in.the Muringato
and Chania valleys, are scattered exposures of basaltic agglomerates containing olivine
basalt, porphyritic basalt and olivine-nephelinite fragments. The agglomerates contain
both vesicular and porphyritic olivine-bearing picrite-basalt such as specimen 44/1258*
from the foot of the Sagana Falls. The picrite-basalt contains notable amounts of zeolites
in vesicles. ‘

In the Muringato and Nairobi valleys one and a quarter miles south-west and three
quarters of a mile north of Kirichu village the agglomerates are rich in fragments of por-
phyritic augite basalt and basalts with clusters of felspar phenocrysts. Among the Muringato
exposures are some with fissile basalt fragments, and blocks of this type up to three feet in
diameter occur in the railway cuttings north of Kirichu village. . .

’ : "3, The Nyeri Tuff ,

_The Nyeri Tuff (Shackleton 1945, p. 3) forms an easily recognizable bed and can be seen
in numerous quarries where it is worked as a. building stone. The tuff occurs between the
underlying Simbara Series and the overlying Lakipian Basalts, but oversteps the Simbara
Series and rests directly on the Basement System in the Kigaan-Chieni-Ngondi area.

The best exposures of the Nyeri Tuff are in the Nairobi river north-east of Kiganjo, where
there are two large quarries on the eastern side of the valley. In the northerly guarry, on
Doig’s Farm, a quarry fa’ce nearly 200 yards long exposes the following section:— )

. . Seet
basaltic rubble (Laikipian Basalts) - .. 4
grey basaltic tuff .. ce e eerae 13
weathered tuff and lateritic soil .. ce el 12 .
brownish grey weathered trachyte t . .. 45 '
pale grey trachyte tuff (building stone) 24

medium to dark grey gritty tuff (base not ex.[;osed). ' 6 )

A. similar succession is exposed in the southern quarry, but in the Nairobi river below this
quarry there are cliffs of finely agglomeratic brownish grey tuffs up to 30 feet high. The base
of the river exposure is some 100 feet below the top of the tuff exposed in the nearby quarry.
Biotite gneisses are exposed in the river some 400 yards downstream from this point, and the
estimated thickness of the tuffs in this area is approximately 100 feet. Scattered exposures,
in the valley side a quarter of a mile east-of Kiganjo show that the lower part of the tuff is
agglomeratic, with fragments of pumiceous trachyte up to three inches in diameter. Scattered
trachyte agglomerate exposures occur on the path descending into the Nairobi valley one
and a half miles south-east of Kiganjo. . ‘

" A small disused quarry in the side of the Theg  valley three-quarters of a mile south-east
of Ngondi exposes pale grey tuff with lensoid pumice fragments, and scattered small tuff
exposures are -found alternating with exposures of Basement System rocks downstreamx
in the Thego river as far as its confluence with the Sagana. Small disused quarries expose
the tuff in the Chieni Forest one mile east of Kirichu village and immediately south-cast
of Gatunganga trading centre.

* The best of the numerous exposures in the vicinity of Marua village is at the large Ké\higa

stone quarry three quarters of a mile north of Marua village, and at the quarry by the main’
Nyeri road immediately north-west of the village. The sections in the quarries are:—

I
: : ‘ . Jeet feet
spheroidally weathering Laikipian Basalt .. .. .. _— - 20
soft yellow-brown pumice tuffs with felspar fragments .. 8 12
. . . 6 10

soft weathered trachyte tuff. . .. ..
. grey trachyte tuff (building stone) .. . o .. . 14 6 -

brown-grey agglomeratic tuff . .. .. . e .. 5 notexposed
"~ I—Kahiga quarry : B -
" II—Quarry three-quarters of a mile north-west of Marua g
~ »Numbers 44/1258 etc. refer to specimens in the regional collections of the Geological Sur'vey;Nairobil
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In the Karatina-Nyeri road cutting east of Marua village the upper parts of the Nyeri
tuff are exposed. The section due east of the village is:—

Seet
grey fine-grained tuff .. .. .. - .. .. .. . 12
well-bedded, yellow-brown tuff . .. .. .. .. .. 12
grey fine-agglomeratic tuff .. . . .. . .. - 20
(base not exposed)

At the next road cutting to the south the overlying Laikipian Basalts cross the road
at the bend, their base being approximately 50 feet above the yellow-brown tuffs of the
previous locality. Beneath the basalts dark brown pumice tuffs with numerous small felspar
crystals are exposed. A futher road cutting one mile south-east of Marua village exposes
grey trachyte tuffs at road level overlain by yellow-brown tuffs grading upwards into deep
red-brown soil. Near this locality spheroidally weathering Laikipian Basalt is exposed in
a sma&lﬁ quarry—the base of the basalt appears to be about 25 feet above the top of the
grey tuffs. :

Scattered exposures in the sides of the Sagana valley between Marua and the southern
boundary of the area show that the Nyeri Tuff rests on the Sagana Falls basalt, which is
the upper member of the Simbara Series in this area, and that the average thickness is
approximately 100 feet. The last good exposure of the tuffs is seen in the Kathangeini quarry,
near the southern margin of the area, where 30 feet of homogeneous medium to dark grey
trachyte tuff with felspar and small pumice fragments occurs, and is overlain by 15 feet
of soft, weathered yellowish brown tuffs of similar lithology.

Summarizing, the Nyeri Tuff of the present area is generally approximately 100 feet
thick and rests with unconformity on the Simbara Series. The lower half of the formation
is poorly exposed but seems to be finely agglomeratic. The upper half consists of a fine-
grained homogeneous grey tuff much used as building stone, and which is between 12 and
25 feet thick. This is followed by friable yellow-brown pumice tuffs which are often brown
near the top and show feeble bedding. The upper boundary is a mature soil overlain by
Laikipian Basalts.

Two specimens of the tuffs were collected from the Kahiga quarry near Marua, specimen
44/1248B of the upper grey tuff (building stone), and 44/1249 from the lower, darker slightly
agglomeratic tuff. Specimen 44/1248B is pale grey with numerous sub-angular pumice
fragments up to one inch long, and scattered fresh felspar fragments up to one millimetre
long in a fine-grained matrix of clay grade with minute claystone lenticles. All the lenticles
and pumice fragments show a strong parallel alignment which is sub-horizontal in attitude
in the exposures. Specimen 44/1249 is generally similar, but is darker on account of the
much greater proportion of pumice fragments.

In thin section the slices show the presence of alkali-felspars up to one millimetre in size,
in a cryptocrystalline clay matrix. There are small oval cavities lined with spherulitic growths,
and rare green aegirine grains occur also. Some of the small clear grains may be quartz.
These rocks are distinct from the similar trachytic tuffs which contain flattened glassy
lenses and shards and which have been called welded tuffs. Nevertheless their bedded
character and the presence of a parallel fabric suggest that they are the results of hot ash
flows comparable to nuées ardentes.

The Nyeri Tuff dips to the south-east with remarkable regularity, its slope being appro-
ximately 50 feet per mile. It passes into the area to the south, where it has been correlated
with the upper member of the Upper Athi Series (Fairburn, 1965). Shackleton tentatively
correlates the Nyeri Tuff and the Kinangop and Suguroi tuffs, which are of similar lithology
and geological setting (Shackleton 1945, p. 6). If these correlations can be sustained the
Nyeri Tuff and its equivalents to the south and in the Rift Valley provide a most valuable
marker horizon.

4. The Laikipian Basalts

The Laikipian Basalts were first described by Gregory (1921, pp. 136-143) and re-defined
by Shackleton (1945, pp. 3—4). Shackleton (op. cit. pp. 3-5) showed that in the Amboni
valley north of Nyeri the phonolitic agglomerates of the Mt. Kenya Volcanic Suite rest
on Laikipian Basalts in one place, and in another directly on Simbara Series. He assumed,
however, that the bulk of the Laikipian Basalts overlie the Mt. Kenya agglomerates along
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their junction north of Nyeri. Evidence from the present area suggests that the Laikipian:
Basalts wholly underlie the Mt. Kenya Volcanic Suite. It follows that the basalts erupted
from vents on the northern slopes of Mt. Kenya (Shackleton 1946, p. 39) and the basalts
erupted on the southern slopes of the mountain (the Thiba Basalts of the present report),
both of which Shackleton included in his Upper Laikipian Basalts (cf. Shackleton 1945,
table facing p. 6), are in fact much younger than the Lakipian Basalts of the type area in
southern Laikipia and on the Aberdare dip-slope, and should be given the status of separate
formations. The term Upper Laikipian Basalts should therefore be allowed to lapse.

1t is proposed that the term Laikipian Basalts be restricted to the basalts of the Aberdare
dip-slope, which rest on the Nyeri Tuff and underlie the outer formations of the Mt. Kenya
Volcanic Suite. The basalts erupted from vents on the northern slopes of the mountain,
which are younger than the Laikipian Basalts, are outside the present area, but the similar
basalts on the southern slopes are named the Thiba Basalts.

The Laikipian Basalts occur in the south-west corner of the present area, where they
form the upper part of the dissected and inclined Aberdare dip-slope. Exposures of these
basalts are poor and scattered on account of the deep soils that have developed on them,
but can be found in most of the steep streams tributary to the main rivers. The Laikipian
Basalts reach their maximum development near the southern margin of the area, where
they are approximately 300 feet thick. They thin markedly northwards, and in the area of
Ngondi and the Sagana-Nairobi confluence they are no more than 50-100 feet thick. It
should be noted that the northern margin of the Lakipian Basalts in this area is largely
conjectural.

The Laikipian Basalts are compact dark grey rocks frequently exhibiting hackly fracture.
In hand specimen small zeolite filled vesicles are often seen, and in some specimens minute
olivines can be made out. They frequently show a well-marked columnar jointing, such as
that well exposed in the main road cutting one mile north-east of Sagana Power Station,
and in stream sections the columnar flows often give rise to small waterfalls. In weathered
exposures a tendency to spheroidal weathering is apparent, and in more deeply weathered
exposures the unaltered basalt remains as scattered rounded blocks in deep red-brown
soil, as in the road cutting three-quarters of a mile north-west of Marua village.

Petrographically the basalts are of alkaline and ultra-mafic tendency—they range from
olivine alkali-basalts through basanites to olivine-nephelinites, the basanites being the most
numerous. The undersaturated alkali mesostasis which characterizes them all was not
specifically determined, but the characteristic late vesicle fillings are always of turbid zeolites.
Olivine as slightly altered microphenocrysts is present in all the rocks. The most felspathic
rock, specimen 44/1288, was collected in the Karuarua Kamu stream north-west of Tumu
Tumu. Specimens 44/1315 from the stream one third of a mile south-east of the Sagana
Falls, and 44/1314 from the road cutting one mile north-east of the Falls, are basanites
characterized by well-formed olivine microphenocrysts in a matrix of abundant purplish
augite prisms and granules, scattered small plagioclase laths and a clear alkali mesostasis.
Scattered iron ore occurs also.

Occurring higher in the succession, possibly forming the uppermost flow over much
of the area, are olivine-nephelinites represented by specimens 44/1312 and 1313 from road-
side exposures one mile north-west and three-quarters of a mile west-north-west of Marua
village. Similar rocks were collected high in the succession in the area to the south from a
point one mile south of Muthinga village (44/1316), one and a half miles south-west of
Tumu Tumu (44/1317), and two miles south-east of Tumu Tumu (44/1318). At the latter
locality is the only good exposure showing the Tumu Tumu trachyte, which is part of the
Mt. Kenya Volcanic Suite, overlying the Laikipian Basalts.

5. The Mount Kenya Suite
The Mount Kenya Suite (Shackleton 1945, p. 4; 1946, p. 35) includes all the volcanic
rocks erupted from Mt. Kenya and from sattelite volcanoes on its flanks, excepting only
those that appear to belong to a separate and petrographically dissimilar volcanic episode,
namely the Thiba Basalts and the basaltic pumice cones of the northern slopes.

The Mt. Kenya Suite covers an area of approximately 2,700 square miles, an area which
is roughly circular in plan and with an average diameter of 65 miles (see Fig. 11 at end).
Since the original outline of the volcanic pile can be re-constructed due to the relatively
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small amount of erosion which has affected the lower slopes, the volume of the volcanic
pile before erosion can be estimated, and is approximately 2,300 cubic miles. The volume
of the pile at the present day is approximately 1,500 cubic miles, some 35 per cent having
been removed by erosion.

The age of the first volcanics of the suite is not known with any accuracy, but can be
estimated in a general way from the erosional history of the area to be sometime in the
upper Pliocene. The relatively young Thiba Basalts which overlie the Mt. Kenya Suite
on the southern flanks of the mountain are much younger than the maturation of the mid-
Pliocene peneplain, and are probably comparable in age with basalts of the northern slopes,
which Shackleton (1946, p. 38) found to be overlain by soils containing Kenya Fauresmith
and Levallois artefacts.

It should be remembered when considering the following description of the Mt. Kenya
Suite that the volcanic succession was originally some 16,500 feet thick at its maximum
near the centre, that some 5,000 feet of the upper part of the pile has been removed by
erosion, and that only 2,000 feet of the succession is exposed in the alpine zone at
the present day.

The remaining 9,500 feet of volcanics which form the basis of the mountain at the present
time are unexposed and their nature is largely uknown.

The sub-divisions adopted in the succeeding description of the Mt. Kenya Suite are
based Iargely on evidence obtained on the upper slopes of the mountain, which could be
studied in much greater detail than the lower slopes due to better exposures. The difficulties
in arriving at a satisfactory succession on a volcano are considerable, for such phenomena
as the simultaneous eruption of volcanics from separate vents, the tendency for lavas to
flow down relatively narrow valleys, first down one sector and later perhaps down another,
introduces a degree of complication not normally found in sedimentary sequences. The
limits of the formations described below are drawn at unconformities where these are
observed or inferred, or alternatively at changes of lithology where these seem to be of
more than local significance.

The Mt. Kenya Suite is divided into two parts—the volcanics of the main eruptive episode,
and the volcanics of the sattelite vents. The former are mainly the volcanics erupted from
the main vent that is now blocked by nepheline syenite, and the latter are the volcanics
erupted from sattelite vents and from fissures on the side of the main crater. The two periods
of vulcanicity are separated by the consolidation of the syenite and phonolite of the central
plug.

A tabulation summarizing the succession and thicknesses of the components of the
Mt. Kenya Suite is given below:—

Maximum observed

. thickness—feet
2 ( basalt pumice cones .. .. .. .. .. .. .. 200-300
§|ThibaBasalts .. .. .. .. .. .. .. .. .. >500
-2 4 trachytic plugs .. .. .. .. .. .. .. .. . c. 400
3 l Ithanguni trachytes and tuffs .. .. . .. .. .. .. c. 1,200
=
& | Mugi agglomerate .. .. .. .. .. .. .. .. >600
Lo @ riebeckite trachytes .. .. .. .. .. .. .. .. 80
299
§§§ olivine basalts .. .. .. .. .. .. .. .. .. 700
< 172}
ﬂ'@g { mugearites .. .. .. .. .. .. .. .. .. 800
!
2 “consolidation of phonolite and nepheline syenite of the main vent.
9 [porphyritic phonolites, kenytes and agglomerates .. .. .. . >1,800
& 2 [tuffs and agglomerates . 1,600
% S 9\ fissile phonolites and alkali trachytes >1,600
= >
2 -2 f porphyritic phonolites .. .. .. . .. .. .. 0-400°
154 “Z \_rthomb porphyries. .. .. .. .. .. .. .. > 1,100
= 8 “unexposed volcanics .. .. .. .. .. .. .. ¢. 9,500
'SL S lower basalts .. .. .. .. .. .. .. c. 15

older volcanics or Basement System.
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(1) Tae MAamN ERUPTIVE EPISODE

(@) The lower basalts

Occurring between the northern margin of the exposed Laikipian Basalts and the southern
margin of the phonolites and agglomerates in the area around Ngondi and the Royal Lodge
on the Sagana river, are scattered exposures of basalts which appear to overlie the Laikipian
Basalts and underlie the phonolites of the higher ground to the north. The only exposures
of these rocks to be seen are in small roadside quarries and diggings along the Kiganjo-
Ngondi-Tagwa hill road, and in the Thego river near the Thego Fishing Camp. An inlier
of similar basalt was seen at the ford over the Nairobi river six miles north of Ngondi,
and further exposures are seen at intervals in the Muthera river south of Niana hill, and
in the Kamwoya river one and three-quarter miles west-south-west of Hombe Forest
Station. Good exposures can be seen on the rising ground immediately east of the Kiganjo-
Naro Moru road two to two and a half miles north of Kiganjo.

These basalts are dark to medium greenish grey in colour and with a tendency to hackly
fracture. They contain no macroscopically visible phenocrysts and tend to weather easily
to a gravel. They frequently exhibit a tendency to polygonal jointing and crude horizontal
partings, and the flow exposed in the Thego river shows good columnar jointing. Their
field appearance differs from that of the Laikipian Basalts in the occurrence of horizontal
partings, the presence of a greenish shade and the gravelly weathering.

Two specimens were collected in the Ngondi area, specimen 44/1245 from the side of the
main Nanyuki road two and a half miles north of Kiganjo, and 44/1244 from the Ushekwa
river crossing two-thirds of a mile north-east of Thego Fishing Camp. Specimen 44/1245
contains numerous iddingsitized olivine microphenocrysts in a matrix of basic plagioclase,
abundant augite granules and sparse iron ore. There are numerous patches containing
slightly turbid zeolite. Specimen 44/1244 is slightly different in that olivine is much less
abundant and the plagioclase is intermediate in composition. Both rocks are varieties of
olivine alkali-basalts.

Specimens 44/1280 from the Muthera river south-east of Niana hill, and specimen 44/1252
from one mile south-east of Ngondi differ from those described above in having fissile
structure and matrices with trachytic texture. Under the microscope both rocks are seen to
contain oligoclase-andesine laths and fine aegirine-augite granules, a little fine iron ore
and a suggestion of an alkali mesostasis. The rocks are alkali-andesites.

(b) Rhomb porphyries and the Polish Man’s Tarn vent

Among the older volcanics exposed on the upper western part of the mountain are rhomb
porphyries and subordinate phonolites on the north-western sector between the Teleki
and Liki North valleys. They were erupted from a centre immediately south-west of Polish
Man’s Tarn, and are overlain by the porphyritic phonolites and kenytes erupted from the
main vent, and by the trachytes and fissile phonolites erupted from a satellite vent. They
rest on the porphyritic phonolites from the main vent in the area of Shipton’s Cave.

The best exposures occur along the ridge between the Hausburg and Nanyuki North
valleys, between the 13,000 and 14,300 foot levels, and in the Burguret valley in the Campi
ya Farasi area.

The typical rhomb porphyry is a medium grey, compact lava, characterized by the presence
of numerous rhombic felspar phenocrysts and by the absence of macroscopically visible
nepheline. In most examples the phenocrysts are approximately one and a half centimetres
long, but in some flows near the top of the succession exposed in the inliers in the Liki
North valleys the felspars reach lengths of four centimetres. The rhomb porphyries are
closely similar in field appearance, weathering and mineralogy to the porphyritic phonolites
which overlie them, the only difference being the absence of nepheline phenocrysts.

Traversing towards the Polish Man’s Tarn centre the rhomb porphyries show lateral
changes at a distance of one mile from the centre. The lavas become steadily more vesicular,
the matrix becomes glassy and is in shades of red and brown, and the rock weathers to fine
gravel. The proportion of pyroclastics increases from a minor to a major amount and forms
relatively thin beds with scoriaceous and de-vitrified lavas in the vicinity of the vent.

Under the microscope the phenocrysts of the rhomb porphyries are anorthclase which
has been resorbed to a greater or lesser extent by the matrix, especially in an example of a
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glassy lava, specimen 44/1211 from one and three-quarter miles north-west of Polish Man’s
Tarn. In the latter rock and in specimen 44/1210 from four and a quarter miles north-west
of the Tarn there are small partly altered olivine microphenocrysts.

The matrices of the five rocks sliced are variable, one has a fine saccaroidal texture of
alkali felspar with interstitial pyroxene granules and iron ore, another (44/996B) collected
from near the western margin of the vent has spherulitic texture, and the remainder have
very fine-grained pilotaxitic matrices. All contain interstitial zeolite, and in some the zeolite
occurs as turbid vesicle fillings. Small sparse nepheline phenocrysts were observed in some
of the lavas outcropping in the floor of the Mackinder valley near Shipton’s Cave, and
nepheline was suspected in some others from the presence of small weathering pits. In
composition the thomb porphyries are clearly closely allied to the porphyritic phonolites
of the super-incumbent formation. Their mineralogy is more clearly displayed in the better
crystallized examples from the neck at Polish Man’s Tarn, and from the neighbouring dykes.

The neck from which the rhomb porphyries were erupted is exposed immediately south-west
of Polish Man’s Tarn, and is represented by an inconspicuous sub-circular rock boss appro-
ximately 500 yards across composed of porphyritic microsyenite. A rock collected from
near the centre of the neck (specimen 44/1208) is strongly porphyritic, the rhombic felspars
reach four centimetres in length, and are set in a medium grained (0-2 to 1-0 mm.) matrix
in which sparse anhedral reddish nepheline patches can be made out. The central part of
the neck is homogeneous and closely jointed but there is a fine-grained marginal facies
of slightly fissile green-grey rhomb porphyry with sparse felspar phenocrysts. Numerous
north-west trending rhomb porphyry dykes cut the neck and the adjacent volcanics, especi-
ally around its northern margin. In thin section the porphyritic microsyenite (specimen
44/1208) is seen to contain anorthoclase phenocrysts up to four centimetres long set in a
plexus of tabular alkali felspars with interstitial zoned aegirine-augite, brown alkali horn-
blende often with an aegirine skin, and minor amounts of anhedral nepheline. The nepheline
is partly altered to analcite at grain margins. This rock is comparable to the nepheline
syenite of the peak but differs from it in the occurrence of large rhombic anorthoclase
phenocrysts and in the smaller proportion of nepheline. The presence of nepheline suggests
that the rhomb porphyries are undersaturated and that in most examples zeolites proxy
for nepheline.

The rhomb porphyries reach a maximum observed thickness of 1,000 feet in the Mackinder
valley and their base is not seen. They form the lowest exposed volcanics on the western
slopes but may not be the oldest lavas exposed on the upper part of the mountain, for they
are likely to represent a phase of parasitic vulcanicity concurrent with the eruptions of the
main centre. They are overlain by the porphyritic phonolites and agglomerates derived
from the main centre and are probably underlain by these volcanics also (see p. 21).

(c) The phonolite-kenyte sequence

The porphyritic phonolites, kenytes and agglomerates which are described below form
the bulk of the Mt. Kenya Suite. They outcrop extensively on the western and eastern
slopes and occur beneath the later formations on the other sides. They were erupted from
the main vent of the volcano and their symmetrical disposition about this vent proves that
it was dominant throughout the later life of the volcano, and probably throughout its
whole life. In the latest agglomerates of this sequence to be erupted the fragments are all
of porphyritic phonolite, kenyte and fissile phonolite. This suggests that no large bodies
of volcanics of other types lic hidden, and that the bulk of the unexposed volcanics are of
phonolitic composition.

The phonolite and kenyte lavas, and the nepheline syenite that froze in the main vent,
are chemically alike; the differences lie in texture and grain size. The kenytes are confined
to the immediate vicinity of the central peak and are the glassy varieties of porphyritic
phonolite. Every gradation between kenyte and phonolite is observed high up on the moun-
tain, and on the lower slopes kenytes are absent except as blocks in agglomerate.

(i) Porphyritic phonolites and agglomerates

The porphyritic phonolites and agglomerates are the lateral equivalents of the kenytes,
and form the greater part of the western and eastern slopes. They and the kenytes were
erupted from the main vent over a lengthy period which embraced the eruptions of the
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two parasitic centres which produced the fissile phonolites, alkali trachytes, tuffs and agglo-
merates of the upper Teleki valley and the lake HGhnel area, and the rhomb porphyries
of the Polish Man’s Tarn vent. The evidence suggests that the phonolite main vent activity
was concurrent with that of the parasitic vents of the western slopes, for there is apparently
no significant break in the deposition of the porphyritic phonolites on the other sectors.
The generalized succession on the western slopes is as follows; the phonolites considered
here are indicated in italics:—

. porphyritic phonolites and agglomerates.

. alkali trachytes, fissile phonolites and pyroclastics.

. porphyritic phonolites (some with large rhombic felspar phenocrysts).
. thomb porphyries—nepheline syenite neck, dykes.

porphyritic phonolites (base not exposed).

=N WA

The porphyritic phonolites and agglomerates of the upper part of the mountain are
exposed in the floors of some of the valleys of the northern and western slopes, and form
the greater part of the south-cast sector of the mountain. At a distance of two to three
miles from the margin of the plug of the main vents they grade into kenytes. Agglomerates
occur at all levels but are not conspicuous on the lower slopes of the moorland zone except
at the base of the upper phonolite succession (5 of the table above), where they form notable
beds resting on the fissile phonolites and alkali trachytes on the western and southern slopes.

The phonolites weather into rounded blocks and boulders, and outcrop in columnar
cliffs. Like the kenytes extreme weathering and frost action in the alpine zone quickly
reduces the blocks to a fine gravel which is an important constituent of the glacio-fluvial
and lake deposits such as those in the Liki North valley. They are generally less resistant
to weathering and glacial erosion than the other lava types with which they are inter-bedded,
for the phonolites do not usually form the ridge-tops.

The upper phonolites and agglomerates form the whole of the basis of the forest zone
and lower slopes on the western side of the peaks, but outcrops in the forest are extremely
rare, and are little better on the lower slopes. In the forest belt the streams are generally
choked with the gravels and boulders deposited during the over-loading of the streams
at the time of the glacial maximum, and on the ridges only very rare large rounded blocks
are seen projecting from the deep soil. Scattered phonolite exposures occur in the Embu
district in the south-eastern corner of the area, and along the southern and eastern margins
of this area agglomerates are the dominant exposed rocks.

Phonolitic agglomerates are common on the lower western slopes, west of Gathiuru
Forest Station, and also in the Embu district in the extreme south-eastern corner of the
area. On the western slopes they form the uppermost bed over wide areas, and are greenish
brown compact rocks with boulders and fragments of porphyritic phonolite, fissile phonolite
and kenyte set in a very fine brown tuff base. Higher on the mountain agglomerates are
numerous as intercalations in the phonolite succession, but rarely form notably thick beds.
At the base of the upper phonolites, however, at the 11,000-12,000 level on the interfluves
between the Teleki, Burguret and Hausburg valleys inclined tabular agglomerates form
bold crags such as the Highland Castle, where the agglomerates are at least 300 feet thick
and contain blocks up to 30 feet in diameter, the average being 2-3 feet. Similar thick agglo-
merates occur near the base of the upper phonolites at the 13,000 foot level in all three
branches of the Nyamindi valley.

In the hand specimen and under the microscope the phonolites are seen to be a remarkably
homogeneous group. They are invariably porphyritic, carrying felspar and nepheline pheno-
crysts in greenish grey to grey compact fine-grained matrices. The felspars are generally
tabular, well-formed and vary from 0-5 to four centimetres in length, the majority being in
the one to two centimetre range. A few rocks with narrow lath-like flow-aligned felspars
were seen. The nepheline phenocrysts range from 0-25 to two centimetres in size and are
invariably smaller than the felspars in the same rock. They are generally sub-hedral to
idiomorphic, waxy green, yellowish or porcellaneous buff in colour, and are sometimes
not easy to distinguish from the matrix at first sight. There is considerable variation in the
abundance of phenocrysts, the proportion varying from five to 40 per cent of the whole
rock by volume—the felspars are usually as numerous as the nephelines, but not invariably
so. The matrices are compact, often with a slight tendency to a hackly fracture—they are
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never fissile. They vary from grey-green to medium and dark grey, and are often finely
mottled. Most of the specimens contain small ellipsoidal vesicles filled by zeolite and many
contain larger partly lined vesicles. In only a few rocks are ferro-magnesian micropheno-
crysts visible with a hand lens.

Under the microscope the felspar phenocrysts can usually be identified-as anorthoclase,
and in many cases the crystals have suffered resorption by the groundmass leading to round-
ed and embayed outlines. The nepheline phenocrysts are frequently still more corroded,
often losing their form as a result, and they are often partially replaced by zeolites along
cracks. Olivine microphenocrysts occur in about half the slides examined, and are sometimes
altered to iddingsite, or more rarely to serpentinous or chloritic masses. Apatite and aegirine-
augite microphenocrysts are found in one third of the slides, often forming clusters with
olivine and iron ore grains.

The ground-mass in these rocks is often very fine grained and indeterminate, being coloured
in shades of brown and grey. In some of the finer lavas seriate alkali felspar laths are dis-
tinguishable. In the coarser examples, however, the matrix can be seen to be pilotaxitic—
composed of a random mesh of tiny felspar laths, probably anorthoclase, with mossy
patches of green aegirine, brown alkali hornblende and fine iron ore dust. In the majority
of slides small elliptical pools of zeolites are found, and these often form the lining of the
larger vesicles also. In one slide minute nepheline idiomorphs could be made out, and
another, specimen 44/1045 taken from the Ontulili river at 8,700 feet, contains pools of
pale blue sodalite.

Campbell Smith (1931, pp. 241-242) described one of Gregory’s specimens collected
from north-east of the Amboni river, seven miles north-north-east of Nyeri, a specimen
which Gregory labelled Kapitian phonolite (Gregory 1921, p. 142), and which was described
as such by Campbell Smith. The phonolite is certainly a part of the phonolitic series of
Mt. Kenya, which is extensive north of the Amboni river, and Campbell Smith’s description
fits the general account of the Mt. Kenya phonolites very closely. Campbell Smith (op.
cit., p. 239) remarked on the very close resemblance of this rock (and some of the other
Kapitian phonolites) to “Kenyte” specimens collected by Gregory higher up the mountain.
Certainly the similarity between the porphyritic phonolites of Mt. Kenya and the Kapiti
phonolite is very close (cf. Schoeman 1948, p. 36). A chemical analysis of the phonolite
described by Campbell Smith (1931, p. 240) is quoted below:—

per cent Norm
Si0, 52-10 or 27-80
Al03 22:29 ab 25-68
Fey03 1-73 an 8-34 . 3
Fe0 4-10 ne 25-56
Mg0 1-17 ac —_
Cal 2:42 di —
Nay0 8-60 ol 6-31
K50 4-66 mt 2-55
Hy0+ 0-75 il 0-61
Hy0— 1-00 ap 1-34
Ti0, 0-30
P»0s 0-46 W. H. Herdsman, anal.
Mn0 0-23
Total 99-81

The analysis indicates that the phonolite is more basic than the kenytes and nepheline
syenite of the main peak (cf. p. 27) since it contains less silica, more normative anorthite
and olivine. It is at the basic end of the phonolite series, of which kenyte and fissile phonolite
are the intermediate and acid members.

(ii) Kenytes

Kenytes were first named by Gregory (1900, p. 209, 211-214) who examined the south-
western slopes of the alpine zone of Mt. Kenya and distinguished three main lava-types—
phonolites, kenytes and basalts. Kenyte was defined later by Gregory (1921, p. 147) as
“jgneous rock which consists of anorthoclase and aegirine, which typically contains glass
and olivine and is the lava or dyke representative of olivine-bearing nepheline syenite”.
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Gregory’s kenyte specimens were collected on the ridges between Mt. Hohnel (Castle Hill)
and Top Hut, and from the southern side of the plug of the main peak (Gregory 1900,
pp. 208-209), and were re-described by Campbell Smith (1931, pp. 242-243), who observed
that Gregory had overlooked the nepheline phenocrysts in these rocks. From the accounts
of the type rock and Gregory’s later account (1921, pp. 146-147) it is clear that the type
specimen (Gregory’s number 499) is a somewhat altered example of intrusive porphyritic
phonolite which forms part of the plug. Clearly Gregory regarded all the glassy or cry-
ptocrystalline phonolites, most of them with partially devitrified matrices, as kenytes.
Campbell Smith recognized the close mineralogical similarity between the kenytes and
phonolites of Kapiti type (op. cit., p. 243, 245), and the writer has confirmed that the kenytes
are in fact textural varieties of normal phonolites allied to the Kapiti type. Gregory would
probably have recognized the similarity between the “normal” (Kapiti type) phonolite
of Mt. Kenya and his kenytes if he had seen the extensive occurrences of the former on the
lower slopes of the mountain. Unfortunately he regarded the Mt. Kenya phonolites of the
lower western slopes as representing the Kapiti phonolite (1921, p. 142), a phonolite which
does not belong to the Mt. Kenya Suite. Shackleton (1945, p. 16) and Schoeman (1951,
pp. 46-48), reporting on adjacent areas covering the outer western and eastern tracts of
the Mt. Kenya volcanics, described the porphyritic phonolites common in these areas as
kenytes. They evidently overlooked the necessity for kenytes to have glassy or devitrified
glassy matrices.

The intrusive porphyritic phonolite which forms part of the Mt. Kenya plug, from which
Gregory (1900, pp. 208-209) collected his type specimen of kenyte, is in a different category
from the kenyte lavas described above. Although these intrusive rocks are superficially
similar to the true kenytes in that they have a dense black base, this base is not glassy (cf.
Campbell Smith 1931, p. 243) but micro-granular. Furthermore these intrusive rocks have
been extensively brecciated and invaded by microsyenite which has resulted in a variable
degree of alteration. In the writer’s opinion these intrusive phonolites should be excluded
from the kenytes on the grounds of their non-glassy matrix and different geological setting.
They are described on p. 50.

The kenytes are the glassy or cryptocrystalline locally devitrified varieties of porphyritic
phonolite. They characteristically contain numerous tabular felspar phenocrysts one to one
and half centimetres long, and discoloured brownish, yellow-brown, greenish brown, or
blue-grey nepheline phenocrysts up to three-quarters of a centimetre long. The matrix is
rarely glassy and black, it is more often flow-banded with glassy and devitrified bands, and
still more often homogeneous, “stony” and in shades of yellow-brown, brown, reddish
brown, brick-red, liver and reddish grey. There is every gradation from these colours to the
uniform grey to greenish grey micro-crystalline matrix of the phonolites of the lower slopes.
There is therefore no precise dividing line between the kenytes and the porphytitic phonolites.

The kenytes are confined to the Alpine zone of the mountain, and the most extensive
exposures are found in the heads of the Hobley and Gorges valleys, and on the high ridges
above 14,000 feet on the eastern and southern slopes, where their exposed thickness is
greater than 1,300 feet. Near to the main vent the kenyte flows are thin, approximately
ten to 20 feet thick, and the succession contains more agglomerate than lava. The proportion
of lava increases markedly away from the vent, till at a distance of two to three miles the
lavas are thicker and form the greater part of the succession; tuffs are rare.

Among the thicker kenytes there is a tendency to columnar jointing and these flows
form low cliffs. The kenyte terrain is characterized by ribbed valley sides and an abundance
of fine scree composed mostly of material ranging from two to ten millimetres in size. In
the zone of diurnal freezing the kenytes show a marked tendency to disintegrate into a
gravel of small flakes, which weather further to a fine gravel—large blocks are relatively
scarce. Reddish brown screes and miniature ‘“stone glaciers” composed of material of
pea grade are diagnostic of the kenyte outcrops of the alpine zone.

In hand-specimens the kenytes show an extraordinary variety of colours. In the head
of the Hobley valley, on the ridge above Hidden Tarn and on the Sommerfelt Peak-Castle
Hill ridge they are predominantly reddish brown to brick red in colour, with tabular felspar
phenocrysts up to one and a half inches long and smaller nepheline phenocrysts usually
very similar to the matrix in colour. Rarely a scoriaceous lava is yellowish in colour, and
thicker flows tend to be reddish grey. The agglomerates, which are not plentiful on these
ridges, are composed of similar rocks, but black glassy kenytes tend to be much more
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common in the pyroclastics than as flows. On the upper parts of the Coryndon, Delamere
and Macmillan Peaks, stratigraphically above the dominantly red kenytes of the Hobley
valley, are further kenytes with notable intercalations of agglomerate. These kenytes vary
from slate-grey, khaki and putty coloured types to pale streaky yellow and brown-grey
types. In the paler varieties, which are sometimes so altered and weathered as to have an
earthy consistency, the nepheline phenocrysts are yellowish, and can hardly be distinguished
in the matrix. On the upper part of the Delamere Peak the numerous rock pinnacles and
spires are mainly of kenyte agglomerate and flow-breccia, with thin yellow-brown tuffs
with glassy kenyte bombs. The more resistant cliffs such as form the buttress overlooking
Hanging Tarn are of grey phonolite. At the 13,000 feet level between the Gorges and Hobley
valleys the transition from glassy or devitrified flows to holocrystalline “normal” grey
phonolites becomes obvious. The phonolites are thicker, there is less pyroclastic material,
but several thin, one to two feet thick black glassy kenytes do occur. Similarly reddish grey
“intermediate” phonolites are common around the un-named lake near the head of the
Nyamindi East.

Further excellent sections in the kenyte-agglomerate sequence occur on the twin peaks
Tereri and Sendeyo. The thin-bedded agglomerates and kenytes which build these peaks
are highly irregular and lensoid in form. The flows are reddish brown, locally scoriaceous
and full of cognate breccia fragments or of lithic debris rafted down from above. Here also
there are occasional resistant flows of grey phonolite which give the ridges their stepped
outline.

The ridge at the head of the Hinde valley, between the Hat and Simba Col is composed
of kenytes, mostly reddish brown types with a few really glassy flows, and the ridge between
Sendeyo and Simba Col is formed of kenyte agglomerates and red scoriaceous kenytes
with some “normal” phonolites exhibiting variations in the number and size of the felspar
phenocrysts.

Twenty-nine specimens of kenyte were collected, and in these the felspar phenocrysts
varied from half to two centimetres in length, with the majority between one and two
centimetres. Most of the felspars showed a stout tabular habit, in only two specimens are
there thin lath-like felspars. In the devitrified glassy specimens of earthy appearance the
felspars are frequently of the same colour as the matrix. The nepheline phenocrysts are
invariably smaller than the felspars and less numerous; they range from two millimetres
to one centimetre in size, the majority being about five millimetres long. In most rocks
the nephelines are idiomorphic, but in some they occur as rounded blebs, often of a brown
porcellaneous appearance. In the yellow-brown and red-brown kenytes the nephelines
are often yellow, due to extensive replacement by zeolites, and zeolites occur as small ovoid
vesicle fillings also. The matrices of six specimens are of black glass with perlitic cracks,
a few others are flow laminated with alternations of black glass and reddish grey devitrified
glass. The remainder are in shades of brown, brick red, reddish grey and reddish brown.
Two specimens, both reddish brown, are of flow breccia full of small cognate kenyte frag-
ments, and tend to a scoriaceous texture. Five other specimens have small angular vesicles,
often partly zeolite filled, but large vesicles are found in only one specimen, and were observed
to be very rare in the field.

Under the microscope the felspar phenocrysts are seen to be anorthoclase which exhibits
cross-hatch twinning and lamellar twinning and sometimes both. The anorthoclases are
subidiomorphic and have suffered varying degrees of corrosion and embayment by the
groundmass. In one example, specimen 44/969 from the summit of Pt. Lenana, the felspars
are full of tiny glass blebs, and an extreme example of corrosion, in which the originally
tabular crystals reach a lensoid embayed form, is shown in specimen 44/1241 from the
northern shore of Galley Tarn. This specimen also contains a faintly flow laminated red-
brown glass matrix, such as is typical of these rocks, in which are tiny lensoid flow-aligned
analcite filled vesicles, a few trapezohedral analcite grains, and analcite filling the narrow
perlitic cracks traversing the glass matrix.

The nepheline phenocrysts are usually clear and only slightly resorbed by the matrix.
They are, however, sometimes partially or even completely replaced by zeolites in the more
altered examples. An example of zoned nephelines with pools of zeolite is seen in specimen
44/1073 from 14,700 feet on the north-west face of Tereri. This rock is unusual in containing
small aegirine-augite microphenocrysts.
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One third of the rocks sliced contain tiny colourless to yellow-green idiomorphic olivine
microphenocrysts, but these are frequently converted to iddingsite in the more altered
kenytes. Well formed apatite microphenocrysts occur in only a few specimens. One specimen
(44/1003) from the foot of the north face of Pt. Thomson contains a few augite micropheno-
crysts.

The matrices of the kenytes are glassy, devitrified or cryptocrystalline. In the black glassy
varieties the matrix is brown, red-brown or reddish grey in thin section, and usually exhibits
flow lamination. In all the slides zeolites occur: in the unaltered glassy varieties as discrete
clear pools, in the devitrified rocks as a more irregular and extensive mesostasis, and in
extreme of hydrothermal alteration, as in specimen 44/1178, 1179 and 1181 from the col
between Delamere and Macmillan Peaks, the matrix is partially devitrified and full of
ramifying patches of finely granular zeolites, which in extreme cases make up to 20 per
cent of the rock by volume. In a few rocks the small vesicles are zoned, the marginal parts
being isotropic analcite, the intermediate zone flamboyant thomsonite or scolecite, and the
centre calcite.

Some detailed mineralogical work has been carried out on the felspar phenocrysts of the
kenytes by Rosiwal (1891, pp. 292-3) and Mountain (1925, pp. 35-36), and is quoted by
Campbell Smith (1931, p. 244). The provenance of Rosiwal’s specimen is uncertain but
in view of their close similarity to the crystals described by Mountain from the kenyte
tuffs and agglomerates on the west face of Castle Hill (Mt. Hohnel), both sets of specnnens
were probably derived from the kenyte succession. The details are:—

Rosiwal Mountain
(1891, pp. 492-3) (1925, pp. 35-6)
specific gravity .. 2-598 2-602
extinction agle—

on (001) 2°, 3-2°-3-8°, 2-2°-2-5° 2-9°
on (010) 10°, 5-6°-8-3°, 8° 7-8°
2V — 51°
refractive mdlm o — 1-526
g —_— 1-530
T — 1-:532
Composition—
Or: Ab: An .. .. . 27: 63-5:9-5 27:63: 10

The data indicate that the crystals are anorthoclase, the low optic axial angle being diag-
nostic, and the composition shows the anorthoclase to be sodic, near the analbite end of
the anorthoclase field.

An analysis of a kenyte from the summit of Castle Hill (Mt. Hohnel) is given below,
together with analyses of the intrusive phonolite and nepheline syenite from the Mt. Kenya
plug, f_or comparison purposes.

I u uar

per cent  per cent  per cent
Si0, 53-80 53-98 51-64
Aly03 18-46 1943 19-12
Fes03 6:22 4-39 3-03
Fe0 0-40 2-05 4-20
Mg0 1-05 1-07 1-29
Ca0 253 2-04 2-94
Naz0 7-09 8-81 9:46
K>0 5-46 527 4-37
H50+- 3-54 1-66 1-63
H,0- 0-85 0-13 0-39
Ti0 0-31 0-57 1-58
P30s 0-53 0-30 0-33
Mn0 0-33 0-26 0-19

Totals .. 100-57 99-96  100-26*

*Includes 0-09 per cent Cl.
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Norms

I I I
or .. .. 32-80 31-14 27-6
ab .. .. 32:49 26-46 35-6
an .. .. 1-95 —_ 77
ne .. .. 15-05 2371 16-2
ac .. .. — 370 —
di .. .. 5-40 6-64 1-8
ol .. .. — 0-14 16
mt .. .. 1-62 4-64 4-3
il .. .. 0-61 1-06 19
ap .. .. 1-34 0-67 10
hm .. .. 512 — 1-8

I—Kenyte, lava flow from the summit of Castle Hill (Mt. Hohnel). G. T. Prior, anal:
(Prior 1903, p. 247). .

II—Porphyritic phonolite (intrusive rock forming part of the central plug of the main
vent of Mt. Kenya), probably collected from the rock rib immediately west of Top Hut.
G. T. Prior, anal: (op. cit.).

III—Nepheline syenite, from north-west of the snout of the Lewis glacier (probably
at the base of Midget Peak). F. Raoult, anal: (Lacroix, 1923, p. 258).

The chemical similarity between the kenyte and the plug rocks is notable, and the analysed
example of the Mt. Kenya porphyritic phonolite (p. 24) is also very similar. The analyses
therefore confirm the field evidence that these lavas are consanguineous. The fissile (Kenya
type) phonolites and the alkali trachytes such as occur in the Lake Hohnel succession are
at the acid end, and the porphyritic phonolite-kenyte-intrusive phonolite-nepheline syenite
are at the basic end of the phonolitic rock-series which forms the main eruptive episode
of the mountain.

(d) Alkali trachytes, phonolites, tuffs and agglomerates

The volcanics to be described occur on the south-western quadrant of the upper part
of the mountain, in the Nyamindi West, H6hnel and Teleki valleys, the best sections being
in the cliffs above Lake Hohnel. They consist of a variety of rock types characterized by their
anomalous position and attitude in relation to the porphyritic phonolites and agglomerates
which occur above and below them stratigraphically. The base of these lavas is seen only
in the head of the Burguret valley east of Kampi ya Farasi, where horizontal fissile alkali
trachyte flows rest, apparently unconformably, on west-dipping rhomb porphyries. The
upper margin is well exposed at numerous localities on the slopes of the Castle Hill—Sommer-
felt Peak massif south of the main peaks.

The trachyte-tuff-agglomerate volcanics are therefore interbedded in the sequence of
porphyritic phonolites and rhomb porphyries which make up the main structure of the
mountain, and the dips measured in these volcanics, which are radial outwards about a
point some two and a half miles west of Batian, suggest that they were erupted from a
satellite vent and not the main centre.

The best exposures are in the Hohnel valley and on Shipton Peak (see Fig. 4(a)). At
13,150 feet in the floor of the Hohnel valley are small outcrops of finely mottled green
grey fissile trachyte and similar outcrops are seen on the valley side to the north at 13,800
feet. There are no exposures at the level of Lake Héhnel, the lake outflow channel being
cut in moraine, but a good section is obtained in a shallow gully north of the lake. Here
there are 450 fect of crudely bedded agglomerate consisting of reddish brown trachyte frag-
ments, which continue up to the level of the top of the conspicuous phonolite cliff which
overlooks Lake Hohnel to the east, where they are overlain by brown tuffs.

The cliff overlooking Lake Hohnel is formed of 200 feet of fissile pale green-grey phonolite,
which is either a lensing flow or has been locally eroded previous to the deposition of the
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overlying tuffs. The section from the floor of the valley to the summit of Castle Hill is as

follows:—
Feet
11, porphyritic phonolites, kenytes and agglomerates (of the overlying volcanics) 950
10. agglomeratic tuff .. .. .. - .. .. .. .. .. 150
9. green grey fissile trachyte .. .. .. .. .. .. .. .. 10
8. olive-grey coarse tuffs .. .. . . . . . . 50
7. red-brown fine grained fissile trachyte .. .. .. .. .. .. 40
6. brown tuffs with scattered volcanic bombs .. .. .. .. .. 8
5. yellow-brown thin bedded tuffaceous silts . .. . .. .. 8
4, yellow-brown tuff resting on eroded surface 6
3. fissile green-grey phonolite (forms cliffs) .. .. .. .. .. 0-200
2. red-brown trachytic agglomerate with thin porphyritic trachytes .. .. ¢. 550
1. mottled green-grey fissile trachytes .. .. . .. . .. ¢ 600

Dips measured in the thin-bedded tuffaceous silts (No. 5 above) averaged 11 degrees
to the south, and the porphyritic phonolites and agglomerates which form the upper part
of the succession dip even more steeply south-westward, for they rest unconformably on
the trachyte-agglomerate sequence, and rest directly on the fissile green-grey phonolite
to the east and south-east of Lake Hohnel Fig. 4(a). Gregory (1900, p. 218) traversed the
western face of Castle Hill (Mount Héhnel in Gregory’s account), and gave a succession
essentially similar to that above.
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Fissile greenish grey trachytes.and phonolites similar to the first and third members of
the Hohnel valley succession outcrop on the north side of the Teleki valley and in its floor
between 13,200 and 13,500 feet, and also on the low cliffs immediately north of Naro Moru
tarn. Shipton Peak is, however, composed of the equivalents of the porphyritic trachytes
(the second member of the tabulation). Whereas these rocks are mainly agglomerates com-
posed of reddish brown lavas crowded with small tabular felspars in the Lake Hohnel
area, their equivalents on Shipton Peak are grey or brown, highly fissile and fractured,
and crypto-crystalline to glassy in texture. In a few rocks nepheline was observed in hand-
specimen, but the majority appear to be alkali-trachytes. They are easily distinguished
from the porphyritic phonolites and agglomerates which overlie the Shipton Peak sequence
by the scarcity of nepheline, the smaller and more crowded felspars, and their close fracture.
The tuffs and agglomerates of the upper part of the Lake Hohnel succession do not outcrop
on Shipton Peak or in the Teleki Tarn cirque due to erosion previous to the eruption of
the super-incumbent phonolites.

Exposure on the north side of the Teleki valley is extremely poor due to the presence
of ground moraine and solifluction deposits, but 400 feet above Mackinder’s Camp flinty
green, brown and grey lavas are exposed with a southward dip, and these are similar to
those exposed above Naro Moru Tarn.

_ The continuation of the outcrop of the trachyte-tuff-agglomerate sequence is found on
the north ridge of the Teleki valley between 13,700 and 14,200 feet. Here pale greenish
grey to greenish buff fissile trachytes outcrop on the north side of the ridge as lines of cliffs—
the lavas having a gentle southward dip. The same lavas form the cliffs at the head of the
subsidiary valley west of Two Tarn Col, and pass beneath the lateral moraine capping
the south ridge of the Hausburg valley. Resting on the sub-horizontal or gently southward
dipping fissile trachytes west of Two Tarn Col are trachytic agglomerates which outcrop
as scattered pinnacles and ridges rising from a steep scree-slope. The agglomerates are
composed of brown, grey and reddish brown fissile flinty trachyte fragments in a brown
unsorted matrix and have north-eastward dips of between 25 and 35 degrees. A little higher
in the succession the agglomerates begin to contain an increasing proportion of coarsely
porphyritic phonolites of the type on Castle Hill, and linear ridges of such agglomerates
outcrop above and below the Burguret path between the 14,400 and 14,700 levels. The
upper part of the agglomerate forms a resistant north-easterly dipping plate approximately
100 feet thick which outcrops on the crest of the ridge between a quarter and a half mile west
of Two Tarn Hut. The eastern end of the ridge is overlain by moraine containing some
very large perched blocks of syenite. The agglomerate, which is composed of large por-
phyritic phonolite blocks, can be traced down-dip to a contact with the margin of the syenite
plug in a gully 300 yards west of Nanyuki Tarn. Seven hundred yards west-south-west of
Hut Tarn a porphyritic phonolite outlier rests on the east-dipping agglomerates with un-
conformity.

In the Nyamindi and Nyamindi West valleys the trachytes and a phonolite are exposed
beneath the porphyritic phonolites (see Fig. 5b) and are textural varieties of green-grey
fissile alkali-trachyte; no agglomerates or porphyritic lavas are exposed here, and it is
assumed that the Nyamindi West sequence is mainly in the fissile lower member of the
Lake Hohnel succession, with the fissile phonolite forming the uppermost flow.

Sixteen rocks were collected from the area of Lake Hohnel trachytes and phonolites
between the Hausburg and Nyamindi valleys. Of these 14 are trachytes or alkali-trachytes
and two are fissile phonolites of a kind more common in the associated formation described
below.

The trachytes are green-grey fissile lavas varying from flow-banded cryptocrystalline
or locally glassy types common on Shipton Peak to platy well crystallized varieties with a
satiny sheen imparted by the minute felspars of the matrix. A few of the lavas have felspar
phenocrysts up to five milimetres in length, but the majority contain felspar micropheno-
crysts averaging one milimetre in size. In some rocks the microphenocrysts are anorthoclase,
in others the alkali felspars are doubtful anorthoclase, and soda-sanidine was suspected in
two slices. The matrix is of trachytoid texture, the felspar laths being anothoclase or albite-
oligoclase. Green aegirine-augite as very small intersertal granules occurs in all the rocks,
and occasionally forms mossy patches. Minor amounts of brown strongly pleochroic alkali-
hornblende are seen in some thin sections, and interstitial zeolites occur in more than half

30



L4

£
z
m

£d

i fE

YT ST T |

§

FEET
14000

12000

11,000

[ 1 2 3 MALES

VERTICAL SCALE EXAGGERATED

(b)

Oivine basaits
——
Ohvine trachytes
% Fusile phonolites, trachytes
-
&1} Rhomb perphyries
(5 .
S

Fig. 5 (a)—Mt. Kenya; diagrammatic section on the north-western sector.
(b)—Mt. Kenya; diagrammatic section on the south-western sector.

the slides; in some rocks, particularly the very fine grained varieties, pools of zeolite occur
in the matrix. Specimen 44/987A from two miles west of Lake Hohnel contains olivine
microphenocrysts.

. Two specimens representative of the trachytes are 44/991 from the north side of the
Teleki valley one and a half miles north-west of Lake Hohnel, and 44/1191 from the Nyamindi
West river at 13,400 feet.

One fissile phonolite, specimen 44/981A, was collected in the floor of the Nyamindi West
valley at 13,570 feet, and although similar to the trachytes in hand specimen, differs somewhat
in thin section. It contains sparse soda-sanidine microphenocrysts set in a felted mass of
fine alkali felspar laths. Fibrous aggregates of green aegirine and kataphorite are the only
coloured minerals, and numerous clear nepheline cubes outlined by aegirine are seen.
This phonolite is closely comparable to the fissile phonolites of the north-western sector
of the mountain, which are described on p. 33 and is probably the same flow as that forming
the cliff overlooking Lake Hohnel. A specimen from this cliff (number 3 of tabulation
on page 29) was collected by Gregory (1900, p. 215) and was described by Campbell Smith
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(1931, p. 230) as a fissile phonolite of the Kenya type containing microphenocrysts of nephe-
line in a matrix of orthoclase or soda-orthoclase laths, aegirine, cossyrite and kataphorite.
Campbell Smith (op. cit., p. 235) also gives an analysis (Analysis I, below) of this rock
made by Prior. A similar rock was collected from 14,300 feet on the west flank of the
mountain and described by Lacroix as a phonelitic trachyte (cf. op. cit., p. 233). It consists
of minute aegirine and cossyrite grains set in a groundmass of felspar Iaths, nepheline
and scatltered yellow olivines. An analysis of this rock (analysis II, below) was made by
F. Raoult.

1 II
Si0; .. .. 5837 59-28
Aly0; .. 1665 17-20
Fey03 .. 4-09 533
Fe0 .. 3-03 2:37
Mg0.. .. 0-37 0-36
Ca0 .. .. 1-66 1-84
Nay0 7-28 7-37
K-0.. 5-46 4-84
H,0+ 1:40 0-98
H,0— 0-96 0-51
Ti0; 0-21 0-22
P,05 0-08 —_
MnO 0-43 —
Cl —_ —
Totals .. 9999 100-30
Norms
I I
or .. .. 3225 28-5
ab .. .. 40-87 51:35
an .. .. - —_—
wo .. .. - 28
ne .. .. 767 54
ht .. .. — —
ac .. .. 690t 08
di .. .. 7128 19
hy .. .. = —
ol .. R —
mt .. .. 302 70
i .. 0-46 0-5
hm .. — 02
ap — —

1. Phonolite (Kenya type). Flow from the foot of the west face of Mt. Hohnel (Castle
Hill). G. T. Prior, anal: (Campbell Smith 1931, p. 235).

IL. Phonolitic trachyte. From 4,500 metres (14,300 feet), west flank of Mt. Kenya (pro-
bably on the north ridge of the Teleki valley). F. Raoult, anal: (Campbell Smith 1931,
p. 235).

The red-brown trachytes and agglomerates outcropping below the Lake Héhnel cliffs
and on the col between the Teleki and Hohnel valleys (number 2 of the tabulation on p.
29) are almost certainly represented in Gregory’s collection, described by Campbell Smith
(1931, pp. 247-248) as reddish brown rocks with abundant phenocrysts of potash-oligoclase
averaging 05 centimetres in length, but no visible nepheline. Small pyroxene-micropheno-
crysts occur together with altered olivine and magnetite in glassy or cryptocrystalline mat-
rices. Campbell Smith refers to these rocks as transitional between “kenytes™ and trachy-
basalts (op. cit., p. 247).

Trachytes and trachytic agglomerates occur on the western slopes of the mountain between
the Hausburg and Hohnel valleys, and are the equivalents of the Lake Hohnel succession
on the lower slopes. The trachytes occur on interfluves and form a thin sequence inter-
bedded ‘with porphyritic phonolites and agglomerates derived from the main vent. Their
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occurrence at the same stratigraphic level as the Lake Héhnel succession indicates that
they are the attenuated representatives of this succession. The trachyte flows dip westward
at approximately the same angle as the phonolites on which they rest.

The trachytes are of the same type as occur in the lower part of the Lake Hohnel succession.
They are fissile green-grey rocks devoid of phenocrysts and characterized by a platy fracture
in the well crystallized types and by an angular flinty fracture in the microcrystalline types.
In two of the six rocks collected, specimens 44/988 and 44/1022 from the trachyte ridge
two miles west of Lake Hohnel, the matrix has the “mossy” green aegirine and patchily
distributed interstitial kataphorite which characterizes the matrices of the fissile phonolites
which occur on the north-western sector of the mountain.

On the interfluves between the Thego and Hohnel valleys, and between the Burguret
and Hausburg valleys, beds of trachytic agglomerate occur in place of trachyte flows. Slight
unconformity between the most southerly of the trachyte agglomerates and the underlying
porphyritic phonolites is noticeable. This agglomerate, which reaches a maximum thickness
of 200 feet, has mostly phonolite and kenyte blocks towards the base, but in the upper
part trachyte blocks become dominant.

The trachytes and agglomerates of the western slopes average 100 feet in thickness, with
a maximum observed development of 200 feet. This is in contrast with the maximum observed
thickness of the Lake Hohnel succession of 1,600 feet.

Petrographically the lavas described above vary from fissile phonolites with only small
amounts of nepheline and abundant sodic amphiboles to less alkaline varieties closer to
the pantelleritic trachytes with zeolites in place of nepheline. Variations in colour are essen-
tially due to variations of groundmass crystallinity. The fissile phonolites are concentrated
in the upper part of the succession, beneath the pyroclastics where these occur, and are
obviously related to the succeeding fissile phonolites which are described below.

(e) Fissile phonolites

Fissile phonolites are found in three separate areas on the northern, north-western and
southern slopes, at elevations between 10,000 and 14,000 feet. In the sector between the
Nyamindi West and Thego valleys the fissile phonolites are separated from the trachytes
of the Lake Hohnel succession below by approximately 400 fect of porphyritic phonolites
and agglomerates. In the other sectors they rest on rhomb porphyries or porphyritic phono-
lites with unconformity, the outward dip of the fissile phonolites being greater than that
of the underlying volcanics.

The type area of the fissile phonolites is on the “Barrow’ ridge—the interfluve between
the Sirimon and Liki North valleys (see Fig. 5(a)). At the base of the cliffs in the heads of
the Ontulili and Liki North valleys, and on the col between the two valleys at 13,400 feet,
the base of the fissile phonolites is seen to consist of flow laminated very fine-grained grey-
brown and red-brown phonolites with small felspar and nepheline phenocrysts. The lowest
flow due south of the Barrow is a porphyritic phonolite glass, but this and the cryptocry-
stalline phonolites above pass north-westwards and south-eastwards into agglomerates
which occur on the col west of Hook Tarn and below the fissile phonolites which form the
sloping plateau between the Ontulili and Liki North valleys. The maximum development
of glassy and fine-grained fissile phonolites is 200 feet and is found on the col south-west
of the Barrow. The base of the fissile phonolites is exposed on the east side of the Sirimon
valley a quarter of a mile south-east of Hook Tarn, where fissile reddish brown and grey
phonolites containing a thin porphyritic glass are overlain by fissile green-grey phonolite
of the normal type. ,

The fissile phonolites are approximately 200 feet thick on the Barrow ridge. In the head
of the Little Sirimon valley the basal member of the phonolites is a medium green crypto-
crystalline phonolite, which also forms the small inlier among the basalts north-east of the
Barrow. The main body of phonolites are green-grey, fissile and with very small water-
clear nepheline phenocrysts visible in the uppermost flows.

Thin flows of green cryptocrystalline phonolite occur also at the base of the series between
the Mackinder and Hausburg valleys, where seven thin flows were counted with a total
observed thickness of 400 feet. Phonolitic agglomerate occurs locally at the base of the
flows and between them, but is never thickly developed. In other respects these phonolites
are identical to those of the Barrow.
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In the sector between the Nyamindi West and Thego valleys the fissile phonolites cap
the ridges and overlie porphyritic phonolites and agglomerates. As on the north-western
sector of the mountain some of the phonolites contain small felspar phenocrysts, but the
majority are green-grey, very fine-grained and with a fissile or flinty fracture. The maximum
development of phonolites on the southern sector is approximately 450 feet.

There is little variation in the petrology of the fissile phonolites. Abundant clear nepheline
microphenocrysts were recognized in nine of the 12 specimens collected. In several specimens
prismatic aegirine-augite microphenocrysts were found, and in two rocks from the southern
sector, specimens 44/985 and 44/1195, small anorthoclase phenocrysts occur also. The
matrix of the fissile phonolites is diagnostic. It is trachytic in texture and consists of alkali
felspar laths with green aegirine and brown kataphorite distributed as spongy interstitial
patches. Zeolite occurs as a localized mesostasis in most of the thin sections.

The disposition of formations on the southern sector of the mountain shows the fissile
phonolites separated from the Lake Hohnel trachytes below by some 400 feet of porphyritic
phonolites, but on the north-western sector the fissile phonolites occur at approximately
the same stratigraphical level as the Lake Hohnel trachytes. The disposition and dip of
the Lake Hohnel trachytes suggest that their eruptive centre was some miles west of the
main peak, while the fissile phonolites seem to have been erupted from the peak area, pro-
bably from fissures, for no fissile phonolite is found among the rocks of the plug of the
main vent.

(f) Mugearites, alkali trachytes and olivine trachytes

The trachytic rocks to be described are a somewhat variable suite which ranges from
alkali trachyte of pantelleritic affinities through olivine alkali trachyte to oligoclase basalt
(mugearite). The alkali tendency is notable throughout, and is expressed by the continuous
presence of zeolites. These volcanics occur in three main areas—(i) as a substantial series
on the northern slopes where they rest with strong unconformity on all but one of the volcanic
groups of the main eruptive period, (ii) a series of variable trachytic flows erupted evidently
from a neck at Hall Tarns, and (iii) the extensive olivine and alkali trachytes of the southern
slopes, which form a thin but far reaching series of flows which penetrated nearly to Sagana
township to the south of the present area.

(i) The olivine trachytes of the northern slopes

These lavas outcrop between the Kazita East and Sirimon valleys, and reach a maximum
exposed thickness of 800-900 feet between the 12,000 and 13,000 contours on the north
slopes of the Sirimon valley, and are subdivided into three parts.

A distinctive olivine basalt marked as sub-division I on the geological map occurs at the
base of the trachyte series along the eastern margin of the outcrop in the Kazita West valley,
between 11,000 and 11,100 feet in the main Kazita valley, forming the floor of the broad
valley-head of a Kazita river tributary at 12,000 feet, and at the base of the olivine trachyte
outlier on the north ridge of the Hinde valley at 12,100 feet. The basalt is characterized by
a well-marked small-scale hackly fracture, giving it a finely cobbled weathered surface.
In colour it is dark grey, and in some specimens small olivine and augite phenocrysts can
be seen. A further specimen of the lava at the base of the trachytes in the Sirimon valley—
specimen 44/1056 from two and a quarter miles north of the Barrow—is an andesite with
olivine granules and many small grains of aegirine-augite. This lava forms the western base
of the trachytic series as far south as the ridge between the Sirimon and Kazita West valleys.

The main bulk of the lavas are olivine trachytes which outcrop almost continuously
in the Kazita West river, and are found over a wide area up to the northern boundary
of the map. These lavas form curious small toothed crags and linear wall-like outcrops,
due to the local contortions of the flow banding and fissility. They are non-porphyritic
pale brown and grey-brown fissile lavas, with a satiny sheen due to the trachytoid texture.
The paler lavas frequently show red-brown iron oxide films on joints, weathered surfaces
and in vesicles, and this feature distinguishes these types of lava on the southern slopes
alllsoilMany of the trachyte lavas are finely vesicular, and these are soft and earthy under
the hammer.

The upper part of the trachyte series is exposed on the ridge tops on the east side of the
Sirimon valley and is distinguished by the symbol II on the geological map. At approximately
300400 feet below the tops of these ridges the trachytes become dominantly green in colour
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PLATE I

Fig. 1—The north-east face of the peak of Mt. Kenya, viewed from Simba Col. The greater
part of the peak is of nepheline syenite, but the dark buttress in the left centre is part of
the outer ring of phonolite. The snout of the Gregory glacier is at the left margin.

Fig. 2—The Lewis glacier. Dark bare ice with crevasses and folded ice banding occurs in the
foreground.



PLATE I

Fig. 1—The peak area viewed from Sendeyo in the north. The summits shown are (from left
to right) Pt. Lenana, Pt. Thomson, Nelion, Batian (17,058 ft.), Pt. Piggott. The valley below
is the Mackinder valley, and the glaciers visible are (from left to right) the Gregory, Krapf,
Northey and Josef glaciers. The stage VI moraines below the Gregory glacier are well shown.

Fig. 2—The Hall Tarns platiorm in the Gorges valley viewed from the west. The banded
cliffs of the phonolite-kenyte volcanics are contrasted to the clifis formed by the trachyte
stock which forms the Hall Tarns platform on the left.



PLATE 1II

Fig. 1—Pillars and pedestals of “older” moraine in the lower Gorges valley. Behind the
pillars is a part of a “younger” lateral moraine of stage 1D, with blocks littering its surface.

Fig. 2—Small uneroded fault scarp immediately south-west of Mugi hill. Ithanguni volcano
is in the background.



PLATE IV

Fig. 1—The eastern side of Mugi hill—a kenyte-phonolite dome. The mounds at the foot
of the hill are freeze and thaw structures.

Fig. 2—Partially developed stone and mud polygons due to freeze and thaw action on
moraine. The alignment of the structures is due to movement of the whole mass down-slope.



and contain stout felspar phenocrysts up to 12 millimetre long in a distinctly coarser matrix.
The uppermost part of the ridge is composed of tabular green trachyte flows margined by
cliffs showing crude columnar jointing. The lavas are green-grey, relatively coarse grained
and are crowded with small felspar phenocrysts and minute pyroxene prisms. .

~ Under the microscope all but four of the 32 specimens sectioned proved to be olivine
trachytes showing only minor variations. The majority are not porphyritic, but in some the
ubiquitous yellow ferriferous olvine is microporphyritic. In addition to scattered subhedral
fayalite, the remainder of the matrix exhibits microlitic texture, the Carlsbad and lamellar
twinned felspar laths, which are probably anorthoclase, make up nearly all the rock and are
trachytically aligned. Aegirine-augite mlcrophenocrysts are common and are often altered
largely to iron ore pseudomorphs Aegirine granules are sparingly distributed and the matrices
are usually dusted with fine iron ore. In many of the slides an alkali mesostasis was sus-
pected. Two slides are similar to those described but are devoid of olivine, and in two others,
specimens 44/1078 and 44/1062, the felspar laths were identified as oligoclase. These speci-
mens were collected from the outlier one and a half miles south-east of the Barrow, and
from the easterly of the two small inliers on the north ridge of the Kazita valley at 11,800
feet and are mugearites.

Three and a half miles west of Rutundu, on the northern slopes of the mountain, there
is a conical hill rising 300400 feet above the surrounding country. Scattered exposures
on the lower slopes are of pale grey, reddish weathering olivine trachyte lavas dipping down
the slopes of the hill. The summit area is composed of massive trachytes of variable appear-
ance, some are pale grey, others neutral grey and vesicular, and yet others are bluish grey
like some of the fine-grained phonolites. Erosion of the hill has been slight and there are
no sections to indicate its structure. Its form and the absence of a crater suggests that the
hill may be a small olivine trachyte cumulodome (Cotton 1952, pp. 156-169), built of viscous
lava during or possibly after the trachyte eruptions of the northern slopes. A specimen of
the most w1despread lava on the western slopes (44/1063) contains numerous olivine micro-
phenocrysts in a trachytic matrix of anorthoclase laths. The specimen is indistinguishable
from some of the olivine trachytes of the Kazita river section nearby.

(ii) The Hall Tarns stock and associated trachytic lavas

The Hall Tarns rest on a platform projecting from the northern side of the Gorges valley,
the surface of the platform being at the 14,000 foot level. This platform, which is margined
on three sides by cliffs, those on the south-east side overlooking Lake Michaelson being
vertical and up to 800 feet high, is the up per surface of a stock-like body of trachyte which is
1,450 yards long and 900 yards wide elongated in a north-east south-west direction. On
the upper surface of the trachyte platform are a number of glacially eroded rock basins
containing small lakes. The stock is surrounded by a cylindrical body of agglomerate which
varies from a width of a few yards in the west to 850 yards in the east. The structure of the
stock is in marked contrast to that of the adjacent volcanics, for the stock is homogeneous,
unbedded and has vertical columnar jointing on a large scale, whereas the adjacent phonolites
and agglomerates show the banded cliffs and terraced slopes of a bedded sequence (see
Plate II, Fig. 2). The olivine trachytes, alkali trachytes and mugearites which occur on the
northern ridge of the Gorges valley and in the area extending from Lake Ellis to Urumandi
and beyond, were probably erupted from this vent. It is notable, however, that the 13,000
foot isopachyte drawn at the base of the trachytic lavas on the northern, eastern and southern
slopes is an almost perfect semicircle centred on the main vent, suggesting that the bulk
of these lavas may have been erupted from the main vent.

The basis of the Hall Tarns stock is massive olivine trachyte, represented by specimen
44/1096 from near the eastern margin of the mass. This rock has small olivine micropheno-
crysts in a basis of ill-formed anorthoclase laths, and aegirine-augite microphenocrysts.
On the northern half of the stock is a curious finely pumiceous lava which is locally full
of small cognate lava blocks, which give it the appearance of a flow breccia. This lava appears
to form a thin irregular layer on the more massive olivine trachyte beneath, and its surface
is pitted by dry scree or swamp filled hollows resembling small explosion craters. Two
specimens of this lava, 44/1095 and 44/1145, show that it is an unusual trachyte consisting
of lathlike to subhedral anorthoclase felspars full of iron ore dust, iron oxide pseudomorphs
of a prismatic mineral, prisms of aegirine-augite and small spots of a brown pyroxene.
The lava closely resembles some of the earthy and rubbly trachytes from the area east of
Lake Ellis, which are described below. The tuffs and agglomerates which surround the stock
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are best exposed on the slopes north of Lake Michaelson, where they form small cliffs
with a tendency to erode to pillars and high caves, and have been named the Temple. Locally
the pillars are capped by large perched blocks. A. crude horizontal stratification can be
made out in this agglomerate, even in the narrow development on the western side of the
stock. Close to the stock margins, however, the agglomerates dip very steeply towards
the stock, emphasizing its funnel-like shape. Towards the north-eastern edge of the agglo-
merate outcrop a horizontal trachyte flow rests unconformably on the agglomerate.

It seems that the Hall Tarns stock and its pyroclastic surround are the upper part of
a low parasitic vent, on account of the funnel-shaped section it presents. The pyroclastics
are the foundations of the crater walls, which probably did not rise very high above the
present level. It is possible that the present Hall Tarns platform is the slightly eroded surface
of the lava lake that occupied the original crater floor at the time of final quiescence.

The trachyte lavas of the northern ridge of the Gorges valley are very similar to the olivine
trachytes of the Kazita West section, for they are brown-grey to green-grey glistening fissile
trachytes with the curious “knobbly” weathering forms characteristic of this type. Specimen
44/1094 taken at 12,300 feet on this ridge is a mugearite, with scattered yellow olivine micro-
phenocrysts in a base of trachytoid oligoclase laths and fine iron ore grains. Similar lavas,
but identified as olivine trachyte rather than mugearite, outcrop at the Nithi waterfall
(specimen 44/1039) and at intervals upstream in the Nithi North river as far as the Hinde
Valley terminal moraine. Bouldery porphyritic phonolites are exposed beneath the trachytes
to the west of the olivine basalt crater, and the basalts and tuffs of the crater overlie the
trachytes to the east of the river. Scattered on the trachyte outcrops are thin discontinuous
layers of earthy brown trachyte rubble which is described below.

The olivine trachytes outcrop on two low plateaux of rounded outline to the south and
east of Lake Ellis, both of which are partially capped by the earthy brown trachyte and
are surrounded by it. These plateaux and the intervening area are of particular interest
for they have been fissured and faulted very recently (Fig. 6). The belt of fissures is a mile
wide and the fractures are mainly aligned north-east south-west, and cut across all the
formations of the area, including the recent olivine basalt flow and its vent. The majority
of the faults downthrow to the north-west, and those cutting the valley south-east of Lake
Ellis have blocked the former overflow channel, forming a small pond connected to the
main lake. Along the narrow channel connecting the pond and the main lake there is a
well-marked terrace a few feet above water-level; this terrace is slightly up-warped and
now slopes gently north-westwards. The fissures on the south-eastern end of the trachyte
plateau south of the lake occur on a slight rise in the plateau and gape widely. They are
clearly due to slight up-doming in their vicinity.

The faults are best displayed half a mile west of Mugi, where they form small scarps
up to 20 feet high in soft easily eroded “‘earthy” brown trachyte rubble. Their perfect preser-
vation suggests that they cannot be more than a few hundred years old (see plate III, Fig. 2).

The movements that gave rise to these structures are of volcanic rather than tectonic
origin, and are likely to have been caused by near-surface intrusion. It is significant that
the fissured areas lie in a zone approximately between two vents of very different charac-
teristics, namely the Mugi vent of phonolite and kenyte breccia (see p. 42), and the olivine
basalt vent at the southern end of the fissure zone, and affect them both. The plateaux
south and east of Lake Ellis have much in common with the Rutundu and Giants Billiard
Table plateaux, which are described separately (p. 43).

(iii) Trachytes of the southern slopes

Pale reddish brown weathering trachytes, olivine trachytes and mugearites are found
on the southern slopes of the ridge east of the Nyamindi East, where they pass beneath
basalts on the lower slopes, occur as scattered outliers in the upper Nyamindi West, and as
a very long series of flows which extend from the upper south-western slopes, through the
forest, and form the lower slopes in the Tumu Tumu-Niana area north and west of Karatina.
This series of flows extends down the western side of the Ragati valley nearly as far as
Sagana township in the area to the south, where they rest with unconformity.on formations
older than the Mount Kenya Suite (Fairburn, 1966). A further interesting occurrence of
these trachytes is in the Hobley valley in the area of Carr’s Lakes.
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In the Hobley valley south-east of Enchanted Lake there is an outlier of olivine trachyte
up to 400 feet thick, which forms a marked plateau with cliffs on two sides (see Fig. 4b).
The trachyte rests on the phonolites and kenytes with marked unconformity in or near
the bottom of a major valley, for the trachytes outcrop on the southern side of the valley,
west of Carr’s Lakes, and can be traced down the west side of the valley downstream of
the lakes, where it is overlain by a considerable thickness of kenyte agglomerate and rubbly
vesicular basalt. The relationships in the Carr’s Lakes area are illustrated in the following
tabulation:—

West side of Hobley valley Floor of Hobley valley

vesicular basalt vent olivine basalts

: vesicular basalt

kenyte agglomerate
olivine trachyte ? olivine trachyte
(not exposed)

phonolites and agglomerates

In the Hobley vailley therefore both the olivine trachyte and the basalts above, which
were evidently erupted from the much eroded vent a quarter of a mile south-west of Carr’s

Lake, occur in the floor of a major valley, and are overlooked by high ridges composed
of older rocks.

The main cliffs of the trachyte outlier south of Enchanted Lake are composed of three
members: a basal phonolitic agglomerate with angular trachyte fragments, the main bed
consisting of trachyte flow-breccia, and a cap of phonolitic agglomerate containing minor
amounts of trachyte and olivine basalt fragments. Near the eastern end of the outcrop
trachyte lava is exposed. The rock (specimen 44/1174) is pale medium grey with a rough
feel, and contains oligoclase laths, abundant olivine microphenocrysts, aegirine-augite
and fine iron ore; it is a mugearite. A specimen of the trachyte at 12,400 feet on the west
side of the Hobley valley (44/1104) is microporphyritic with anorthoclase and olivine micro-
phenocrysts in a matrix of anorthoclase laths, aegirine-augite granules and a zeolite
mesostasis; it is an olivine alkali trachyte.

The ridge east of the Nyamindi East valley is capped by reddish weathering pale grey
glistening olivine trachytes of the usual type. Very similar lavas form upstanding outliers
on the ridges bordering the Nyamindi West valley. The trachyte here forms crags with
polygonal columnar jointing and an ill-defined fissility indicating high dips, particularly
the northernmost outlier, which rests with marked unconformity on the older trachyte-
fissile phonolite sequence, and dips markedly into the Nyamindi West. The lavas are reddish
weathering silvery grey trachytes represented by specimen 44/1194A and B, from the largest
and next largest of the outliers respectively, and 44/1198 from the south-western outlier.
All the rocks are finely porphyritic olivine trachytes, in which the olivine is variable in
amount.

The main outcrop of the trachytes on the upper south-western slopes, which extends
down into the forest belt, is of largely hypothetical outline for the exposures in this region
are poor. Pale weathering green-grey or grey fissile trachytes were seen at intervals on the
Gunia track in the forest north of Gerere hill and in the Ragati river at 9,600 feet. Further
exposures were seen near the Kamweti track between 10,300 feet and 11,000 feet, and in
the inlier of fissile trachyte east of Ragati Forest Station. The continuity of the trachyte
between the exposures near the upper limit of the forest and those of the Niana area is
hypothetical, and is based on the occurrence of a belt of swampy valleys which seem to
characterize the trachyte outcrop in the forest.

(iv) Trachytes of the Karatina-Tumu Tumu-Niana area

The trachyte outcrop of the lower south-western slopes coincides with a belt of discon-
tinuous steep-sided hills of which Niana, Kiamcheru, Kianganda, Giakagena and Tumu
Tumu are the main examples. The trachytes which are poorly exposed on these hills are
pale brown or buff weathering fissile lavas weathering into slabby blocks. In hand specimen
they are normally very fine-grained and devoid of phenocrysts, and of blue-grey colour.
Only two types seen had microphenocrysts of felspar and a rough pale matrix indicative
of moderate grain size. The inferred thickness of these lavas is nearly 1,000 feet on Niana,
between 500 and 700 feet in the Kianganda-Giakagena area and generally less than 500
feet in the Tumu Tumu region.
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They can be seen to rest on porphyritic phonolites on the slopes descending to the Muthera
river north-west of Gachuero and Gateguni villages, but south of Gachuero they overlap
the phonolites and rest directly on the Laikipian basalts along the western margin of the
outcrop. In the area to the south (Fairburn, 1966) the trachytes overlap on to the Basement
System about three miles south-east of Karatina, and continue as a capping to a low plateau
which ends two miles north-west of Sagana Township. On their eastern margin the trachytes
are overlain by the Ragati basalt, a member of the Thiba Basalts. Petrographically the
majority of the trachytes are alkali-trachytes with anorthoclase, aegirine-augite, fine iron
ore dust and often a suggestion of an alkali mesostasis. Many also contain fayalite micro-
phenocrysts, and only one rock, specimen 44/1276 from the Kamuguairi river north-west
of Gatondo village, is a mugearite of unusual composition, since it contains augite and
biotite in addition to the olivine and oligoclase. Unfortunately this rock was not seen in
situ, but derived from a loose block on the trachyte outcrop east of Ragati Forest Station.

The trachytes and mugearites described "above closely resemble the suite represented
by the Sattima Series on the Aberdare Range (Shackleton 1945, pp. 2-3) and appear similar
in age and petrography to the fayalite phonolite of Nyeri hill (Shackleton 1945, p. 4; Campbell
Smith 1931, pp. 249-250) and the trachyte of Longari Hill, which rises above the marginal
phonolites of the Mt. Kenya Suite just outside the western boundary of the area. Shackleton
(op. cit.) suggested, however, that the Nyeri and Longari Hill rocks are part of the Laikipian
Basalts. In view of their composition and post-Laikipian Basalts age they are probably
sattelite vents of the Mt. Kenya Suite.

(g) Pantelleritic trachytes

These rocks are found in small localized occurrences of no great thickness scattered
about on the upper moorland zone of the mountain as small lava occurrences and as dykes.
The largest outcrops are on the interfluve between the Mutonga and Kazita East rivers
between the 11,700 and 12,100 foot contours, and north of the Ruguti North river between:
10,300 and 11,600 feet. Smaller, thin plates are found on the western side of the upper Kazita
West valley, on the col between the Liki North and Sirimon valleys, and on the western
side of the Nyamindi West valley at 13,900 feet.

The trachytes are easily distinguished in the field for they are pale grey-buff to brownish
buff rocks with a rough feel, and they weather easily to an almost white fine felspathic
sand. Under the hammer they are soft and friable. Their pale colour, friability and finely
mottled appearance are the main features. Some of the olivine trachytes of the Kazita
West section and the paler earthy trachytes of Ithanguni superficially resemble these rocks,
but are generally darker in colour.

The exposures north of the Mutonga river are of an extensive area of riebeckite trachyte
showing faint flow lamination and basaltic inclusions, and in other parts the rock is full
of cognate fragments of rounded shape suggestive of a flow-breccia. These rocks probably
exceed 100 feet in thickness, and weather into sinuous low cliffs, groups of pillars and un-
du}ating rock mounds. They are overlain to the east by the trachytic tuffs of the Ithanguni
volcanics.

Four dykes of pale sodic trachyte were found in the alpine zone of the mountain, and
in three cases they outcropped in a col in a ridge, due to their easily eroded nature. One
dyke traverses Simba Col and forms the eastern end of Simba Tarn, from where specimen
44/1156 was taken, and the same dyke passes close to Lower Simba Tarn on the other
side of the Col (speclmen 44/1139). A further dyke occurs in the col immediately north of
Pt. Peter (specimen 44/1205), and another forms the col between the heads of the Hinde
and Kazita West valleys (specimen 44/1172). A similar dyke was found on the eastern
slopes of the Hobley valley half a mile south-south-east of Gallery Tarn.

In the hand specimen the samples from the lavas and from the dykes are indistinguishable.
The majority of specimens—44/1156, 1172, 1205—mentioned above, and specimens 44/981C
and 1188 from the outlier in the Nyamindi West valley, are composed of very stout tabular
anorthoclase crystals in which are scattered riebeckite clusters. Specimens 44/1190 and
44/1139 contain small scattered pools of quartz. Specimens 44/1160 and 44/1144, from the
outcrops north of the Mutonga river and north of the Ruguti North river respectively,
contain deep brown barkevikitic hornblende and minor aegirine-augite in place of riebeckite.
Both of these lavas contain rounded xenoliths of much altered olivine basalt. Specimen
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44/1079 from the col between the Mutonga and the Kazita East valleys contains aegirine-
augite and a patchy quartz mesostasis. In no case does the amount of quartz justify the
name comendite, but it is possible that most of these rocks contain minor quartz in the
groundmass, although it was only recognized in three. Characteristic of these rocks are the
stumpy tabular anorthoclase crystals which often have a curious extinction resembling
poorly developed Baveno twinning. In this and in their general petrography they are closely
comparable to the Gibele type of soda-trachyte (Campbell Smith 1931, pp. 220-222), and
to the Plateau Trachytes of the Magadi area (Baker 1958, pp. 18-22).

The restricted size and scattered nature of the outcrops of these lavas suggests that they
were erupted as viscous lavas from small fissures, and their acid composition and eruption
at the end of the main eruptive episode of the Mt. Kenya Suite suggests that they may be
the final differentiates of the magma chamber.

(h) Olivine basalts

The main outcrop of these basalts is between the Ontulili and Sirimon valleys on the
northern sector of the moorland. Other scattered occurrences of similar basalts which
post-date the eruptives of the main vent are included in this formation and outcrop in the
following places:—

(1) as an outlier three and a half miles north-east of the Barrow,

(2) as a series of valley-flows down the Hobley valley,

(3) on interfluves between the Teleki and Sagana valleys,

(4) in the lower Mackinder, Liki North and Ontulili valleys.

The basalts of the Sirimon region can be seen to rest with marked unconformity on the
fissile phonolites and pophyritic phonolites which floor the Ontulili valley, and a similar
unconformity is less well exposed in the Sirimon gorge between 10,000 and 12,000 feet.
The basalts appear to occupy a deep valley eroded along the western margin of the olivine
trachytes of the northern slopes (see Fig. 5a), and in two places basalts are seen as outliers
overlying these trachytes. The majority of exposures of the basalts are of compact, fine-
grained neutral-grey to dove-grey rocks weathering to smooth pale grey rounded blocks.
Many of the exposures along the Sirimon track are, however, of a deeper grey basalt with
hackly fracture, which resembles the “rubbly” basalt which occurs at the base of the olivine
trachytes in the Kazita West valley. At the southern end of the basalt outcrop agglomerate
with a high proportion of phonolite fragments is found beneath the basalts. The agglomerates
reach a thickness of a little over 200 feet.

Specimens of the basalts south of the Sirimon river show them to contain small olivine
and augite microphenocrysts in a groundmass of felted plagioclase, augite granyles and
ore. In one specimen an alkali mesostasis was suspected.

The basalts forming the outlier north-east of the Barrow are rather darker than the typical
basalts described above; they contain olivine microphenocrysts in a normal basaltic matrix.
It is possible that these basalts were derived from the pumiceous basalt cones which surround-
ed the basalt outcrop on two sides, but since their occurrence is similar to that of the other
basaltic outlier to the west they are tentatively included with the basalts of the Sirimon
valley area.

The basalts of the Hobley valley occur as an isolated group of outcrops between En-
chanted Lake and the lake immediately to the south, and also covering the whole of the
flat floor of the valley west and down-stream of Carr’s Lakes. Basalts cover the olivine
trachyte outcrop on the lip of a valley at the eastern end of the swamp and four flows can be
made out, which descend into the valley and dam the southern end of Carr’s Lake (see
Fig. 4b). They are extensively ice eroded and forms small cliffs and rounded bosses of
distinctive form. The contact between the basalt and the phonolite can be seen at the
outlet of the lake, and is nearly vertical, confirming that the basalts flowed down a deep
valley. The basalts are medium to dark grey lavas with olivine phenocrysts, and some flows
have small felspar phenocrysts also. The matrices vary from fine-grained and flinty to
rough textured, and they weather in pale shades of brown and grey as do the basalts of
the Sirimon valley. It is notable that the Hobley valley basalts are overlain by approximately
200 feet of phonolitic and basaltic agglomerate, possibly derived from the vesicular basalt
vent, the eroded remains of which are visible high on the western ridge of the valley south-
west of Carr’s Lake.

40



The basalts which outcrop on the ridge between the Sagana and Thego valleys on the
south-western moorland are probably less than 100 feet thick. They are neutral grey to
pale grey, very pale weathering rocks in which small felspar phenocrysts can sometimes
be made out. All these basalts contain olivine in thin section, together with augite and
labradorite laths. They overlie both fissile and porphyritic phonolites with unconformity.

A series of basalts approximately 300 feet thick form an outlier capping the south ridge
of the Teleki valley one mile west-north-west of Lake Hohnel, The succession up the north-
west side of the hill is as follows:—

rubbly basalt (forming the summit)

fissile basalt

basaltic tuff (20 feet thick)

fissile basalt

reddish brown glassy basalt (pyroxene phenocrysts)
rubbly basalt (pyroxene phenocrysts).

The basalt at the base shows columnar structure along the western and north-eastern
margins of the outcrop, which are cliffs, and rests on variable thicknesses of moraine. On
the southern side of the basalt outcrop the lowest rocks are basaltic agglomerates resting
on the trachytes and trachytic agglomerates of the much older Lake Hohnel trachyte-
phonolite succession. The unconformity beneath the basalts is strongly marked on the
north-eastern side of the outlier where the basalt overlaps several older lavas. Two specimens,
both from the lowermost basalt, prove to be olivine basalts, one with small pools of zeolite.

The occurrences of basalts in the lower Mackinder valley, on its northern ridge, and in
the floor of the adjacent Liki North valley are tentatively included in the present basaltic
formation, for these basalts also rest with strong unconformity on the underlying rhomb
porphyries and phonolites. The deep section offered by the lower Mackinder valley where
it enters the forest was unfortunately not visited, and the thickness of these basalts and
their extent down into the forest is not known. The basalts form thin valley flows poorly
exposed in the floor of the Liki north and the Mackinder valley, and cap the intervening
ridge. They are fine-grained neutral to dark grey olivine basalts with olivine and augite
microphenocrysts and contain minute pools of analcite. One specimen, 44/1129 from the
southern slope of the Mackinder valley at 11,800 feet, is probably a trachybasalt with olivine.

A feature of all the basalts described above is their occurrence as isolated flows, often
in valleys, resting with marked unconformity on the older formations. A substantial period
of quiescence and erosion intervened before the eruption of these basalts.

(i) Dykes and sills

Intrusive representatives of almost all the main lava types are found on the mountain,
invariably in the moorland zone. No doubt there are dykes on the lower slopes of the moun-
tain, but none were seen due to the poor exposures. The dykes are commonest in a zone
within three miles of the central peaks. There is a tendency for them to be disposed radially
about the peak, but this is not well-marked, and there is no apparent tendency for closely-
spaced swams of dykes to have been injected except immediately north-west of the Polish
Man’s Tarn nepheline syenite stock, where there are numerous dykes of rhomb porphyry
cutting both the stock and the adjacent volcanics. Three trachyte dykes radial to the Ithanguni
stock were seen on its southern side, and of these two were seen connected to superposed
lava sheet as feeders. The occurrence of dykes of the later eruptive phases in earlier formations
confirms the eruptive sequence proposed. Thus dykes of fissile phonolite, basalt and pale
olivine trachyte, representative of the later eruptive phases, are found cutting the earlier
volcanics.

Basalt dykes of the later basaltic eruptions are particularly numerous in the peak area,
supporting the suggestion that the olivine basalts such as those of the Sirimon valley were
erupted from fissures. One basalt dyke traverses the nepheline-syenite of the main peak,
forming a narrow gully which traverses the north face between the Northey and Krapf
glaciers, forms the Gate of the Mists Col between Batian and Nelion, and the ice-couloir
beneath the Diamond glacier.
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A description of these dykes would be superfluous, for they have the same composition
and mineralogy as the lavas. Two dykes are, however, unusual, the microsyenite dyke at
Polish Man’s Tarn, and the trachyte dyke east of Lake Hohnel.

The microsyenite dyke at Polish Man’s Tarn is approximately 15 feet wide and is cut by
narrow thomb porphyry dykes of similar trend. A hand specimen (44/997) from near the
Tarn is grey, medium-grained and finely mottled. It carries felspar phenocrysts 12 millimetres
long. Another specimen, 44/1207 taken from 300 yards to the south, is medium grey, more
fine-grained, and also contains 12 millimetre felspar phenocrysts, There are narrow streaks
of coarser grain size in the rock. Specimen 44/997 contains a mesh of turbid alkali felspar,
probably anorthoclase, with granular aegirine-augite, mossy cossyrite and brown sodic
amphiboles in intersertal clusters. No nepheline was recognized. In specimen 44/1207 the
rock is microporphyritic and the groundmass consists of turbid alkali felspar laths with
scattered aegirine-augite grains and iron ore. The rocks represent a microsyenite dyke
associated with the nepheline syenite stock nearby. In the area of moraine immediately
north of the Tarn are several other closely spaced dykes outcropping at short intervals,
which are not shown on the geological map. They have the same north-westerly trend as
the rest of this dyke swarm and consist of three narrow rhomb porphyry dykes, one biotite-
bearing porphyritic phonolite, and another phonolite with unusually large glassy nepheline
phenocrysts.

The trachyte dyke which traverses the cliffs of Lake Hohnel is notable for its very large
tabular felspar phenocrysts, which reach a size of ten by five centimetres, and occur in a
green-grey base. These phenocrysts are anorthoclase, and the rock contains a second gene-
ration of one centimetre long phenocrysts in a fine-grained matrix in which green pyroxene
and a yellowish brown mineral of high polarization colours can be made out. There are
small pools of analcite. This coarsely porphyritic alkali trachyte dyke is unlike any other
rock seen on the mountain.

(2) TeE SATELLITE VENTS

The volcanics to be described are separated from the Mt. Kenya Suite in time, space
and in mode of eruption. The first group to be described, however, is of similar composition.
It seems likely that the eruptives of the satellite vents derived from a different magma
chamber from those of the Mt. Kenya Suite, and the later basalts are almost certainly
connected with the Nyambani Volcanic Series, a Series built up by a chain of small basaltic
vents the majority of which are to the north-east of Mt. Kenya, but which extend con-
tinuously into the present area.

(@) Mugi

Mugi hill is situated one mile east of Lake Ellis, and rises 400600 feet above the surround-
ing country (see Plate IV, Fig. 1). It is half a mile wide at the base, and has smooth, steep
sides sloping at angles of 40 degrees. The upper part is a circle of hillocks surrounding a
shallow central depression. Erosion has had little effect on this hill, the only traces being
gullies less than ten feet deep. At the western foot of the hill there is a steep sided triangular
depression occupied by a swamp; the farther side of the depression is formed by a cliff of
olivine trachyte. The impression gained is that Mugi covers the eastern three-quarters of
a small but deep explosion crater. The whole of the southern slope of the hill is steep and
rock exposures are abundant in contrast to the lack of exposure elsewhere. This triangular
face represent a very large land-slip scar; the track of the slip and its debris can be clearly
seen in an elongated zone extending one mile south-east of the hill.

On the western slopes of the hill up to the summit no bed-rock is exposed—the slopes
are covered with rubble and blocks of phonolite and black glassy kenyte. On the side of
the land-slip, however, faintly banded glassy vesicular kenytes are exposed. The area of the
track of the land-slip is littered with kenyte and phonolite blocks, sometimes in linear
mounds, and the track is margined by a lip or raised edge of angular blocks.

The shape and composition of the hill suggest that it is a cumulo-dome of very viscous
kenyte and phonolite, the outer surface of which is largely fragmentary due to the fracturing
of already solidified lava during enlargement of the dome by the internal intrusion of lava
(Cotton 1952, pp. 156-169). A few poorly developed small fissures and fault scarps traverse
the upper part of the hill, and are probably associated with the fissuring of the Lake Ellis
area. This fissuring and the movements that caused it may have been the cause of the land-
slip that removed part of the southern slope of the hill.
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(b) The trachytic necks

On the north-eastern slopes of the mountain there are six trachytic necks of which Ithanguni
is the largest and is described separately. The remaining five necks are all between the 8,000
and 11,000 foot contours, and are characterized by their form. The best developed necks
are those forming the Giant’s Billiard Table and Rutundu. These are sub-circular in plan
and three-quarters of a mile across at the greatest width, and are surrounded by lava cliffs
300-400 feet high. The upper surface is remarkably smooth and is almost flat; on the Giant’s
Billiard Table there is a slight central depression, which is more marked on Rutundu and
the neck to the east of Rutundu. The similarity of shape and structure between these circular
plateaux and the summit plateau of Ithanguni is notable. The plateaux on the eastern margin
of the area were not examined, but are so similar to the remainder in appearance that there
is little doubt that they are of the same structure and composition. A further plateau three
miles east of Urumandi is tentatively included with the trachyte necks. It is a circular level
area at the same average elevation as the nearby slopes, but it projects above ground level
at its south-eastern end, and is below the surrounding ground at its north-western end.
It was not visited during the survey but is suspected to be a trachyte neck due to its form
and the nature of the nearby lavas.

Both the Rutundu and Giant’s Billiard Table necks are composed of massive alkali
trachyte with widely spaced columnar joints. The rocks are pale greenish grey, with a rough
matrix, and weather to a brown colour not unlike the earthy brown trachytes and pyroclastics
which occur in association with these vents. The brown trachyte rubble which litters the
ground at the foot of the western side of the Giant’s Billiard Table gives no hint of structure
and could be derived from pyroclastics or lava. In the Mutonga river nearby, however,
sub-horizontally bedded trachytic tuffs and agglomerates are exposed close to the neck.
The cliffs surrounding the lake in the explosion crater at the southern margin of the Rutundu
neck are also composed of stratified trachytic pyroclastics of approximately horizontal
attitude, and similar rocks outcrop at intervals in the Kazita gorge south-west of Rutundu.
Only on Ithanguni was lava seen in close proximity to these trachyte necks. There is therefore
little in the vicinity of the necks to show the size and nature of the volcanic superstructure,
if there was such a superstructure. There are, however, two possibilities: the trachyte necks
are plug-domes or pitons formed by the forcible extrusion of a cylinder of very viscous
trachyte, such as the plug-dome of O-usu in Japan (Cotton 1952, pp. 175-178), or that
the neck is residual and that it represents the prism of lava frozen in a low pyroclastic crater,
such as the Hopi necks in north-eastern Arizona (Williams 1936, pp. 117-119). The Hopi
necks are, however, much less wide than the Mt. Kenya trachyte necks.

Two specimens were collected from these necks, 44/1091 from the cliff at the western
end of the Giant’s Billiard Table, and 44/1102 from the southern cliff of Rutundu. Both
are greenish grey fissile rocks with a faint mottling and sparse two millimetre felspar pheno-
crysts. Anorthoclase microphenocrysts are numerous in specimen 44/1102, and are seriate
to the groundmass, which contains flow-aligned anorthoclase laths, mossy interstitial
aegirine and scattered iron ore granules. One or two minute cubes may be of nepheline.
Specimen 44/1091 is very similar but has brown patches of an alteration product, and
there is an extensive analcite mesostasis. The fine lath-like nature of the groundmass felspars,
and the mossy aegirine, together with either nepheline or much primary zeolite shows that
these rocks are allied to the fissile phonolites rather than the trachytes. They closely resemble
the Ithanguni lavas.

The brown earthy trachytes which have been referred to in the account of the olivine
trachytes of the Lake Ellis area (p. 36) are found between Lake Ellis and Urumandi and
reach northwards to beyond the Mutonga river. Similar rocks occur as agglomerates in the
Kazita valley north-west of Ithanguni. These problematical rocks cannot be assigned to
any definite origin, but the close association between them and the trachytic necks such as
the Giant’s Billiard Table and Rutundu suggests that they may have originated from these
vents. This is supported by the similarity between weathered trachyte from these necks
and the earthy trachytes.

The brown trachytes and agglomerates are very poorly exposed due to their easily eroded
nature, and their field occurrence is often in the form of rubble and float. In the Nithi north
river west of the basalt vent, there are exposures of brown faintly flow-banded lava overlain
by loose rubble of earthy trachyte. Similarly the plateau south of Lake Ellis, which is compos-
ed of brown weathering olivine trachyte, is capped by a rubble of brown trachyte. Between
this plateau and Mugi hill, and extending towards Urumandi and across to the Mutonga
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river, is an area of porphyritic brown earthy trachyte which contains loose blocks of phonolite
in the vicinity of the Mugi vent. Over most of this area it forms a thin layer resting on the
porphyritic phonolites beneath. Most of the blocky earthy trachyte of this region contains
small felspar phenocrysts, and some rocks are quite coarse grained; the broken faces of
the felspar of the matrix can be made out with a hand-lens. North-west of the Giant’s
Billiard Table the slope down to the Mutonga is littered with such rocks—the fragments
are generally rounded and rarely exceed nine inches in size, and scattered about there are
blocks of Basement System gneisses up to four feet in diameter, proving that much of the
material here is agglomeratic. Further north the earthy trachyte rubble is overlain by lami-
nated trachytic tuffs from Ithanguni. Exposures in the Mutonga valley north of Mugi
suggest that the earthy trachyte rubble overlies yellow ashes, and below these are green-
grey trachytic agglomerates, trachyte lavas, and phonolite at the base.

The occurrences of earthy trachyte in the Kazita valley north-west of Ithanguni are of
undoubted agglomerate, there being exposures in the river and the surrounding slopes
between the 10,600 and 10,800 foot contours. These are overlain by the fine ashes which
outcrop sporadically on the adjoining ridges, and which form the ground between Ithanguni
and Rutundu, and west of Rutundu.

The trachytes are brown in colour, highly porous due to microvesicles, friable and easily
trimmed. No large vesicles were seen, nor any traces of types with scoriaceous structure
or a glassy facies. Some of the agglomerate blocks in the Kazita valley section were of
trachyte breccia cemented by microvesicular trachyte. In most of the rocks minute cleavage
faces of felspar crystals are visible, and in some scattered stout phenocrysts up to half a
centimetre long are present. Three specimens were collected, specimens 44/1083 and 1084
from the Chogoria path (Carr’s road) two miles south-east and 400 yards west of Urumandi
respectively, and 44/1101 from the Kazita valley one and a half miles west-north-west of
Lake Alice. Specimen 44/1083 is medium grey-brown in colour, microvesicular and porous,
with a sheen due to minute felspars. In thin section it consists of alkali felspar laths set in
a matrix of spongy iron ore and pools of brown glass. Specimen 44/1084 is similar to 44/1083
in hand specimen except for the presence of small felspar phenocrysts seriate to groundmass
size, and the matrix contains small aegirine-augite prisms, clumps of fine iron ore granules,
and a patchy turbid zeolite mesostasis. Specimen 44/1101 contains flow-aligned felspar
laths in a speckled cryptocrystalline groundmass.

These trachytes are probably the products of the explosive activity of the trachyte necks,
whose lavas they most closely resemble. These explosions no doubt resulted from the vul-
canian activity of the vents, and may also have produced some of the finer tuffs which are
associated with the agglomerates in the Mutonga section. The activity of these vents ceased
when they were occupied by quiescent trachyte in the form either of lava lakes or of viscous
plug-domes.

(¢) Ithanguni—trachytic lavas and pyroclastics

The volcanic pile of Tthanguni on the eastern slopes of the mountain is the largest of the
satellite volcanoes, and it is still in an early stage of dissection; moreover, the exposure
on its upper part is good due to the fact that it has suffered a short period of glaciation.
Ithanguni is a squat conical mountain surmounted by a flat summit plateau approximately
one mile wide, and which reaches to 12,776 feet. To the south, east and north the slopes
fall off evenly at approximately 20 degrees, but to the west the mountain is linked by a
rounded ridge of pyroclastics to the main mass of Mt. Kenya. One and a half miles west-
south-west of the summit plateau a broad, shallow basin occurs in the pyroclastics. This
basin is one and a half miles across at its widest part and has the appearance of a large
explosion crater. At the foot of the north-western side of the summit plateau there is a
smaller but deeper explosion crater occupied by Lake Alice. On this side of the mountain
the Lake Alice crater lays bare the side of the neck, which forms cliffs up to 900 feet high
overlooking the lake. Low cliffs margin the neck and the summit plateau around the re-
mainder of its circamference. By projecting the surface of the older volcanics beneath
Tthanguni the thickness of the Ithanguni volcanics can be estimated at approximately 3,000
feet. Previous to the onset of erosion these volcanics were probably only a few hundred
feet thicker than at the present time.

The deepest sections exposing the Ithanguni volcanics occur on the steep slopes south-
east of Lake Alice, between the southern lateral moraine and the cliff face. The upper 600
feet of the succession here contains mostly pale buff, yellow-brown and brown ashes of



sand grade with thin agglomerate and a flow laminated partly glassy brown and buff po-
cellaneous trachyte outcropping at 12,500 feet. The lower 300 feet of the slope is partly
obscured by moraine and eluvial ash but scattered outcrops of thin trachytes occur about
300 feet above lake level, and can be traced round the western side of the lake where they
are seen to be intercalated in ashes and agglomerates. Similar trachyte lavas are found
in the cliffs east of the lake, but are thicker here and are overlain by a minor development
of reddish brown ashes. '

On the northern, eastern and western sides the summit plateau is surrounded by trachytes
dipping outwards. These lavas are exposed only on the glaciated pavements and hummocky
rock bosses which characterize the ice-worn belt within the fringe of terminal moraines.
The lavas are somewhat variable in colour due to their fine grain, and are grey and brown,
frequently flow banded, and sometimes fissile. Vesicular varieties are rare but some lavas
contain scoriaceous patches. These lavas on the northern and north-eastern slopes are
strongly fissured at their contact with the wall of the neck, in contrast to the remainder
of the neck margin, which is surrounded by a sheath of trachyte breccia.

On the southern side of the neck the trachytes can be seen to overlie a succession of pisolitic
and pumiceous ashes which dip at eight degrees to the south-south-west. These pyroclastics
continue up to the breccia sheath of the neck, and are cut by three dykes, two of which
are feeders to superposed thin trachyte sheets 800 yards south-east of the summit. The trachyte
lavas to the west thin to a thickness of a few feet and become glassy. Two hundred yards
south of the summit massive trachytic agglomerates rest on these attenuated glassy trachytes,
here only two to three feet thick, and these rest on laminated ashes. On the upper south-
western slopes only pyroclastics are exposed, dipping at 28° to the south-west close under
the summit ridge. This ridge is composed of flow banded trachyte of felsitic appearance
and is exactly similar to the north-west dipping lava interbedded with ashes which outcrops
on the ridge top 200 yards to the north-west.

The trachyte neck is formed of massive lava with a tendency to vertical columnar jointing.
At the margins the rocks are fragmentary and pass imperceptibly into trachyte breccias
and agglomerates which dip at steep angles towards the centre of the neck on its western
sides. On the southern side of the neck a narrow breccia-agglomerate bed margins the
neck but its attitude could not be determined. Lavas which dip beneath the neck form
the summit of the plateau, and other lavas are in contact with the neck along the north-
eastern margin. The trachytes forming the neck are grey to green-grey, compact, often
fissile rocks in which very scattered small tabular felspar phenocrysts are seen. The upper
surface of the neck, i.e. the greater part of the summit plateau, is composed of pale brownish
grey to silvery grey, fissile, glistening lavas which are quite distinct from the main mass
of the neck on which they appear to rest as a shallow plate. These pale trachytes are similar
to the pantelleritic trachytes found as small outliers and dykes on the upper part of the
main mountain (p. 39).

1t is likely that the Ithanguni neck was surrounded by a low crater wall consisting mainly
of pyroclastics, and that the upper surface of the neck is only slightly reduced below its
original level. The upper part of the neck, which widens appreciably upwards, is the prism
of lava that froze in the crater floor, and the subjacent lava breccias and agglomerates
represent the inner slope of the crater. The pale trachytes which form the cap of the neck
may represent a late effusion of lava on to the solidified lava floor of the crater. The crater
walls, which were constructed of unconsolidated pyroclastics, have been easily removed
by erosion, especially ice-action.

Petrographically the lavas and the neck rocks are virtually indistinguishable—all are
alkali trachytes of slightly differing characters. The differences in colour from pale silvery
grey to deep grey are due to variations in crystallinity and the form of the ferro-magnesian
minerals. More than half the rocks collected are porphyritic or microporphyritic, the felspars
being sparse small tabular anorthoclase or soda-orthoclase crystals. Except in the case of
the glassy trachytes forming the summit ridge (specimens 44/1166 and 1167), and one speci-
men from the outer margin of the neck at the foot of the cliff overlooking Lake Alice (44/
1162), the matrices are fine-grained, trachytic and consist essentially of lathy anorthoclase,
granular or mossy aegirine-augite and, rarely, brown sodic hornblende. Two of the lava
specimens contain minute olivine granules in the matrix, and olivine microphenocrysts
were found in one of the dykes on the south side of the neck (specimen 44/1104), in one
specimen of the pale trachyte which forms the capping of the neck (specimen 44/1165),
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and in one of the lavas. Two specimens of the lavas had saccharoidal matrices devoid of
ferro-magnesian minerals but with an abundance of fine iron ore. In the majority of the
rocks sliced analcite was observed or suspected as a mesostasis in the groundmass.

The pyroclastics derived from Ithanguni volcano are wide-spread on the north-eastern
slopes, where they blanket the earlier formations, and give rise to a distinct physiographic
province on the mountain. They are preserved up to eight and a half miles west of Ithanguni
on the ridge flanking the Kazita West and East valleys. Exposures of these almost uncon-
solidated ashes and agglomerates are poor except in the lower Kazita river, which cuts a
precipitous canyon, and in some of the streams draining the steeper slopes. Some of these
streams, namely the right bank tributaries to the Kazita, are incised so deeply that they
run in narrow inaccessible canyons up to 30 feet deep, in which the tops of the canyon
walls are no more than ten feet apart.

In the area of the Kazita river immediately west of Ithanguni a thickness of at least 1,500
feet of pyroclastics can be inferred, but from this area they thin in every direction. The
ashes which make the greater part of these beds dip at variable angles usually down the
slope of the mountain, and these dips are depositional and reflect the slope of the floor on
which the pyroclastics were deposited. The ashes and fine agglomerates are well exposed
in the broad valley-head south of the Kazita West at the 12,000 level. The lowest beds are
fine brown agglomerates with fragments averaging four inches in diameter. These are over-
lain by well bedded sandy and pisolitic ashes. The dominant colours are yellow-brown,
brown, grey and olive-grey, the finer material being the darkest in colour. Well laminated
brown and yellow ashes outcrop at intervals on the ridge north of the Mutonga river up to
the 12,200 foot level, and locally these beds dip up to 22 degrees to the east. The pyroclastics
are well exposed at intervals in the Kazita river between 10,000 and 11,000 feet, the lower
part of the section exposes agglomeratic earthy brown trachyte of the type described on
p. 38 but higher up these agglomerates are overlain by finely bedded ashes and agglomerates
with thin yellow claystone beds.

The area between two and four and a half miles west of Rutundu contains numerous
exposures of pale buff and brown pumice tuffs which form sculptured crags and cliffs and
which contain caves and overhangs. The lower portions of some of the cliffs and overhangs
have been extensively eaten by animals on account of the high saline content, which is
evidenced by effiorescences of sodium carbonate. In one favoured locality the animals
(mostly eland, zebra, duiker and possibly a few buffalo) have eaten or licked away at least
three feet of pumice tuff over a frontage of 15 yards.

6. Basaltic lavas and vents

The volcanics to be described are the basalts and vents which were erupted on the flanks
of Mt. Kenya after the trachyte-phonolite activity of the main vent and the satellite vol-
canoes had ceased. There is no doubt that the whole of the basaltic vulcanicity is Quaternary
in age, for the most far reaching flows descend the Thiba valley south-east of Embu, and
reached levels below the mid-Pliocene erosion surface in that area (Bear 1952, pp. 30-31%).
There is little doubt that the Quaternary basalt vulcanicity of the present area was current
with and of the same type as the Nyambeni vulcanicity (Mason 1955; Rix, The Kinna
area, in preparation (includes summary of the Nyambeni volcanic series)), for the chain
of Nyambeni-type basaltic vents extends into the present area.

(1) THE THIBA BASALTS

The basalts of the southern slopes have been separated from the Laikipian basalts as
described by Shackleton (1945, pp. 3-4; see p. 18 of this report), and are named the Thiba
Basalts after the main river which traverses their outcrop. The Thiba Basalts occur between
the Ragati and Rupingazi valleys and generally below the 11,000 foot contour, and extend
into the area to the south (Fairburn, 1966) to a little beyond latitude 0°45’S. They cover
an area of approximately 500 square miles, and were erupted from a series of vents along an
cast-north-easterly trending line on the southern slopes of Mt. Kenya, between the 9,000
and 11,000 foot contours. Other basaltic vents occur on the slopes of the mountain, and are
included in the Thiba Basalts due to their apparently similar age and composition.

*Note, however, that Bear’s view of the age of the erosion surfaces, the Mt. Kenya phonolite, and the
Thiba valley basalt is, in the writer’s opinion, incorrect (see page 14 of the present report).
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The age of the Thiba Basalts cannot be determined accurately without fossil evidence,
but several other factors, tabulated below, enable an estimate to be made:—

(1) the basalts descend the lower Thiba valley to elevations below the mid-Pliocene
erosion surface of the Tana valley (Fairburn, 1966)

(2) the vents from which these basalts were erupted are moderately well preserved, and
are recognizable as craters on the air photographs.

(3) on the younger flows in the Ragati and Rupingazi valleys river incision is generally
less than 20 feet,

(4) one basalt vent situated between the Rupingazi and Thuchi valley terminal moraines
at 11,000 feet partly underlies this moraine, showing that the vent is a little older
than the last glacial maximum, which can be tentatively put in the upper Pleistocene.

These facts suggest a Pleistocene age for the basalts, and the writer would guess that the
bulk of the activity occurred in the Middle and Upper Pleistocene.

The Thiba Basalts are sub-divided into three groups for ease of description. Since the
complex stratigraphy within the group has not been fully worked out these groups are based
on distinctions of field appearance and petrography, but there is evidence that the groups
are natural to some extent.

(a) The basalts of north-western Embu district

The basalts to be described cover the greater part of the Thiba Basalt outcrop, and are
margined to the west and east by the younger Ragati, Nyamindi and Rupingazi basalts,
and overlain in Inoi location by the microporphyritic basalts and ashes which form the
youngest division of the Thiba Basalts. The basalts outcropping near the western margin
of the Thiba Basalts, in the area of Gerere and Biruoini, in the Chehe Forest Station area
and in Iriaini, Kiine and Mwenia locations appear to be the oldest, for this area is dissected
to a greater extent than the basalt terrain to the east. The differences in degrees of dissection
can only be appreciated by study of maps with 50 or 100 foot contour intervals.

The basalts in the Biruoini-Chieni Marsh area in the forest are dark dense basalts without
phenocrysts. Below the forest the basalts are mostly porphyritic, with lath-like felspar
phenocrysts up to half an inch in length, and in many of these rocks minute olivine pheno-
crysts can be made out. Such types are common in the area between Kiangai, Kahuru,
Kiaruhiu and Moragara villages, and are also found on the track above Chehe Forest
Station between the 7,000 and 9,000 foot contours. Farther to the south, on the Kiangai-
Karatina road, fissile dense basalts often with bluish vesicles are seen and are reminiscent
of the Laikipian basalts. Forming the higher ground immediately south of Kiangai village
and west of Gathambi are medium grey rough-textured porphyritic olivine basalts, and
similar rocks form the more level ground east of the line Kachimba-Ruiru river-Kiamaina-
Kabonge. These olivine basalts pass beneath the microporphyritic basalts of Inoi location,
and similar types are only rarely seen further east except south and south-west of Ruangondu
village.

To the east of the younger basalt of Inoi the greater part of Kabare location is composed
of dense basalts, examples of which are well exposed at the Tetu bridge over the Keringa
river north-west of Gatugura village. These lavas are either fissile or blocky and the blocky
varieties often weather into spheroidal masses. The eastern limit of the dense dark basalts
passes approximately along the line Kathaiya-Gatugura-Karumande-Kathandeni; east of
this line the lavas are porphyritic columnar basalts characteristic of the valley floors of
the Nyamindi and Rupingazi valleys.

The vents from which the basalts were erupted occur at the upper margin of the basaltic
area, at Gerere (19,000 feet), the end of the Kamweti track (10,600 feet), and in the Niyamindi
and its tributary valleys at 10,600 and 11,000 fect. Of these the last two are well preserved
vents with deep central craters and walls breached to the south—both are one third of a
mile wide. The Gerere and Kamweti track vents are slightly larger and more eroded, but
are still recognizable as small vents on air photographs. The Gerere vent is surrounded by
an area of scoriaceous olivine basalts, and the Kamweti vent is of vesicular brown-grey
microporphyritic basalt, with basaltic tuffs, scoria and agglomerate poorly exposed on the
slopes below.

Very little traversing was done in the forest on the basalt outcrop owing to the extremely
poor exposure, the dense vegetation and the lack of time. The geology of the forest on the
southern slopes is therefore tentative.
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Two broad depressions were found on the basalt outcrop, one at Kachimba and the
other near Muthere. Both are basin-shaped, 150200 feet deep and margined by slightly
raised sides. Only the Kachimba depression was visited, and this is occupied by a swamp
feeding the Ruiru river. Only two basalt exposures were seen on its flanks, but from its
form there is little doubt that it is a large explosion crater, probably of phreatic origin.

Petrographically the majority of the specimens collected from this division of the Thiba
Basalts are microporphyritic olivine basalts. Basalts with visible felspar or olivine pheno-
crysts are rare, the former are found mostly in Iriaini location of eastern Nyeri, the micro-
porphyritic basalts occupy the remainder of the area described. The essential minerals
in the basalts are andesine-labradorite, ferriferous olivines, augite, and iron ores. In half
the slides traces of analcite in the matrix or as discrete pools was seen. Apatite rarely occurs
as an accessory mineral.

(b) The Rupingazi, Nyamindi and Ragati basalts

At the eastern and western margin of the basalts described above, and as a separate
area centred on the Rupingazi valley between the 11,000 foot contour and the southeérn
boundary of the area, are youthful pale to medium grey olivine basalts which characterist-
ically occur as valley flows. The area occupied by these basalts is characterized by low
relief and only minor incision by streams, and the margin of their outcrop in the Rupingazi
valley area in the forest is based almost entirely on evidence from air photographs, and is
at the edge of a broad belt in which the topography is markedly youthful compared to that
of the adjacent country. In the Rupingazi valley north of Embu, however, the relationship
of the basalt flows to the underlying dissected phonolites is very well displayed.

The basalts which descended from the two low, dome-like, undissected vents at 9,300
feet west of the Rupingazi flooded a wide area in the forest, and flowed down into the upper
Kii and Rupingazi valleys.

The Rupingazi valley is flat-floored and steep-sided from Thambana village to the southern
boundary of the area and beyond. The physiographic anomaly of a flat-floored valley
occupied by a river incised only 10-20 feet into the valley floor in a countryside of dissected
topography is immediately apparent, and is explained when the floor of the valley is found
to be occupied by a recent lava flow. Between Thambana and Rugumu the valley floor
is slightly undulating, there being low elongated mounds and ridges which are linear surface
features of the lava flow. The lava in this area is largely vesicular flow-breccia—the lava
was of the blocky or aa-type—and the linear mounds are probably pressure ridges. In the
vicinity of Mwiria factory the Rupingazi river is on the eastern side of the valley and locally
exposes the steep basalt-phonolite contact which slopes towards the centre of the valley.

The basalt of the lower Rupingazi is medium grey, rough textured and contains very
scattered olivine and felspar phenocrysts up to one centimetre in size. It often displays-
good columnar jointing, as at the intake of the Embu Water Supply works at the northern
margin of the Njukiini Forest.

Basalts which closely resemble those of the Rupingazi are found near the southern boun-
dary of the area between Kathaiya and the Nyamindi river, and extend northwards as far
as a line joining Gatugura, Karumande and Kathendeni. Darker, denser basalts with small
olivine phenocrysts are found one mile west of Kiamutugu and flooring the lower Nyamindi
valley. The latter exhibit good columnar jointing, and are valley flows similar to those
of the Rupingazi valley.

The Ragati olivine basalt is a distinct flow which can be traced from the forest on the
south-western slopes down the Ragati valley to a point well to the south of the present
area, north of Sagana township. The Sagana-Karatina-Ragati Forest Station road is built
on this basalt. The Ragati valley is broad and flat floored and, like the Rupingazi valley,
is in marked contrast to the deeper, incised valleys to the east and west. Neutral grey blocky
porphyritic olivine basalt is exposed along almost the whole length of the Ragati river.
The Ragati basalt flowed down the western margin of the older Thiba Basalts and inundated
the eastern edge of the hilly ground formed of the Mt. Kenya trachyte.

(¢) Microporphyritic basalts in Inoi location

Much of Inoi location is occupied by soft microporphyritic basalts, ashes and agglomerates
which are believed to have originated from a group of four low vents between one and a
half and three miles north-east of Chehe Forest Station, and from the completely undissected
ash cone which is Kilima Kamuruana hill.
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The typical lava of this region is a brown weathering basalt with scattered one centimetre
felspar phenocrysts in a matrix full of minute lath-like felspar microphenocrysts, often
accompanied by small olivines. These types outcrop in the Mukengaria river on the forest
boundary and up to two miles to the south, in the neighbourhood of Rutue mill, and in a
broad belt east and west of Thaita village. In the southern half of the outcrop the basalts
are commonly overlain by poorly consolidated brown agglomerates and ashes, which
outcrop on interfluves. Similar agglomerate is seen as loose fragments on the track north-
east of Chehe Forest Station, on the western slope of the Kiamariga vent, and forms the
whole of the dome-like Kilima Kamuruana vent.

The outcrop of these rocks is relatively undissected in comparison with the ground to the
east and west, and further evidence of the young age is provided by the unconsolidated
nature of the agglomerates, the youthful appearance of the vents, and the fact that they
are seen overlying the older Thiba Basalts in the Mukengaria river and in the streams north
of Kerugoya. It is possible that these volcanics are of the same age as the basaltic pumice
cones of the northern slopes of the mountain which are described below.

(d) Other craters and vents

Well preserved craters and vents are recognized in the forest belt on the eastern and western
slopes of Mt. Kenya to be in the same state of dissection as those from which the older
Thiba Basalts were erupted. These were recognized on air photographs, and are located
in the Thuchi valley (three vents), in the Nithi valley near the eastern margin of the area,
Kehari and Tagwa hills on the south-western slopes, and two vents among the tributaries
to the Burguret river on the western slopes. Of these only Kehari hill and the Burguret
vents were visited. The outlines of the other vents and the hypothetical boundaries of their
lavas are inferred from air photographs.

These vents are between half and three-quarters of a mile wide at the base and rise up
to 500 feet above the surrounding country. Only the uppermost vent of the Thuchi valley
has a well-preserved crater—in the remainder the crater is either destroyed by erosion or,
as in the case of the Nithi valley vent and Kehari and Tagwa hills, never existed.

The lower slopes of Kehari hill and the northern vent of the Burguret river system were
searched for exposures without success, but in each case the foundation of porphyritic
phonolites was found outcropping in the streams near the bases of the hills. In the case
of the two vents examined it seems that very little, if any, lava was erupted, and it is llkely
that the vents are ash cones.

(2) BasaLtic Pumice CONES

The south-western extremity of a large field of basaltic cones and vents which covers
a wide area of the north-east of the present area, and form the Nyambeni Volcanic Series
(Rix, Kinna area, report in preparation) occurs on the northern slopes of Mt. Kenya. Fifteen
vents and cones occur between the Kazita river and the northern margin of the area, and
are in the form of low cones, often with ill-preserved shallow craters. The vents are up to
three-quarters of a mile in diameter at the base, and rise up to 300 feet above the surrounding
country. Exposures are extremely scarce and the only erosion to affect them has been the
cutting of shallow gulleys which usually expose surface debris consisting of rounded blocks
and pebbles of highly vesicular or pumiceous basalt. The surface of the vents is littered
with similar material. In no case was lava seen extending beyond the slopes of a vent.

Lava was, however, seen on the two vents nearest the Kazita river, and two specimens
(44/1116 and 1117) from the northern slope of the vent four and a half miles east-north-east
of the Barrow prove to be scoriaceous oligoclase basalt with much iron ore and no recogniz-
able ferro-magnesian minerals, and fine-grained fissile olivine basalt respectively. The
superficial material normally seen is of reddish brown weathering highly vesicular scoriaceous
or pumiceous fine-grained basalt. No definite pyroclastic beds were seen on these vents,
but much of the superficial material is of ashy consistency.

These vents appear to be composed of highly vesicular basalts which were extruded
without explosive activity and which are limited to the vents themselves. They appear to
" belong to the latest phase of activity of the Nyambeni volcanic chain (Mason 1955, pp. 8-9):

7. The Central Plug of Mount Kenya

. The plug of Mt. Kenya, which forms the highest peaks of the mountain, occupies the
conduit through which passed the greater part of the volcanics which build the mountain,
for the volcanics of the main eruptive episode are symmetrically disposed about this centre
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The plug is sub-circular in plan (Fig. 7) and is one and a quarter by one and a half miles
in dimension. In its eroded state it forms a complex of precipitous peaks and is excellently
exposed over a vertical distance of nearly 3,000 feet. Parts of the southern and eastern
margins are obscured by glaciers, scree or moraine, however, and much of the central part
is inaccessible even to experienced rock-climbing parties.

The structure of the plug is of a series of partial concentric cylinders and lenses about a
central core of nepheline syenite, the cylinders having vertical axes. The outer ring consists
of fine-grained phonolite, locally much altered and penetrated by syenite, which margins
the plug on the northern and eastern sides. To the west the marginal rocks are porphyritic
syenites separated from the central syenite mass by a septum of phonolite similar to and
apparently continuous with the phonolite of the outer ring on the north. The central region
is occupied by coarse nepheline syenite which contains zones full of phonolite xenoliths.

(1) PHONOLITES

Fringing the plug on its northern and eastern sides is a body of phonolite whichis between
250 and 300 yards wide. At no locality was the outer margin of this phonolite exposed, but
the margin can be mapped to within 20 or 30 yards except on the scree and moraine covered
slopes below the Gregory and Krapf glaciers. The inner margin of this phonolite body is
exposed in the area between Point Peter and Kami Tarn, and below the snouts of the Krapf
and Lewis glaciers. In each of these localities the contact is vertical or nearly so, but is
usually characterized by a transitional zone in which the adjacent syenite penetrates the
highly fractured and altered phonolites near the contact to form an intrusion breccia.

The phonolites are distinguished from the volcanic sequence with which they are in contact
by their homogeneity, the black non-vitreous matrix, by the occurrence of reddish nepheline
phenocrysts and by the lack of stratification and pyroclastic beds. In these respects the phono-
lites of the outer ring are identical to those of the body between Oblong and Hut Tarns.
The phonolites outcrop at or near the base of the main massif, being less resistant to glacial
plucking due to their close jointing, and the majority of lakes in the peak area are found
on their outcrop.

In several areas the phonolites contain rounded xenoliths, and this structure is very
difficult to make out where the xenoliths and the host rock are very similar, as is usually
the case. Areas where cognate phonolite xenoliths are common are on the south ridge of
Nelion, down to the margin of the Lewis glacier (see Fig. 7), at the eastern margin of the
plug immediately north of Thomson Flake, and at intervals along the phonolite outcrop
between Hut Tarn and Oblong Tarn.

In the hand specimen the phonolites closely resemble the kenytes, and have felspar and
nepheline phenocrysts in a very dark grey to black fine grained base. The matrix is never ~
glassy, however, nor does it have the greenish shades of the better crystallized phonolite
lavas. In the neighbourhood of the contact with the central syenite body the phonolites are
often affected by recrystallization, and become pale brownish grey variable rocks, in which
the felspar and nepheline phenocrysts can be made out with difficulty. Within 20-50 yards
of the syenite contact the altered phonolites are often closely reticulated by microsyenite
veins, and the phonolites become flinty, pale greenish buff in colour, and are much coarser
grained than the unaltered rocks. Such recrystallized phonolites are especially common
at the phonolite-syenite contact between the Krapf glacier and the trachyte dyke west of
Kami Tarn.

Large quantities of phonolite xenoliths are found in the central syenite body in well-
defined zones, two of which occur on the west face of Point Piggott, and evidently have the
same orientation as the adjacent syenite margin. In these xenolithic zones the fragments
are well rounded and form more than half of the rock by volume, and are similar to the
phonolites of the main body. Similar xenolithic zones were observed on the left bank of
the Northey glacier, at 15,400 feet, and the occurrence of xenolithic syenite blocks in the
lateral moraines of the Darwin, Josef and Northey glaciers suggests that further xenolithic
zones occur high up on the rock faces where these glaciers originate. A further complex
xenolithic belt is found on the south face of Point Piggott, on the cliffs overlooking the
Tyndall glacier. Blocks of phonolite up to eight feet in diameter are found here, the blocks
themselves often being xenolithic, and containing fragments of phonolite of varying texture.
Many of the phonolite fragments of this zone are paler than normal and show evidence
of alteration.
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Fig. T—Geological map of the Mount Kenya plug.

- In thin section the phonolites are seen to be very much alike in composition, but to exhibit
variable textures. In all the slices examined porphyritic felspars occur, but in most the
felspars are rounded, with granulated borders and numerous inclusions. In most cases
the felspars can be identified as anorthoclase by the occurrence of fine lamellar twinning
and the moderate axial angle. The nepheline crystals are more frequently broken down
to granular aggregates full of veins of zeolites, or are dispersed throughout the matrix as
a zeolitic mesostasis, or as minute cubes in felspars. Characteristically the matrix is granular
in texture, the felspars occurring as small stout tabular crystals often embedded in larger
plates of felspar and zeolite in the form of sieve texture. Minute stout aegirine prisms are
common, and a liberal dusting of iron ore granules is notable.  Aegirine-augite occurs as
ragged microphenocrysts in some rocks, or is pseudomorphed by masses of iron ore and
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alkali hornblende in the more recrystallized varieties. In several. of the slices the aegirine-
augite granules are yellowish and exhibit anomalous blue polarisation colours, and”small
plates of sieved brown biotite are not uncommon. Both cossyrite and kataphorite are ex«
tremely rare, but can be detected in association with altered sodic pyroxene in some slices.
The only accessory mineral is apatite. Examples of these phonolites are specimen 44/972
from 200 yards west of Hausburg Tarn; 44/1035 and 1037 from the phonolite xenoliths
in syenite at the west bank of the Tyndall glacier. -

The phonolite fragments in a microsyenite base on the upper part of the south ridge of
Nelion (cf. specimen 44/971A) at 16,000 feet, differ from the others in that they are very
fine grained and turbid, and seem to be closely related to the phonolite outcropping at
Top Hut, which is described below. .

The tocky boss on which Top Hut stands is composed of homogeneous porphyritic
phonolite with poor columnar jointing. The rocks are similar to the phonolites of the main
plug in hand specimen, and appear to have a vertical contact against bedded kenytes at
their south-western margin. Exactly similar homogeneous phonolites form the buttress
below and to the north of Point Thomson, but here the phonolite is overlain by a bedded
sequence of kenytes and agglomerates which form Point Thomson itself. The Lewis glacier
obscures the relationship between these occurrences of plug-type phonolites and the plug
itself, but it is possible that the two parts are joined beneath the Lewis glacier along the
sub-glacial high indicated by the crevassed bulge of the glacier surface between the Curling
Pond and Point Thomson. This body may represent a separate intrusion into the volcanics
marginal to the plug in the form of a short ring dyke.

Two specimens (44/1029 and 1107) collected 100 yards south of Top Hut show corroded
anorthoclase and nepheline phenocrysts in a dark turbid base with some small aegirine
microphenocrysts and small pools of analcite. They are closely comparable to the phonolites
included in microsyenite on the other side of the Lewis glacier on the south ridge of Nelion.
An analysis of the phonolite near Top Hut is quoted on p. 27, and shows the close chemical
similarity between these phonolites and the phonolitic extrusives.

(2) NEPHELINE SYENITE

The whole of the central part of the plug is composed of massive nepheline syenite, and
a lens of nepheline syenite occurs also in the north-western part of the plug. The central
syenite body post-dates the phonolites adjacent to it, but the age of the western syenite:
body is uncertain.

The syenite consists of three main types—massive coarse-grained syenite. which forms:
the central mass, porphyritic syenite which is a marginal facies to the main mass and which
forms the greater part of the western body, and microsyenite, a -chilled marginal facies of
very local development, which intrudes the shattered adjacent phonolites.

The porphyritic syenites are found largely in the western marginal part of the plug, and
at the contact of the syenite and phonolite near Nanyuki Tarn. They are also common
but not universal at the contact of the central syenite, and were observed 100 yards north-
west of Lewis Tarn, below the snout of the Krapf glacier and west of Kami Tarn. These
latter occurrences are of a gradational marginal facies not more than 20 to 30 yards wide.
The microsyenites are restricted to the fine vein stock-works which penetrate the phonolite
in several places.

In the field the nepheline syenité is seen as a coarse grained rock composed largely of
tabular felspars reaching a length of 15 centimetres, with interstitial finer grained mosaics
of felspar and reddish nepheline. The scarce dark minerals are confined to intergranylar
positions. Some variations in nepheline content were observed in the field, but were of too
irregular a nature to be mapped. The rocks are normally grey in colour, but vary to pale
greyish brown in some outcrops. The gradation to the porphyritic facies occurs by a pro-
gressive decrease in the medium-grained component of the rock, with the result that the
felspar phenocrysts become scattered in a medium to fine-grained matrix. '

. In thin sections the felspar phenocrysts are seen to possess a good but not perfect tabular
outline, and to be rarely twinned. A few lamellar and one cross-hatch twinned felspar
was seen (specimen 44/1038 from the snout of the Darwin glacier). In some slides, howgver,
the . phenocrysts appear to be sanidine on account of the low axial angle, for instance in
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spécimen: 44/1204 from the north-western shore of Oblong Tarn, and 44/1001 frorn.200
yards north-east of the snout of the Northey glacier. Subdhedral- -nepheline phenocrysts
are-Scarce, for the nepheline normally occurs as a part of the matrix of interlocking anor-
thoclase crystals, in which brown kataphorite is seen as anhedral plates and skeletal slieved
gtains, The kataphorite is often associated with smaller granules of cossyrite, and shows a
teridency to have marginal envelopés of acgirine-augite. In some slices, for instance specimen
44/1036 from 1mmed1ately west of the snout of the Tyndall glacwt ferriferous olivine is
present and is associated with iron ore, apatite and the other ferro-magnesian 1ninerals
in aggregates. In thi$ slice the felspars of the matrix are mostly sanidine. Apatite prisms
are common in the syenites, but iron ore is very scarce. Biotite was-seen in a porphyntlc
syenite (specimen 44/979) from the western side of the Darwin glacier.

The porphyritic syenites are represented by specimen 44/971B; from the xenolithic syenites
‘on the south ridge of Nelion, in which there is a cloudy fine grainéd interlocking felspathic
matrlx with scattered aggregates of aegirine granules.

. The nephelme syemte of the plug is closely related to the phonolites in composition and
mineralogy (see analysis on p. 27). The occurrerice of olivine is especially indicative of the
close relationship of these plug rocks and the olivine-bearing . phonohtes, kenytes and
;rachytes.

(3) STRUCTURE AND FORMATION OF THE PLUG

' The map (Fig. 7) shows the concentric structure of the plug. Within the plug rocks, especi-
ally between Nanyuki and Emerald Tarns, the structure of the plug is indicatéd by concentric
jointing pardllel to the local syenite-phonolite contacts. Wherever these contacts and joint
systems are observed they are seen to be vertical or at very steep angles outward towards
the plug margin. The form ‘of the phonolite ‘bodies is that of incomplete cylinders w1th
vertical axes, “about’ a central cylmdncal body of syenite.

Abundant ev1dence was found that the main inner syenite body is younger than the
adjacent phonolite, but no definite evidence was found for the age relationship of the western
syenite Body to ‘the neighbouring phonolites. In particular it is’ not known whether the
two syenite bodies are continuous immediately west of Hut Tarn, for the critical area is
covered by moraine. The most likely order of emplacement is from the outside inward
i.e. the Hausburg Tarn phonolite, the western syenite, the Arthur’s Seat phonolite, and
finally the central syemte mass. This hypothesis does raise some problems, however, the
first being that it requires two periods of syenite emplacement separated by a period of
phonolite emplacement, and it requires that the two phonolite bodies in the north-west
be of different ages. These requirements are unlikely in view of the fact that the phonelite
is hkely to have crystallized at a time when it was near to the surface, i.e. the volcanic pile
was nedr its present height, and the syenite must have crystallized more slowly when the
pile was considerably higher. These observations are difficult to reconcile with the alter-
nating solidification of phonolite and syenite which has been proposed.

The only alternative crystallization sequence that can be postulated is that the phonolites
all solidified at one time, and that magmatic withdrawal in the conduit left the Oblong
Tarn-Arthur’s Seat phonolite as a rigid septum in the pipe. A period of activity then may
have ensued until the final quiescence of the main vent, when syenite would crystallize
in all the remaining spaces within the conduit. Neither hypothesis seems wholly satisfactory,
and further detailed examination of the contacts in the plug rocks is needed to solve these
problems.

8. Superficial deposits

(1) LATERITIC SOILS AND ASHES OF THE LOWER WESTERN SLOPES

On the lower western slopes of Mt. Kenya, in the sector between Kiganjo and Nanyuki,
there are considerable thicknesses of soils, laterites, ashes and solifluction deposits to depths
exceeding 20 feet. These are exposed along the banks of rivers, in gullies and road cuttings,
and comprise an interesting and varied series of superficial deposits, with which artifacts
are often associated. The most continuous sections are found along the eroded valley sides
of the principal rivers—the Nanyuki, Burguret, Naro Moru and Nairobi rivers, and similar
deposits were recorded on the northern slopes by Shackleton (1946, pp. 40-44). The deposits
were h6t studied in detail due to lack of time, but tlie more mterestmg sectlons were measured
and some :are described below.
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A typical section on eroded slopes a quarter of a mile east of Hook’s farm two miles
south of Nanyuki is:—

Feet
brown soil .. .. .. .. .. .. .. . .. .. .. 1
brown soil with ironstone pebbles .. .. .. .. .. .. 13
lateritic ironstone with limestone cement .. .. .. . .. .. 3
loose ironstone pebbles .. .. .. .. .. .. . .. .. 3
yellow-brown gritty ash with calcareous concretions .. .. .. .. .. 3
brown-grey unstratified ash with well-rounded syenite and phonolite pebbles of 4”
diameter .. . . . . . 1

The superficial soil with ironstone pebbles at the base is widespread over the whole of
the lower western slopes of Mt. Kenya, and rests with unconformity on the soils and ashes
beneath. This soil is repeatedly seen sloping down into the present day valleys, and has
been incised by more recent stream erosion. The superficial deposits can therefore be divided
into three groups, as is indicated in Fig. 8. The first group (B, C, D, E, F in the figure) is
sub-horizontal in attitude and is composed largely of unconsolidated pyroclastics, mainly
fine ash rarely with small lava fragments, and is in variable stages of weathering. In each
section there is normally one lateritic ironstone bed, with a soil profile above, indicating
prolonged breaks in the deposition. The bedded silts and grits, which can locally be traced
over wide areas probably represent eluviated pyroclastics, from which the finer fractions
have been washed out. The uppermost layer (G) is the present soil cover, which is lateritic
towards the base, and which extends over the greater part of the surface of the western
slopes. This soil layer is largely eroded away on the sides of valleys, in the floors of which
are brown alluvial silts with gravel lenses (H). In most rivers and streams on the lower slopes
these alluvial sheets are incised to some degree by the present drainage, but the underlying
bed rock is seldom exposed.

Fluviatie silts and  gravels

Brown 30ds with wonstones at the bese

Soft earthy ashes with won stawwng

Brown clays and ashas with won staned jomts
Latentic  wonstone . discontinucus

Brown or buff ashy clays with columnar jonting
Bedded brown volcanc sits and grtsy

Lavas snd sggiomerates

» @ A O MO I

Fig. 8—Diagrammatic section in superficial deposits of the western slopes.

‘There are, however, many variations of the sequence outlined above. On the broad ihter-
fluves many of the middle members of the succession are absent, and the lateritic soils rest
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directly on agglomeratic ashes of the lower part of the succession, as is seen in the borrow
pit by the main road immediately north of Naro Moru township, where the section is:-—

Feet
lateritic brown soil with many lava boulders .. .. .. .. .. e 2
brown soils with lava and syenite blocks .. .. .. .. .. .. 10
grey sandy agglomeratic ash with 2°-3” rounded lava pebbles .. . .. 5
brown finely agglomeratic ash .. . . . >4

The grey sandy agglomeratic ash of the tabulation above is probably the Naro Moru
ash referred to by Shackleton (1945, p. 5). Finely agglomeratic ash of variable colour was
found at several localities on the plain between Naro Moru and Nanyuki, and is probably
widespread beneath the lateritic soils, and may be equivalent to the occurrences of stratified
tuffs which are common in the majority of river valleys higher on the slopes of the mountain,
and which can be seen in the Liki Central and Nanyuki rivers at the crossing of the Gathiuru-
Kongaita-Ontulili forest road, and in most of the stream sections in the sector west of
Gathiuru and Nanyuki Forest Station. An easily accessible exposure of flaggy brown silts-
tones with gravel lenses, which may be fluviatile equivalents of the ashes of the plains, can
be seen on the fishing path along the Burguret river one hunrded yards east of the bridge
carrying the Naro Moru-Nanyuki road. These fluviatile deposits are described in the
succeeding section. )
- A section which illustrates the complexity of the superficial deposits, and which shows
the typical occurrence of two lateritized horizons, is seen in a gulley at the edge of the forest
nine-tenths of a mile south-east of the crossing of the Naro Moru track and the Naro Moru
river. The section shows:—

Feet
brown soil, grading to .. .. .. .. .. .. .. .. 3

- soil with ironstone nodules .. .. .. .. .. .. .. .. B
soft earthy silt . 3
soil with ironstone nodules .. .. .. 3
hard nodular ironstone with calcareous matrix 2
soft earthy silt with iron stainin, .. 3
fine ashy grit .. .. .. 2
coarse brown pumiceous as 2

The sections in the Liki and Nanyuki river which have been referred to by Shackleton
(1945, p. 5; 1946, pp. 41-44) are outside the area to the north, but similar beds occur exposed
at intervals up these rivers up to the 7,000 foot level. The sections referred to by Shackleton
and previously described by Solomon (in Leakey 1931, pp. 261-262) are of alternating
earths and fluviatile gravels in which artefacts of Kenya Fauresmith type have been found.
It seems from the accounts that the artefacts have been found in and above the lowermost
lateritic ironstone in these beds, and this would agree with the writer’s observations of
scattered loose artefacts occurring generally above the lower of the two massive lateritic
ironstone beds of the western slopes of Mt. Kenya.

Artefacts were found loose on the surface on the upper part of an eroded slope above the
Burguret river two miles north-west of the main road bridge over the river, and consist
of obsidian scrapers, waste flakes and cores. Further scrapers were found loose on the
surface of lateritic soils on the slopes leading down to the Nairobi river at 6,800 feet, on
Graham’s farm six miles south-east of Naro Moru. Scattered artefacts were seen over a
wide area, mainly between the Nairobi and Liki rivers, and between the forest boundary
and the Kiganjo-Nanyuki road.

The details of the superficial deposits on the western slopes of Mt. Kenya were not worked
out due to lack of time. The abundance of exposure, the varied nature of the deposits and
their association with artefacts, however, suggest that this area would repay detailed study
by persons interested in later Quaternary geology and archaeology.

(2) FLUVIATILE DEPOSITS
. The occurrence of laminated silty sediments in the Nanyuki and Liki rivers has already
been mentioned, This type of deposit, which is confined to river valleys, is wide-spread on
the western slopes and is generally older than the gravel sheets which occur sporadically
in the same river valleys. The silts are water-laid ashes containing rare volcanic boulders
and -thin gravel Jenses. In the Thego river a mile above the Fishing Camp, at 6,000 feet,
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interbedded agglomerates and ashes occur resting on conglomerate; these beds form valley-
fill deposits in process of incision at the present day. o

The Nanyuki river exposes extensive sheets of gravel between Nanyuki township and the
7,000 foot level, and the gravels extend up to 100 yards from the river in places. Fluviatile
deposits are, however, very rare on the south-western and southern slopes of the mountain—
ghebvalleys 1ilre generally choked by unsorted alluvium with scattered boulders, or are cut
in bare rock. :

(3) SUPERFICIAL DEPOSITS OF THE MOORLAND AND ALPINE ZONES

The deposits referred to here are those of the zone of diurnal freezing, in which screes,
stone glaciers, fluviatile and glacio-fluvial deposits are dominant. Above the 14,000 foot
contour the effects of solifluction in its broadest sense become apparent. Moraine deposits-
on the crests and slopes of the ridges are margined by smooth sheets of pale reddish brown
“scree” consisting of fine gravel and particles down to silt grade. These sheets frequently
show the effects of mass flow in the form of linear furrows on the upper surface—furrows
which bifurcate around obstacles and which mark adjacent bodies of “scree” of different
texture and rates of movement. Towards the lower margins of these scree slopes the scree
is commonly enriched in the gravel component by the eluviation of the finer fractions, and
these gravel sheets sometimes form small stone “glaciers” which move by the alternate
freezing and thawing of interstitial water, and which engulf grass tussocks, bushes and:
trees. All gravels and screes which are in active movement are devoid of vegetation, but
colonization of the more stable marginal parts of the sheets by tussock grasses and Senecio.
telekii is in progress at the lower levels. On the more level parts of the scree slopes, at elev-
ations generally above 14,000 feet, polygonal freeze and thaw structures of small size are
commonplace, and consist of earthy material in slightly raised mounds some four to eight
inches in diameter, surrounded by ill-defined stony borders. These structures grade
imperceptibly into flow aligned bands of alternating gravelly and earthy scree (plate IV,
Fig. 2), showing that they have developed on moving soil. These frost-structures were
studied by Zeuner (1949), who concluded that they were formed by the action of “needle” ice.

On more level ground in the alpine zone the commonest deposits are of ground moraine,
which is normally covered by dark peaty bouldery soils. But at the higher levels there are
patches of ground where the finer fractions of the morainé have been washed out, and
concentrates of boulders litter the surface, such as in the hollows on the ridge immediately
west of Two Tarn Hut. ’ o ’ )

In the various swampy depressions in the floors of the valleys, many of which contain
unexposed lake deposits, the surface deposits are stiff clays or peats with sheets of fluviatile
gravels accumulating at the inflow ends of the swamps. Apart from these sediment-filled
depressions no significant deposition is taking place in the valleys of the upper part of the .
mountain. Most of the streams are choked with boulders from moraines, and bed-rock
outcrops are scarce.

The soils of the moorland are sharply differentiated from those of the forest. The latter
are reddish brown and brown sticky clays, while the former are dark peaty soils, permanently
wet in the lower moorland, even on steep slopes. These peat and bog soils grade upwards
into slightly better drained soils with a high gravel content and a brownish grey colour.
In swampy depressions, however, black wet soils occur up to at least 14,000 feet. These
dark soils are developed on the western, southern and eastern sectors-of the mountain
where the rainfall is highest. On the northern sector, approximately between the Liki and.
Nithi rivers, the soils of the upper moorland are normally dry, friable, very gravelly and.
of red-brown to grey-brown shades. This is due only partly to the lower rainfall on these
slopes, for much of this northern sector is composed. of tuffs. which are highly pervious
4nd well-drained, and on which thin brown soils are developed. ..

.. In the area between Mugi hill and Lake Ellis, and extending down approximately -one
mile towards the forest edge, there are areas of curious mounds. of earth some two to three
feet high, and between eight and 12 feet in diameter (plate IV, Fig. 1). These mounds consist
of grey-brown soil containing angiilar fragments of lava, the centres of the mounds being
noticeably more stony than the intervening depressions.- These areas of earth mounds were
first noticed by Mr. Raymond Hook of Nanyuki, and his account of them is given by Zeuner:
(1948, pp: 14-15). Hook interpretéd the mounds as the cultivation areas of primitive people,:
and observed some regularity in the arrangement of the mounds and in the limits of the:
areas in which they occur. The areas of mounds are, howgver, clearly. distinguishable o
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air photographs, and a study of these shows that there is no regularity or linear arrangement.
Nevertheless Hook found broken pottery in this area (op. cit.), though the writer did not
observe any. The upstanding rocks referred to by Hook are in all probability blocks of
"Basement System gneisses and quartzites, which are particularly numerous on the ridge
to the north of the Mutonga river, where Hook informed the writer that the “monumental”
blocks were situated, but in this area they undoubtedly represent large blocks weathered
out of agglomerate. Zeuner (1948, p. 15), however, refers to a substantial collection of
artefacts collected from above 10,500 feet by Colonel Meinertzhagen (op. cit., footnote
on p. 13), consisting of 30 flakes of Levallois aspect and 23 blades related to the Gumban
industry. The occurrence of these and other less diagnostic pots and iron implements do

suggest that the moorland was occupied, or at least visited, on more than one occasion
in the past. ‘

(4) Soms

' No attempt was made during the survey to sub-divide the soils or to record their occur-
¥ence except in the most general way. The dark peaty soils of the moorland and their relatives
in the alpine zone have already been described. These types pass into reddish brown and
brown very deep and poorly drained soils in the forest. These soils are generally pale on the
phonolite outcrop but darker on the basaltic terrain on the southern sector of the mountain.

+ At the lower levels of the forest and on the plains on the western slope of the mountain
pale lateritic soils are commonplace, this being the former transitional zone between savannah
and forest, and marginal to the low-rainfall area of the Laikipia plateau. On the lower
southern and south-western slopes, however, the soils are deep reddish brown in colour,
and are of great depth. This is due to the basaltic parent-rock and to the fact that till recently
the southern slopes were entirely forest-covered. On level, poorly drained ground, however,
the soils tend to become dark tenacious clays allied to black cotton soil. ;

1 V—GLACIAL, GEOLOGY

| Evidence of a past period of greatly extended glaciers is widespread on the upper part’
of Mt. Kenya, and the deposits left by these glaciers at their maximum development and
during their retreat are well-preserved (see Fig. 12 at end). Some other evidence is given
for the existence of an older period of extended glaciation, but this evidence is fragmentary
and indirect. In the following account the glacial deposits are described under the headings
of the *“older” and the “youngei” glaciations. :

1. The Older Glaciation -

In 1932 Nilsson (1931, pp. 19-25; 1940, p. 54) mapped moraines on the east side of Mt.
Kenya, in the vicinity of the lower Gorges valley. He found what he believed to be patches
of old, much eroded moraine below the great terminal moraine of the Gorges valley, which
lies at approximately 10,400 feet. He interpreted this terminal moraine as marking the
maximum extension of the glacier during a later glaciation, and regarded the patchy eroded
.moraine as having been deposited during an older glaciation. The writer re-examined this’
ground and could not confirm Nilsson’s observation. It is possible that Nilsson saw some
of the trachytic agglomerate in this area and mistook this for moraine, for much of this
agglomerate is incorporated in the younger moraines of the Gorges valley, and it is often

difficult to distinguish between agglomerate transported and re-deposited by ice and un-
disturbed agglomerate. ) .

*To the south of the lower Gorges valley, however, there is a broad gently undulating
platform at an average elevation of 11,700 feet (see Fig. 9) on the surface of which there
is a low crescentic ridge open to the north. On this ridge are scattered well-rounded boulders
of a variety of rocks, and the form of the ridge and the variety of the boulders on it suggest
that it is composed of moraine. This moraine must be substantially older than the well-
marked younger moraines within the Gorges valley to the north, which are confined to the
valley. Furthermore the younger terrninal moraines of the Ruguti North valley, which
traverses the platform, are above the platform, showing that the younger glacier could not
have over-ridden the platform in the younger glaciation. It is therefore suggested that the
moraine of the platform bélongs to an “older” glaciation. - T e e
» A small cliff exposure at the northern end of the platform mientioned above occurs oné
and a quarter miles west-south-west of the Nithi waterfall and further siniilar small cliff
exposures of moraine ‘occur on the north 'side of the Gorges valley one and a half miles
west:of” thie ‘Nithii Waterfall. Thes¢ exposures are of cemented moraine ¢oritaining boulders
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Fig. 9—Sketch-map of the Gorges valley terminal moraines.

of a variety of rocks in a matrix of pebbles and silt. A further similar occurrence of such
moraine is found as a group of pillars one mile west of the Nithi waterfall (see plate III,
Fig, 1). These moraine occurrences are in contrast to the well preserved younger moraines
of the Gorges valley, in which cliff exposures are never seen except where the Nithi river
cuts through the terminal moraine near the waterfall. The scattered outcrops of cemented
moraine are tentatively regarded as parts of a sheet of older moraine laid down partly within
and partly outside the Gorges valley at a time when it was shallower than at present, and
whichwas later cut through by theerosion preceding and accompanying the younger glaciation,"

On the western slope of a hill with a spot-height of 14,117 feet, on the south side of the
Teleki valley, a series of caves and overhangs expose the base of the basaltic lavas and tuffs
which form the hill. A variety of boulder beds, gravels, and silts is exposed in these caves,
the deposits being up to 20 feet thick. The boulders range up to 12 feet in diameter and all
the larger ones are conspicuously rounded. They occur in a generally unbedded and un-
sorted matrix of pebbles and silt. A search among the boulders revealed one with striated
surfaces and another with a well-developed ice-smoothed surface. In some exposures there
is a semblance of coarse bedding, and in one case there are irregular pockets of finely laminat-
ed silt up to six feet in thickness. This deposit is interpreted as moraine on account of the wide
variety of rocks it contains, some of which are of varieties of syenite originating from the
central peak, and because of its lack of grading and the shape of the boulders. The moraine
was laid down previous to the eruption of the overlying basalts, which occur as an isolated
outlier on the top of the ridge. These basalts are tentatively correlated with those that occupy
the ground between the Ontulili and Sirimon valleys, and those that occupy the floor of
the Rupingazi valley.

The floor of the Rupingazi valley is occupied by basalts which flowed down the valley
are confined to it. These basalts are extensively ice-eroded and were clearly erupted before
the younger glaciation. The depth and width of the valley previous to the eruption of the
basalts suggests that it may have been formed, in part, by glacial action. No moraine deposits
were seen beneath the basalts, at the few places where their contact with the confining walls
of the valley is exposed, but a careful search may well reveal some. It is not known whether
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the sub-basalt moraine and the older moraines of the Gorges valley region belong to the
same glacial phase. The evidence for “older” glaciations is fragmentary, and little can be
concluded from it.

2. The Younger Glaciation

The widespread glacial deposits which occur generally above the 10,000 foot contour,
and the obviously glaciated topography on which they occur, can be confidently ascribed
to a comparatively recent glaciation. The terminal moraines laid down at the maximum
development of the glacier system, and the moraines formed during the fluctuations during
the general retreat from this maximum, are subdivided into stages for ease of description
(see map of glacial deposits, at end). The criteria employed to assign the moraines to the
correct stages are various, and mostly depend on a careful study of air photographs with a
stereoscope, for photo-geological methods were found to be most useful in determining the
shape, size, distribution and inter-relationships of the moraines. Care was taken, however,
to check as many as possible of the photo-geological interpretations in the field. The criteria
employed are the size, position, and shape of the moraines in relation to the valleys in which
they occur, and the relationship of the moraines of each stage to the reconstructed snow-line
of that stage. In this connection a useful fact is that lateral moraines are not deposited
above the contemporaneous snow-line. The stages adopted are numbered from the oldest
gl) the youngest, stage I representing deposits laid down at the maximum extension of the

aciers.

(1) Terminal moraines—stage 1

The best developed terminal moraines occur on the eastern sector of the mountain, there
being few recognizable on the western and southern sectors. The lowest point on each
terminal moraine in different valleys is indicated in the following tabulation:—

N Feet
Hinde valley (Nithi north) .. .. 11,500
Nithi north, right bank tributary .. 11,200
Gorges valley .. .. .. 10,400
Ruguti. . .. .. .. .. 10,700
Thuchi .. .. .. .. 10,600
Hobley valley. . .. .. .. 10,400
Kazita West .. .. .. .. 12,300
Kazita East .. .. .. .. 11,900
Ithanguni .. .. .. 10,500-11,000

From the shapes of the valleys, the occurrence of ice-smoothed valley sides and the occur-
rence of parts of lateral moraines, approximate estimates of the maximum extensions of -
the glaciers down other valleys can be made:—

Feet
Sirimon valley .. .. .. 10,600
Mackinder valley .. .. .. 9,200
Hausburg valley .. .. .. 8,600
Nanyuki south valley .. .. 1,700
Teleki valley .. . .. .. 10,000
Hohnel valley .. .. .. 10,700
Nyamindi west valley .. .. 11,000

These figures show that the ice sheet was broadest in a north-west south-east direction,
and that the ice reached the lowest levels on the north-western section.

The stage I terminal moraines of the Gorges valley show with diagrammatic clarity the
sequence of events during the maximum glaciation and the early stages of the retreat (Fig.
9). The moraines are divisible into four sub-stages—stage IA is represented by the large
terminal moraine exposed at the Nithi waterfall and in the canyon immediately to the west.
This moraine is approximately 300 feet thick at its maximum development in the canyon
area, and some 60 feet are exposed in the canyon sides. At the Nithi waterfall 20 feet of .
moraine is seen overlying trachyte bed-rock. Here, as in the canyon, most of the cliff sections
are inaccessibly steep. On the north side of the valley the stage IA moraine is in the form
of a long lateral moraine capping the ridge.

The floor of the Nithi canyon is formed of heaps of fallen blocks of partly cemented
moraine, with the river itself running some tens of feet down among the blocks. The adjacent
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cliffs are of crudely bedded silts and thin gravel lenses with occasional boulders up to six
feet in diameter. These beds are largely fluvio-glacial and are overlain by boulder moraine.
The upper part of the moraine is well exposed in the Nithi river above the waterfall, where
hard, well cemented moraine with numerous boulders in matrices of pebbles and fine gravels
are seen.

The more bouldery nature of the upper part of the moraine is also seen in a series of
caves on the south side of the valley 100 feet above the river and five-eighths of a mile up-
stream of the waterfall. Here approximately 60 feet of moraine is exposed; the lower 20
feet is of scattered boulders in a silt matrix into which a number of caves have been eroded,
and the upper 40 feet consists of boulders up to four feet in diameter in an unsorted gravel
matrix.

There are few exposures of the stage IA lateral moraine which forms the ridge on the
north side of the Gorges valley. Where the path (Carr’s ‘road’) climbs the lateral moraine
a few small exposures of loose brown trachyte rubble are seen. These are indistinguishable
from the trachyte agglomerate occurrences on un-glaciated ground to the north, but the
trachyte rubble forming the moraine also contains scattered large blocks of porphyritic
phonolite derived from higher up the mountain.

The stages IB and IC are represented by small arcuate moraine ridges belonging to two
phases of limited re-advance after the retreat from the stage I moraine had begun.

The stage ID moraines are a complex of lateral and partial terminal moraines confined
to the north side of the valley, and all are connected to one large lateral moraine some
distance upstream. This main lateral moraine divides into three large moraine ridges, between
which are minor short ridges. The fact that all the moraines join into one upstream suggests
that ltheg were laid down during a series of short-lived glacial re-advances of decreasing
amplitude.

The moraine sequence described above is observed also among the terminal moraines
of the Ruguti, Thuchi and Rupingazi valleys. In each case the lowest terminal moraine is
the largest, those of the Ruguti valley being among the largest on the mountain. Behind
each terminal moraine are closely spaced narrow moraines marking the period of limited
re-advances—mostly those of stage ID of the Gorges valley.

The moraines of the Ruguti valley are of particular interest in that the stage IA moraines
appear to be cut through by the ID moraines on the north-east side of the valley. The dis-
tinction between the form of the two moraine groups is most marked and is generally similar
to that of the equivalent moraines of the Gorges valley. The stage IA moraines in the Ruguti
valley are broad and deep, and erosion and landslipping have affected the steeper slopes. -
In contrast the stage ID moraines are narrow, with sharp crest-lines, and are much less deep.
They also characteristically show numerous small but easily visible halt-stages. The lower-
most of these moraines is overlaid on the side of the north-eastern lateral of the stage I
moraine, showing that there must have been an interval of retreat followed by re-advance
leading to the deposition of the stage ID moraines.

The same situation is seen in the Thuchi valley, but not in the Rupingazi valey, where
it seems that the stage ID re-advance may have reached the IA level or even exceeded it

slightly.

Further terminal moraines occur in the Kazita East and Kazita West valleys, and differ
in shape and composition from those of the eastern slopes. A well-marked, shallow lateral
moraine occurs on the ridge separating the Kazita East and West valleys between the 12,400
and the 13,600 foot levels. At the lower margin of this moraine, at approximately the 12,350
foot level, there is a line of extremely large boulders or boulder-like outcrops which descends
into the Kazita West. The boulders, the largest of which reach 30 feet in longest dimension,
are composed of hard, well-cemented moraine in the form of unsorted boulders grading
into a pebbly matrix. The ground between the moraine blocks is littered by large exotic
blocks derived from the moraine by weathering. The composition of the moraine is mostly
of olivine basalt boulders with a minor number of pieces of fissile phonolite. The origin
of the boulders is in some doubt, for some appear to be weathered out hummocks of cemented
moraine, and others give the impression of having been transported to their present position.

Exposures of lake sediments and moraine occur in the Kazita West river a short distance
north of the moraine described above, at the 12,250 foot level. The lava bed-rock at this
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locality is overlain by thin basaltic agglomerates containing lava blocks up to one foot in
diameter, and the agglomerate matrix contains thin curving or undulating ferruginous
layers similar to those in the underlying agglomerates. The colour laminations average
three or four to the inch, and are due to rhythmically repeated graded beds, and are possibly
diurnal varves. At the southern end of the exposure the sediments and the underlying agglo-
merates are overlain by moraine with marked unconformity.

The section is interpreted as showing sub-aerially deposited agglomerates which were
subsequently eroded. A shallow lake formed on the agglomerates, possibly due to volcanic
damming downstream, and varved ashes were deposited in this lake. The presence of varves
suggests either that the lake was pro-glacial and liable to diurnal freezing, or that the glacier
was nearby and that the ash was supplied from the glacier or the surrounding country.
Daily melting of the ice or thawing of the adjacent terrain would explain the varves. The
basaltic pyroclastics were probably derived from the nearby youthful vents west and north-
west of the locality.

(2) Stage I moraines on Ithanguni mountain

Ithanguni (12,776 feet) is the largest of the sattelite volcanoes on the eastern slopes of
Mt. Kenya, and was high enough to support a small glacier system of its own. The form
of the mountain is of a slightly denuded conical volcano with an almost flat central plateau
surrounded by low cliffs except on the north-western side, where the cliffs are large opposite
a deep explosion crater occupied by Lake Alice. The mountain supported a small ice cap
with lobes of ice extending down the slopes for varying distances. Well-marked terminal
moraines show the maximum extent of the ice, which reached to a little below 11,000 feet
on the south-east side, and to levels between 11,000 and 12,000 feet on the other sides.
Most of the terminal moraine loops are breached by streams to a greater or less extent.

Except for the large moraine ridges in the Lake Alice basin, the ridges are single, there
being no traces of recessional moraines, and very little ground moraine. At the western
edge of the swamp which is enclosed by the Lake Alice moraine loop, however, there are
four closely spaced small ridges in a space of 100 yards, which represent short halts in the
decay of the glacier on this side of the mountain.

The terminal moraines on Ithanguni are certainly contemporaneous with the lowest
terminal moraines of the main glacier system to the west, for the reconstructed climatic
snow lines for each glacier system are approximately co-planar. It follows from the lower
elevation and smaller area of Ithanguni compared to the main part of Mt. Kenya, that the
whole Ithanguni glaciation was short-lived and lasted only while the main glacier system
was at or near its maximum extent. -

(3) Stage I lateral moraines .

On the northern, western and southern sides of the mountain no complete stage I terminal
moraines have been recognized, a fact which may be partly due to the extremely poor ex-
posures at the lower reaches of the moorland and in the upper forest. Several large lateral
moraines, which due to their low elevation and size must be assigned to stage I, were seen
near the inferred lower limit of glaciation on the ridges bounding the Sirimon, Mackinder
and Teleki valleys. Those associated with the Hohnel and Nanyuki South valleys are inferred
from air photographs. The lateral moraine on the north side of the Mackinder valley is
notable for the very large blocks it contains, and the other moraines visited, although no
good exposure of them was seen, carried large blocks of a variety of rock types projecting
above the peat. The larger valleys of the west and north sides are deeper and steeper-sided
thanthose of theeastern side of the mountain, and in consequence complete terminal moraines
are less likely to be preserved there.

(4) Stage II moraines

The stage II moraines are almost invariable found in small glaciated valleys and cirques
on the middie levels of the moorland between 12,500 and 13,500 feet, mainly on the western
and southern sides of the mountain.

A complete double-crested moraine loop is well preserved in the Liki North valley with
its base at 12,900 feet, and a second moraine ridge of similar appearance and age occurs
on the north slope of the ridge and a short distance to the east of the first. Behind the first
moraine is a dry lake bed—the lake having been dammed by the moraine till recently.
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Shallow terminal moraine ridges occur at the head of the Liki South valley, and in the
head of the left bank tributary of the Nanyuki North, both at the 12,800 foot level. A shallow
lateral moraine extends down the north side of the Southern Naro Moru valley near its
head, and an ill-defined terminal moraine occurs in the Thego valley at 13,000 feet. Two
short lateral moraines in the Nyamindi East and its right bank tributary are at or below
the 13,000 foot level, and similar lateral moraines are seen at the same elevation two-thirds
of a mile south-west of Carr’s Lakes in the Sirimon valley, and in the Hohnel valley.

These moraines occur near the heads of subsidiary valleys whose head-cirques are generally
entirely below 15,000 feet, with the exception of the moraines mentioned in the Nyamindi
East and Sirimon valleys. In every case the valleys downstream of these moraines bear
ample evidence of glaciation in the form of glaciated topography and scattered erratics,
and the stage II moraines are invariably nearer the heads than the lower glaciation limits
in the same valleys. Due to the small vertical distance between the level of the snow accumu-
lation area and the moraine in each valley the level of the stage II snow-line can be estimated
with fair accuracy at between 13,000 and 13,500 feet. This snow line elevation is only a
little higher than that inferred from the moraines of stage I, and raises considerable difficul-
ties, such as the observations that the stage I moraines clearly mark the limits of the glaciers,
while the stage II moraines are well above the glaciation limit. A difficulty of the view that
the stage II moraines mark a halt or re-advance succeeding stage I is the notable absence
of stage II moraines in the major valleys.

A satisfactory solution to these difficulties emerges when it is considered that at an early
stage of the retreat of the glaciers from their maximum at stage IA, the ice sheet which
covered the upper part of the mountain continuously above the inferred snow-line of that
stage at approximately 12,500-13,000 feet, began to thin as well as retreat (cf. Flint 1957,
pp. 31-33) This thinning would result in the emergence of most of the ridges below 14,000
feet, in the reduction in the size of the continuous ice dome, and in the separation of the
ice in the small valleys below the 14,000 foot level from the main ice sheet which had nourished
them previously. Once the connections between the small valleys and either the large glaciers
or the ice sheet above had been cut, and the external supply of ice had ceased, the glaciers
of the small valleys would retreat rapidly, either to disappear or to stabilize as small cirque
glaciers if their accumulation areas reached sufficiently above the snow-line of the time.

The reason for the scarcity of stage II moraines in the larger valleys is unknown, but in
view of the poor preservation of the earlier moraines, especially on the western side of the
mountain, this scarcity may not be significant.

(5) Stage III moraines

The moraines of this stage are found only in the Nyamindi and Nyamindi West valleys,-
in the valley one mile south-west of Carr’s Lakes, and in the Teleki, Hausburg and Nanyuki
North valleys. They mark positions of the ice fronts at elevations between 12,700 and 13,000
feet, and the lateral moraines extend up to 14,000 feet or a little above. The snow-line at
stage III is estimated at approximately 14,200 feet.

The moraines of this stage, although not widespread, are deeper and wider than the
stage II moraines, the terminal moraine one mile south-west of Carr’s Lakes being an
excellent example.

The lateral moraine on the north flank of the Nanyuki North valley between 13,000 and
14,000 feet is of interest, for it abuts against the side of a very deep lateral moraine forming
the crest of the southern ridge of the Mackinder valley. The relationship of the two lateral
moraines proves that the Nanyuki North valley moraine was formed before the great lateral
moraine which occupies the ridge above. This being so a little ice from the Mackinder
valley glacier must have spilled over into the Nanyuki North valley, and this explains why
a disproportionate length of the glacier in the latter valley occurred below the inferred
snow line.

By the time stage III in the general recession of the glaciers had been reached the central
ice cap was much reduced in size and was continuous only above approximately 14,500 feet.
Valley glaciers existed only in the larger valleys whose accumulation basins extended well
above the 14,500 foot level.

(6) Large lateral moraines of stages II and IIT

The long and deep lateral moraines which occupy the tops of some of the ridges in the
upper part of the glaciated area cannot be attributed to any single stage of the glacial retreat
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but have been shown as stage III on the map for convenience. The largest of these moraines
occurs on the top of the south ridge of the Hausburg valley between 12,800 feet and 14,800
feet, and is three miles long. A further example occurs on the south ridge of the Mackinder
valley between 13,100 and 14,700 feet, and a third smaller occurrence is at the north end
of the Hall Tarns platform. Although sections in them are entirely absent the width and
steep-sided nature of these moraines suggests that they are up to 150 feet thick. The moraines
of this type, due to their size and position on ridge tops, give rise to extensive tracts of scree
and pale reddish brown gravelly solifluction deposits, and they support very little vegetation.

The position and length of these ridge moraines suggests that they formed progressively
as the ridge tops emerged during the thinning of the ice cap, and as the ice cap fragmented
into separate valley glaciers. The moraines formed during the periods of the stage II and
I moraines and in the intervening period.

(7) Stage IV moraines

The moraines of the fourth and of subsequent stages were laid down by valley glaciers
after the final break-up of the mountain ice-cap. The stage IV moraines are best preserved
in the upper Teleki valley, and the succession there is taken as the type for the stage. They
occur on the north side of the Teleki valley between 13,600 and 13,800 feet as bouldery
ridges up to 60 feet high projecting from the valley side. The best development is the group
of overlapping ridges and hillocks between Klarwill’s Hut and Mackinder’s Camp, consist-
ing of large heaps of boulders, almost all of which are of syenite from the peaks. In the
centre of the valley up to 300 yards east of Mackinder’s Camp isolated small groups of
boulders often have a linear arrangement, and represent the tops and remnants of end-
moraines buried by the glacio-fluvial outwash which fills the floor of the valley between the
13,650 and 13,800 foot contours.

The upper members of stage IV occur between the small Naro Moru Tarn and 1,000
feet to the west, on the north side of the valley (see map of glaciers and glacial deposits of
the peak area). Five narrow, low boulder ridges occur here descending the lower north
side of the valley. The upper two descend on to the flat topped, ice-smoothed and striated
rock boss on which Naro Moru Tarn is situated, the tarn being dammed by the uppermost
end-moraine of the stage.

A very well formed double ridge moraine approximately 100 feet deep projects from the
west face of Shipton Peak for a short distance into the valley and represents the southern
end-moraine of the glacier which deposited the moraines 200 yards east of Mackinder’s
Camp. The relatively large size of the moraine below Shipton’s Peak is due to the quantity
of debris that must have fallen from the highly fractured lavas of which it is composed.

The small end-moraine loops which occur below the entrance to the Teleki Tarn cirque,
and in the cirque south-west of Teleki Tarn are probably contemporaneous with the earlier
phases of stage IV. Similarly the moraine impounding Lake Hohnel, at 13,800 feet, and
the moraine loops in the Gorges valley at 14,300 and 14,350 feet probably belong to this stage.

In the Hausburg and Mackinder valleys small, narrow, bouldery end-moraines are re-
cognizable as a closely spaced series, the shape and elevation of which leave little doubt
that they belong to stage IV of the Teleki valley. The moraines occur at elevations of 13,400~
13,500 feet in the Hausburg valley, and 13,650-13,800 feet in the Mackinder valley.

- (8) Stage V moraines

Two closely spaced narrow ridges of boulder moraine similar to that formed in the later
phases of stage IV are found in the Teleki valley between 14,150 and 14,400 feet, in the
Hausburg valley between 14,150 and 14,350 feet, and a larger bifurcating lateral moraine
occurs in the Mackinder valley between 14,150 and 14,600 feet. The double ridged moraines
enclosing Kami Tarn, below the Northey glacier, also belong to this group, and are probably
equivalent to the two upper boulder moraines of stage V in the Teleki valley. The larger
size of the Kami Tarn moraines is due to the much slower rate of retreat of the glacier
than those of the southern and western slopes, and to the greater supply of avalanche material
on to the Northey glacier of that time. These deposits were laid down during a brief halt
in the retreat before the glaciers shrank further and split up into the isolated cirque glaciers
which characterize stage VI and those of the present day.
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(9) Stage VI moraines

The moraines of stage VI form an incomplete fringe around the base of the main peaks
of Mt. Kenya, and occur at distances less than 2,500 feet from the fronts of the existing
glaciers (see map of glaciers and moraines of the peak area—at end). They are the most
recent constructional moraines to be formed on the mountain, and two of the glaciers
which gave rise to moraines of this stage have disappeared in the last 35 years.

The moraines of this stage are distinguished by their very fresh appearance, the un-
weathered nature of the boulders and the almost complete absence of vegetation. It is the
vegetational contrast between these moraines and the adjacent ground which is most marked,
for the ground surrounding the stage VI moraines is well covered with sedge glass (Agrostis),
small ground cover plants (Arabis alpina and Carduus platyphylius), and there are stunted
Lobelia telekii and a yellow-flowering herb Senecio (S. keniophytum). The rocks and boulders
are dark, weathered and almost entirely covered by lichens and mosses. The material of
the moraine, on the other hand, is very sparingly colonized by vegetation, there being
scattered Senecio keniophytum, Arabis alpina and small young lichens and mosses in scat-
tered patches on rocks of favourable aspect. The coverage of rock surfaces by mosses and
lichens is approximately 10 per cent to 15 per cent, compared to 90 per cent to 100 per
cent cover on the lower ground, and it has been estimated from biological considerations
that the outer moraine of stage VI could have been exposed for 100-150 years, and the
inner moraine ridge for some 80-100 years. The contrast between the stage VI stage of
colonization and weathering and that of the older stage V moraines and the intervening
ground is so large that it has been estimated that the stage V moraines must be several
thousands of years older (M. J. Coe, Biologist, University College, Nairobi; personal
communication).

The stage VI moraines occur at elevations between 14,200 and 15,600 feet, and the lowest
moraines are between 1,000 and 200 feet below the present ice margins. The best preserved
moraines are those of the Lewis Glacier, among which are two main ridges and several
smaller ones. The tendency for the moraines to occur as two main ridges is most obvious
in those deposited by the Cesar, Joseph, and Tyndall Glaciers, but this tendency is apparent
in them all, as is the occurrence of many small, closely spaced ridges behind the uppermost
of the main ridges.

With the exception of the western and eastern lateral moraines of the Gregory Glacier
which are up to 60 feet in height (see plate I, Fig. 1) and those of the Northey and Krapf
glaciers which are very shallow, the other main ridges are between 10 and 20 feet high,
while the minor ridges are three to eight feet high. The moraines contain boulders up to
ten feet in diameter scattered about on the surface or partly buried in a gravelly matrix
which is almost completely devoid of fine particles. On steep slopes the form of the moraines _
is poor, partly due to non-deposition and partly to solifluction after deposition.

The stage VI moraines of the Krapf and Northey glaciers are notable for their very small
size and proximity to the present ice-fronts. They are, in fact, composed mainly of fallen
blocks, and the double ridge form can only just be made out. Their proximity to the present
ice-fronts is due to the very much slower rate of retreat of these sheltered glaciers compared
to the remainder, and this is borne out by measurements of their retreat in recent years,
which are found to be much less than the average.

A small moraine occurs below the north face of Pt. John, and testifies to the former
existence of a small hanging glacier on this face.

A feature of the stage VI moraines on the south side of the Lewis Glacier is the merging
of three terminal moraine ridges into one lateral moraine as they are traced upwards, a
tendency which also marks the older ID moraines of the Gorges valley. This could be ex-
plained by regarding the snow-line as having remained static during the deposition of the
moraine ridges, although how glacial retreat can take place under such conditions is not clear.

The very well marked difference in state of weathering and plant colonization between
the stage VI.moraines and the older stage V and IV moraines proves that the average rate
of glacial retreat has not been constant, for if it had been no sharp difference in the moraines
should be apparent. It is likely therefore that the stage VI moraines were deposited .during
the retreat following a re-advance of the glaciers. The degree to which the glaciers retreated
during the interval between stages V and VI.is not known, but it is possible that there was
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complete de-glaciation of the mountain at this time. Facts which support the idea of a re-
advance of the glaciers to the stage VI positions are:—

(1) The relatively large size of the moraines compared to the small size of the glaciers
responsible for them (cf. Charlesworth 1957, p. 409), i.e. the moraines contain much re-
deposited material;

(2) Gregory’s observation in 1893 (1896, p. 177) that *. . . numerous dead lobelia stems
lay on this (moraine), though there were none then living at this elevation” an observation
which was confirmed by Mackinder in 1899 (Mackinder 1930, p. 531). The moraine referred
to is evidently the lower of the stage VI moraines of the Lewis Glacier. If the glaciers had
retreated previous to the re-advance which gave rise to the outer stage VI moraines, it is
likely that lobelia would have become established on the ground above this moraine, and
a re-advance would incorporate the woody lobelia stems in the moraine. No stems are
to be seen at the present day, however, nor is it likely that they should have survived, for
many peo;()ile have ascended by this route, and would have picked up all the stems for use
as firewood.

The two main moraine ridges are therefore regarded as due to re-advances of the glaciers,
while the much smaller ridges, such as the “washboard” moraines north of the gravelly
ledge at 14,700 feet below the Lewis Glacier, are due to temporary halts in the retreat.

Much of the moraine of the two small occurrences on the north-west and south-west
faces of Pt. Piggott is composed of large often bruised and fractured angular blocks, and
these are largely pro-talus ramparts (Flint 1957, p. 98) which are accumulations of blocks
of rock fallen from the cliffs above the glaciers, either to slide down the ice or to be carried
down superglacially. Such accumulations are still forming at the present day around the
termini of the Northey and Krapf Glaciers, both of which are of steep slope and are sur-
rounded by cliffs.

3. Glacier Fluctations During the Past 70 years

The first European to reach the upper levels of Mt. Kenya was Count Teleki (Von Hohnel,
1894, pp. 371-377), in 1887, but Teleki did not reach the glaciers, and recorded no infor-
mation of use for fixing the positions of glaciers. The first person to do this was Gregory,
who visited the southern and south-western glaciers (in 1893), and wrote several accounts
of his observations (1894(c) pp. 516-530; 1896, pp. 169-188). Mackinder (1900) made a
remarkably accurate map of the peak area in a very short time, and a further map, based
largely on Mackinder’s, is reproduced in Dutton’s book (1929). Since Mackinder’s successful
ascent of the mountain in 1899 many people have visited the mountain and have taken
useful photographs, but no attempt at serious scientific work was made till Nilsson mapped
moraines in 1927 and 1932 (1931), and Troll and Wien made a study of the Lewis Glacier
in 1934 (Troll and Wien, 1949). Aerial photography taken in 1947 and 1958, and measure-
ments of the positions of the glacier termini in 1950 by D. Cameron (Ministry of Works)
comprise the main evidence for glacier fluctuations in the last 15 years.

From sketches and sketch maps made by Gregory in 1893 (op. cit.) it is clear that the Lewis,
Darwin and Tyndall Glaciers were very much more extensive then than they are now. The
Tyndall and Lewis Glaciers are shown close up against the stage VI inner moraine, no
Tyndall Tarn existed, and it seems likely that the 1893 glaciers occupied a position close
to the stage VIB moraine, for Gregory describes the Lewis Glacier as ending on a platform
(1896, p. 177) and as being margined by four concentric end-moraines. The platform is
certainly that gravelly flat-floored hollow at an elevation of 14,670"*, and the glacier terminus
of 1893 was approximately 1,600 feet from the position in 1959.

Mackinder’s observations (1900) do not permit an estimate of the glacier positions to be
made, but his map is of interest in that it shows the Kolbe Glacier on the north-east face
of Pt. Lenana, which has disappeared since 1926, and it shows four glaciers between the
Joseph and Gregory Glaciers where there are now only two. Neither Harris Tarn nor Tyndall
Tarn are shown, the present sites of these tarns were then covered by the Kolbe and Tyndall
Glaciers respectively.

Some photographs taken by Ross in 1908 (1911, plates on p. 469) show the Cesar Glacier
terminus at an elevation of 14,50(? feet, 350 feet lower than its 1959 position, and a further

h,i,s‘!‘gregory’s height observations as given on his sketch. map (1894, Fig. 2) are often.about 2,000 feet too
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photograph (p. 467) shows the western face of the mountain and the un-named small glacier
on the north-west face of Pt. Piggott. This un-named glacier is shown on the map by Dutton
(1929), but disappeared between 1926 and 1947. A description of the Cesar Glacier by
Arthur (1921) shows that it underwent negligible retreat in the decade between 1908 and
1918 (cf. Charnley 1959, p. 484).

Further information of value is contained in Dutton’s (1929) account of his and Melhuish’s
journey on the mountain in 1926. Some of the many excellent photographs by Melhuish
were taken in 1926, but others were evidently taken earlier, for some are in Gregory’s book
(1921, plates VIII, p. 102; XTI, p. 146, XIII, p. 150; XIV, p. 152) and were taken prior to
1921. From photographs in Dutton (op. cit., plate 20, p. 62; plate 32, p. 90) the terminus
of the Lewis Glacier in 1926 or not long before can be reconstructed; it was at an elevation
of 14,680 feet and 900 feet from the 1959 ice-front in a horizontal plane. At this time the
Tyndall Glacier terminated in Tyndall Tarn, which was then pro-glacial (op. cit., plate 33,
p. 44; plate 44, p. 126). The Tyndall Glacier then terminated at the 14,600 feet level and
400 feet from the 1959 terminus.

From the map at the end of Dutton’s book it can be seen that by 1926 the Kolbe Glacier
had retreated sufficiently to allow Harris Tarn to form, and that the Curling Pond at the
margin of the Lewis Glacier had formed, although it stood higher than at present and
periodically threatened to flood Top Hut. In addition to the glaciers that have survived
to the present day, Dutton’s map shows the Krapf Glacier in two parts on either side of
the rock buttress on the east side of the present-day Krapf Glacier. That the Krapf Glacier
and its eastern part extended to the level of the col west of Thomson Flake, and was in fact
still joined to the Lewis, is shown on one of the photographs (Dutton, 1929, plate 39*,
p. 110). Further small glaciers that have disappeared since 1926 are the Barlow Glacier,
the small glacier on the north-west face of Pt. Piggott, and a small glacier (possibly a firn
bank) on the west face of Pt. Peter.

The 1934 photogrammetric survey by Troll and Wien (1949), photographs taken in 1938
by R. A. Russell-Smith, and R.A F. air photography taken in 1947 show that the Lewis
Glacier began to recede over the old ice-fall on top of which the Lewis Tarn now stands
probably about 1935 and that the terminus reached the top of the cliff in about 1945. A
small pro-glacial tarn was already in existence in 1947 and this continued to grow till early
1959, when moraine became visible under the ice at the eastern edge of the tarn, showing
that the glacier terminus was about to retreat out of the tarn.

The estimations of past glacier termini positions for the Lewis Glacier are given in the
following tabulation:—

Horizontal distance
Elevation of of terminus from

Year Terminus feet 1959—feet
1893.. .. .. 14,670 1,550
1926.. .. .. 14,680 970
1934.. .. .. 14,680 850
1938.. .. .. 14,800 700
1947.. .. .. 15,020 310

1950. . .. .. 15,020 . 235
1958.. = .. .. 15,020 c. 15
1959. 15,020 0

The average rates of retreat for the various periods between estimates in the table above
are:—
Average rate of

Period—years retreat—feet per annum
1893-1926 .. 21
1926-1934 .. 27
1934-1938 .. 37
1938-1947 .. 32
1947-1950 . 22
1950-1958 .. 29

1899 — 1958 24-2

*Note that the photograph has a misleading caption. The pinnacle in the foreground is Thomson Flake,
and Pt. Thomson is partly hidden behind it.
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The unusually high rates of retreat for the period 1934-1947 is due to the fact that during
the greater part of this period the ice-front was receding up a steep, locally vertical cliff.
Under these circumstances an overall constant rate of ice-wasting in the terminal region of
the glacier is likely to give rise to accelerated rates of retreat up steep slopes.

There is less information available for the Tyndall Glacier; the following figures are
based on Charnley’s (1959, p. 485) account:—

Horizontal distance

Elevation of of terminus from

Year Terminus—feet 1959 terminus—
Jeet
1926 .. 14,600 415
1947 .. 14,700 150
1950 .. 14,700 120
1958 .. 14,760 12
1959 .. 14,770 —_

The average rate of retreat for the period 1926-1959 is 12-6 feet per annum, a rate appro-
ximately half that of the Lewis Glacier.

The recession of some other glaciers in the period 1950-1958 is known as a result of the
marking of glacier snouts by D. Cameron (Ministry of Works), and the amounts of retreat
during this period for all the measured glaciers is given below for comparative purposes:—

Retreat of glacier

termini between Average rate of
1950 and 1958— retreat feet
Jeet per annum
Lewis Glacier. . .. .. 220 27-8
Tyndall Glacier .. .. 107 13-5
Darwin Glacier .. .. 56 7-07
Krapf Glacier .. .. 30 3-8
Cesar, Joseph and Northey
Glaciers .. .. <20 <2-5

From the figures given above it can be seen that the rates of retreat of the glaciers measured
at their termini are functions of the size of the glaciers and to a lesser extent of their aspect.
Thus the smaller glaciers of the north face, which lie in deep clefts beneath high rock faces, have
retreated relatively slowly, due to the sun being in the southern hemisphere during the -
main January-March ablation season. Further factors are the accumulation of snow on
north-facing lee slopes during the south-east monsoon (April-June), when most of the snow-
fall takes place, and the afternoon cloudiness which minimizes the insolation on west-facing
slopes.

4. Glaciology

The ten named glaciers of Mt. Kenya are mainly small cirque and hanging glaciers, the
largest of which, the Lewis, is only 4,550 feet long, and the smallest, the Melhuish Glacier,
is a 300 foot long steep ice sheet which may already be stagnant. The cirque glaciers are the
Lewis, Tyndall, Darwin, Gregory and Krapf Glaciers. The Heim and Forel Glaciers hang
on the west face of Batian; the Forel ends in a precipitous ice-cliff which periodically dis-
charges ice-avalanches on to the Tyndall Glacier below, and the Heim is lower down the
face and also ends in an unstable ice-cliff, but is connected to the head of the Tyndall Glacier
by a narrow strip of ice. The Diamond Glacier, so named by Mackinder on account of the
extreme toughness of the ice, is the highest of the hanging glaciers, and discharges ice-blocks
and rock debris on to the Darwin Glacier by means of a very steep ice-couloir. The upper
part of the Northey Glacier consists of two disconnected steep hanging glaciers.

The Darwin Glacier is in a category of its own, for it receives the greater part of its accum-
ulation from the ice-couloir descending from the Diamond Glacier and from another similar
couloir descending from the south face of Nelion. It is a re-constructed glacier formed
of two coalescent ice cones.
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The Cesar and Joseph Glaciers are derived from a common firn-basin west of Pt. Dutton.
fThe northern branch, the Joseph Glacier, is now thin and is likely to disappear within a
ew decades.

The most heavily crevassed glacier is certainly the Tyndall, which has a system of large,
gaping transverse and marginal crevasses in its middle section. The Lewis Glacier has well
marked longitudinal crevasses in its lower section where it spreads a little downstream
of the constriction caused by the projecting rock rib immediately west of Top Hut. A group
of large transverse crevasses cross the Lewis Glacier between Top Hut and Pt. Thomson,
and are caused by a high in the sub-glacial surface. Ice-falls with groups of seracs are not
seen in spite of the very steep slope of some of the glaciers, owing to the small size of the
glaciers, their relatively low rates of flow (see below), and their temperate character.

The areas of the glaciers in 1958 are tabulated below. The figures are approximate
only, for the 1958 glacier outlines shown on the 1:10,000 map (at end) are sketched, not
surveyed.

Area in 1958
square kilometres

Lewis Glacier .. .. 0-360
Tyndall Glacier .. 0-105
Gregory Glacier .. 0-073
Cesar and Joseph Glaciers 0-067
Krapf Glacier .. .. 0-040
Northey Glacier .. 0-033
Darwin Glacier .. 0-031
Forel Glacier .. .. 0-016
Heim Glacier .. .. 0-011
Melhuish Glacier .. 0-006

Total glacier area .. 0-742

Fossil stagnant ice is well exposed on the steep slopes immediately south and east of the
Lewis Tarn, between the stage VI lateral moraine and the southern margin of the Lewis
Glacier. It occurs beneath a skin of slipped moraine, which has served to minimise its ablation,
and is exposed in small west-facing cliffs and stone-chutes where recent slips of the super-
incumbent moraine have occurred. The observed fossil ice occurs up to 100 feet above the”
present level of the glacier and some of the stage VI lateral moraine in this area, which is
being undermined by melting of the fossil ice and is daily discharging boulders and other
debris onto the glacier margin, is probably still ice-cored.

The scree slopes immediately north of Thomson Flake are frozen below a depth of a
few inches, and it is possible that there are substantial hidden bodies of stagnant ice on these
slopes.

The elevation of the present day snow-line (firn-line on the glaciers) is difficult to estimate
due to seasonal and annual fluctuations, and due to the strong effect of topography. In
1934 Troll and Wien (1949, p. 265) estimated the firn-line on the Lewis Glacier at 15,500
feet (4,730 metres), at the change from convex to concave transverse glacier profile, and
Charnley (1959, p. 486) estimated it at the same height in 1958. In March 1959, however,
at the end of the ablation season, the writer estimated the firn-line at 15,700 feet.

Observations by the writer in January 1959 and 1960, and the air photography of February
1947 and January 1958, together with conventional photographs taken at various times,
show that the ablation areas of the glaciers on the northern and north-western slopes are
small relative to their size, and suggest that the snow-line on this side of the mountain is
at 15,300-15,400 feet.

Topography has a strong effect on the local elevation of the snow-line, and the climatic
régime in the peak region is equally important. Among the more obvious effects is the
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localization of snow-fields and glaciers on west-and north-facing slopes, and this is due to
several factors, the more important of which are:—

(@) the prevailing south-east wind during the season of maximum snow-fall,

(b) the greater insolation on east-and south-facing slopes during the January-March
ablation season, when the western slopes are protected by the afternoon cloudiness, and the
sun is in the southern hemisphere. The efficacy of these factors have been noted by the
writer in three successive seasons (January, 1958, 1959 and 1960). Snow-fields survive longest
on the north-facing slopes between Pt. Lenana and Nelion, on the north side of the col
between the Gorges and Hobley valleys, and on the north side of the ridge linking Shipton
Peak and Pt. Lenana. Similarly, even towards the end of the ablation season, when large
areas of the Lewis, Tyndall and Darwin Glaciers are free of snow, the north-facing glaciers
are either still completely snow covered or nearly so. The small amount of retreat of the
Northey and Krapf Glaciers since the deposition of the stage VI moraines, compared to the
other glaciers, is due to their occurrence in steep sided cirques in which snow drifts can
accumulate, and in which insolation is at a minimum, In addition these glaciers receive
increments of avalanche snow from the high, steep rock faces surrounding their accumu-
Iation areas.

The Mt. Kenya glaciers are certainly of the temperate kind characteristic of low latitudes,
in which the ice is at pressure melting point throughout their volume. This is evidenced by
the complete lack of super-glacial melt water streams, by the occurrence of melt-water in
crevasses at various depths, and by the common presence of sub-glacial melt-water which feeds
the Lewis and Tyndall Tarns and the Curling Pond. Only the Tyndall and Lewis Glaciers
have visible melt-water streams, in the remainder their melt-water passes underground
to emerge, as in the case of the Gregory Glacier, as springs from moraine some hundreds
of feet below the glacier terminus.

Rates of movement have been measured on the Lewis Glacier by Troll and Wien (1949,
p. 263) and in 1958 by Charnley (1959, p. 487). Maximum rates of movement in the central
region of the glacier were approximately five metres (15% feet) per annum. This is a very
slow rate of movement considering that the glacier is moderately steep and temperate in
character, and it may be due to high basal friction (Charlesworth 1957, pp. 98-104), and
to presumed thinness of the ice. Troll and Wien (1949, p. 264) calculated the average depth
of the Lewis Glacier to be 60 metres (197 feet). Rates of movement among Alpine glaciers
are between 30 and 150 metres per annum.

Further details on rates of movement, physical characteristics of the ice and firn, seasonal
firn stratification etc. are given by Troll and Wien (1949) and estimates of ice loss for the
Lewis Glacier during the period 1934-1958, and other information is given by Charnley
(1959).

5. Conclusions

(1) Summary of glacial fluctuations
Very little can be deduced from the deposits of the older glaciation, beyond the fact that
it extended down to 11,200 feet on the eastern sector of the mountain, and that there was a
substantial interval in which minor volcanic eruptions and erosion took place previous
to the advent of the younger glaciation.

At the maximum extension of the younger glaciation the snow-line stood at approximately
13,000 feet on the eastern and southern sides, and somewhat lower, nearer 12,000 feet,
on the western and northern sides of the mountain. Following the deposition of the stage
IA terminal moraines retreat began, broken by two short-lived re-advances which deposited
the IB and IC moraines. There was then a more substantial retreat followed again by a
re-advance with three main diminishing maxima, marking the complex of stage ID moraines.

A period of steady retreat then ensued, accompanied by thinning of the central ice cap,
and the separation of small ice-masses in the lower valleys, in which the stage Il moraines
were deposited. The snow-line at this time stood at 13,000-13,500 feet.

The substantial stage III moraines mark a period of stability or re-advance following
further general wasting of the ice-cap and its fringing valley glaciers; the level of the snow -
line stood at 14,200 feet.
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The stage IV and V moraines are mainly small boulder ridges occurring in closely spaced
series, and mark short periods of stability during the general retreat. By the time stage IV
had been reached the central ice-cap had disintegrated into a radial system of valley glaciers.

Following the deposition of the stage V boulder moraines a prolonged period of retreat
is inferred, possibly culminating in complete de-glaciation, previous to a re-advance which
took place in the last 250 years to form the stage VI moraine complex. The stage VI moraines
contain two closely spaced main ridges with significant difference in degree of plant coloni-
zation, and these two ridges may represent two advances of the glaciers, dating from 150
and 100 years before present. During the last 100 years several very small end-moraines
have been deposited, but during the last 60 years retreat has been rapid and steady, without
the deposition of constructional moraines.

(2) Climatology

Between the time of the maximum of the younger glaciation and the present day the
climatic snow-line has risen between 2,500 and 3,000 feet (760-915 metres), a rise which,
in the absence of evidence of vertical movements of the mountain, must be attributed to
climatic change. This difference in the elevation of the snow-lines is of the same order as
has been found in the Cordilleran region of the United States (Flint 1957, p. 304), and in
other parts of the world (Charlesworth 1957, pp. 652-654). Flint (1959, pp. 351-353) has
calculated that the former depression of the snow-line on Mt. Kenya implies a reduction
of mean temperature of approximately 5°C., but this estimate neglects the reduction of
precipitation with increasing altitude, a factor of minor significance which would tend to
reduce the difference in mean temperatures necessary to account for the change in snow-
line elevation. The estimates of present and former snow-lines on all the high East African
mountains is as follows:—

Difference
Snow-line between
Lower limit of at maximum present
glaciers of of last Present and former
last glaciation glaciation snow-line snow-line
feet feet feet feet
Mt. Kenya .. .. .. 8,600-12,300 ¢. 12,500 15,600 3,100
Kilimanjaro .. .. 9,800-11,600 c. 14,000 above 19,300 >5,300
Mt. Elgon .. .. .. 11,400-c.13,500 not known above 14,140 —
Ruwenzori .. .. .. 11,000-77,500  not known c. 14,500 —
Aberdare Range .. . 12,000-?10,700 not known above 13,104 —

The great height of the present day snow-line on Kilimanjaro is due to the extremely
small annual precipitation in the summit area, which is believed to be less than ten inches
per annum. On the Ruwenzori range, on the other hand, the snow-line is lower due to the
much higher precipitation. The levels to which the glaciers of the last glaciation descended
on Mt. Kenya and on Satima (Aberdare Range) suggest a snow-line of approximately 12,500
feet at that time. The rainfall statistics for Mt. Kenya (Fig. 1) show that the level of the present
day zone of maximum rainfall is at elevations between 8,000 and 12,000 feet on differing
sectors. A fall in mean temperatures would therefore depress the snow-line towards the
zone of maximum rainfall and would bring about a much greater accumulation of snow
and a reduction in ablation. The effect would be most marked on the western and north-
western sectors of the mountain, where the zone of maximum rainfall is highest and the
rainfall intensity moderately high. On the eastern slopes, however, although the annual
rainfall can exceed 90 inches, the level of maximum rainfall is well below the inferred lowest
position of the former snow-line, and on this sector the extent of the former glaciation would
not be so great. These conclusions agree very well with those deduced from the glacial
deposits, and suggest that climatic régime on Mt. Kenya did not differ markedly from
that of the present day in wind direction and distribution of precipitation, and that a fall
in mean temperature was the main factor responsible for the former extended glaciation.

(3) Correlations

There is a close parallel between the glacial history of Mt. Kenya and the other high
East African mountains Kilimanjaro and Ruwenzori. On the other mountains traces of
an “‘older” glaciation have been recognized, and the phases of the last glaciation are markedly
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similar (C. Downie (Kilimanjaro) personal communication; J. de Heinzelin, 1953; Bergstrom
1955; de Heinzelin, personal communication). On all three mountains the stage VI moraines
which mark a recent “historic” re-advance are easily recognized, and on Ruwenzori were
correlated with the “Little Ice Age” of Europe (de Heinzelin 1953, pp. 15-17, Charlesworth
1957, p. 1494). Both Downie and de Heinzelin have remarked on the close similarity in the
form, sequence, state of weathering and plant colonization of the moraines of Kilimanjaro
and Ruwenzori to those on Mt. Kenya (personal communications). The amount of depres-
sion of the snow-line at the last glacial maximum was not the same on these mountains,
due to differences in climate and elevation, but suggests a lowering of mean temperatures
of the same order. These facts strongly suggest that the glacial fluctuations on the East
African mountains were contemporaneous.

Nilsson (1929) mapped the moraines of Mt. Elgon, and did some pioneer work on the
lake levels and deposits in the eastern Rift Valley, and on the moraines of Mt. Kenya and
the higher mountains of Ethiopia (1931). He concluded that the fluctuations of the Rift
Valley lakes and the mountain glaciers were essentially synchronous, and were the expression
of world-wide climatic changes. Nilsson’s interpretation of the moraine sequence on Mt.
Kenya (1931 p. 78, pp. 84-92) was strongly influenced by his conviction that the lake fluc-
tuations could be correlated with the glacial stages on Mt. Kenya, and he postulated complete
deglaciation after the deposition of the stage I moraines, a postulate with which the writer
does not agree.

The development of the climatic sequence in East Africa has recently been reviewed
by Cooke (1957) and Flint (1959). Nilsson’s correlation of the climatic sequence with the

moraines of Mt. Kenya, using the more refined sequence lately developed by Leakey (cf.
Flint 1959(B), table 1, p. 268) can be summarized as follows:—

Climatic Sequence .. .. .. Moraines of Gorges Valley, Mt. Kenya.

Leakey 1948, p. 63 .. .. .. Nilsson 1931, p. 18.

(Gamblian 2 Pluvial) .. .. recent small moraines (Stages IV-VI).

recession of Gamblian lakes .. complete deglaciation.

Gamblian 1 Pluvial .. .. .. ‘“‘great” and “‘very marked” moraines (Stage I).
Third Interpluvial .. .. .. complete deglaciation.

Kanjeran Pluvial .. .. .. ‘“‘oldest” moraines (older glaciation).

Second Interpluvial

Kamasian Pluvial

First Interpluvial
Kageran Pluvial.

The correlations above are based entirely on the theory that phases of expanded glaciers
on the high mountains are likely to be contemporaneous with periods of increased rainfall
(pluvials) at lower levels. This theory has never been substantiated in the tropics, but appears
to have been proved in some areas elsewhere, notably Lake Bonneville in the western United
States (Flint 1957, pp. 226-232).

Nilsson suggested that Mt. Kenya was de-glaciated after the deposition of the stage I
moraines, apparently on the grounds that the Gamblian lakes dried up at this time and that
a marked warm dry period intervened during the Gamblian Pluvial. Nilsson’s climatic
interpretation of the Gamblian beaches and other deposits is complex and in some respects
unjustified, and in any case it should not influence the interpretation of the glacial deposits.
Nevetherless it is generally believed that the Pleistocene climatic changes were world-wide,
and radio-carbon dating of climatic events of the last 30,000 years support this view (Flint
1957, pp. 491-492; Charlesworth 1957, pp. 1533-4). It is reasonable therefore to correlate
the younger glaciation on Mt. Kenya with the Gamblian pluvial, and it is likely that a
clearer correlation between the Gamblian lake fluctuations and the glacier fluctuations
will be made in future, especially when some radio-carbon dates and pollen sequence have
been worked out. These arguments can be extended, with less confidence, to a correlation
between the East African glacial fluctuations and those of Europe and North America,
as was done by Nilsson (1931, pp. 84-92), de Heinzelin (1953, pp. 16-17) and Bergstrom (1953
p. 475), whereby the younger glaciation on Mt. Kenya is regarded as concurrent with the
Wiirm glaciation of the European Alps.

A graph showing inferred snow-line levels since the younger glacial maximum plotted
against time although largely hypothetical in terms of the time-scale and the position of
the snow-line between the stages, can be-compared with the stages of retreat in the Alps.
Thus the stages IA, IB; IC are comparable to the main Wiirm-maximum, stage ID to the
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Neo-Wiirm re-advance which locally reached or over-ran the main Wirm maximum,
and stages II, IIT and IV correspond to the Buhl, Gschnitz and Daun stages of the Alps.
The substantial interval between stages V and VI when the snow-line of Mt. Kenya was
higher than at present may well correspond with the European Climatic Optimum, which
is firmly dated in Europe at 6,000-8,000 years before present. The stage VI moraine complex
corresponds to the “Little Ice Age” of Europe which took place between 100 and 300 years
ago, the maximum being at about 1820 A.D. and 1850 A.D. (Charlesworth 1957, pp. 1,472~
1,503). These correlations are, however, very tentative, but may serve as a working hypo-
thesis which needs careful testing.

De Heinzelin (1953, pp. 16-17) has pointed out that if the correlation of the European
and East African glacial maxima is accepted, then the climatic sequence and chronology
based on the variations in solar radiation advocated by Milankovitch and supported by
Zeuner (1959, pp. 266-270) must be called in question, for this theory demands that the
climatic fluctuations should be out of phase between the northern hemisphere and the
equatorial regions, and further it suggests that there should have been some 28 pluvial/
glacial phases in the equatorial belt in the last 600,000 years. The circumstantial evidence
suggests that the equatorial and European glaciations were concurrent, and there is no
evidence of more than four pluvial phases in the East African Pleistocene, and some of
these are of doubtful validity.

VI—STRUCTURE
1. Basement System

The only notable occurrence of Basement System outcrops in which structure can be
made out are in the Thego and Sagana river valleys, near their confluence. Here the gneisses
and schists strike to the north-north-west, and the dips are steep to the west. Lineations
plunge to the north at low angles. Foliation of similar attitude is seen in the Basement
System inlier at Marua. No major or minor folds were observed in these rocks and nothing
can be deduced of their structure.

2. Volcanic structures

The structure of the Mt. Kenya volcano and its satellites is that of a large volcanic pile
with radial outward dips centred on the plug, which forms the present peak of the mountain.
Within the volcanics of the satellites, however, various attitudes of the beds are found.
The trachytic formatioas which outcrop in the head of the Hohnel and Teleki valleys, and
underlie the kenytes, dip to the south and south-east, and suggest that they were erupted
from a centre to the west of the peaks. Similarly the Ithanguni volcanics show a radial
outward dip about that centre. It is implicit in the account of the stratigraphy given earlier
that the volcanic structures are complex, especially in the latter stages of the history of the
the volcano, due to alternating quiescence, erosion and periods of eruption, with the result
that the younger lava effusions are often scattered and confined in widely separated valleys.

Examples of these are the olivine trachytes, mugearites and olivine basalts of the northern
slopes.

A most interesting series of minor volcano-tectonic structures are found in the area
one mile south-west of Mugi hill (Fig. 6). In this area the volcanics have been fissured and
faulted in a very recent movement which is younger than all the volcanic formations of the
neighbourhood, including the very youthful and undissected basaltic crater to the south
of Lake Ellis. The fissures are almost entirely within the olivine trachyte outcrop, and gape
to a maximum width of 20 feet, and are up to 30 feet deep, the floors being formed of fallen
blocks. The faults, which are the more numerous, rarely throw more than 20 feet, mostly
to the north-west, and form a series of small sinuous entirely uneroded escarpments travers-
ing the uneven ground including the outflow valley of Lake Ellis, which has become blocked
in consequence. The system of fractures trends north-east—south-west, and passes into
the olivine basalt crater, and is probably in some way connected with the activity of this
crater. These very young structures may well be the result of the intrusion at shallow depth
of a small sill, causing slight doming of the surface, and slight elevatlon of the eastern side
of the faulted area relative to the western side.

A suggestion of a fracture or fissure running across the southern slopes of the mountain
is offered by the occurrence of ten of the basaltic craters of this area nearly on a straight
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line trending east-north-east. The craters are Tagwa, Kehari, Gerere and the craters of the
upper Nyamindi, Rupingazi, Ruguti and Nithi valleys. These craters are comparable in
age and appearance to those of the Nyambeni volcanic series, whose main outcrop is
to the north-east, and which are also undoubtedly aligned along fissures of similar but more
northerly trend.

VII—FECONOMIC GEOLOGY
1. Building stone
The Nyeri Tuff has been used for some considerable time as a building stone. It is easily
worked and trimmed and is of adequate strength for moderate sized structures, and its
outcrops are widely spread in this area and to the west. The principal areas where the tuff has
been quarried are in the Nairobi river valley north-east of Kiganjo, where two large quarries
on the eastern side of the valley are in use—those to the west being abandoned, and at

intervals in the Sagana valley between the Marua village area and the southern margin
of the area.

The Nairobi valley quarries are near the northern limit of the Nyeri Tuff outcrop—further
north the Tuff is covered by Mt. Kenya volcanics. The two large quarries here are favourably
situated for exploitation because the stone is of good quality, the overburden is small and
the access is easy. One or two small quarries in the Thego valley south-east of Ngondi are
not so favourably situated, and have not been worked for some time. Further small abandon-
ed quarries were seen to the south, in the southern part of Chieni forest, and at Gatunganga
village. The largest quarry in the area is Kahiga quarry immediately north of the Sagana-
Chania confluence. Here, however, as in all the more southerly quarries, the overburden
of weathered tuffs and Laikipian Basalts is substantial, and further development of the
quarry can only take place laterally. A short distance to the north-west of the quarry the
Nyeri Tuff abuts against a Basement System inlier, which means that development of the
quarry in this direction would be abortive.

Several small mostly disused quarries occur in the lower parts of the Sagana valley between
the Sagana Falls Power Station and Kahiga quarry, but south of the power station there
is only a small quarry in the Kagumeo valley on the Kaigonde-Muruguru motor track,
and a large disused quarry near the southern margin of the area at Kathangaini.

The Laikipian Basalts overlying the Nyeri Tuff thicken from north to south, with the
result that all quarries in valley sides south of the latitude of Kirichu Trading Centre suffer
from excessive overburden. The Nairobi valley quarries are, however, well sited for develop-
ment, and it is anticipated that these will be utilized should any substantial increase in stone
production be required.

In one small area, however, the tuff forms a marked feature in the side of the Chania
-valley between 550 and 1,200 yards north-west of Marua village, on the 5,500 foot contour.
Should additional quarries be required within the Kikuyu reserve they should be sited here,
for a large quantity of stone could be excavated without serious overburden difficulties.

2. Road Metal and Ballast

The foundation of the new Sagana-Karatina-Nyeri tarmacadam road is of stabilized
earth obtained from a quarry immediately north of Kahiga building stone quarry, one mile
north of Marua village. The material used is the highly weathered upper part of the metamor-
phic inlier, and is soft, friable muscovite-biotite gneiss. It is said to be suitable as the cement-
stabilized road foundation on account of its sandy nature and the low proportion of clay
minerals. There should be sufficient remaining weathered rock for future requirements,
such as the reconstruction of the Marua-Kiganjo road.

The surface of the remaining roads of the area is either stones and soil (‘all weather’),
lateritic soils high in ironstone pebbles (snurram) or local earth. The Marua-Kiganjo-Nanyuki
road is mostly surfaced with stony earth, derived from numerous borrow pits in weathered
lava and agglomerate, and many of the roads serving the Naro Moru-Nanyuki area are
surfaced with murram, which is plentiful among the lateritic soils of this area.

Within the Kikuyu reserve the majority of roads are earth surfaced, and are liable to
deteriorate during the rainy season. Unfortunately suitable surfacing material is not common
in this area. No specific search was made for road metals in this area, but lateritic ironstone
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was observed in quantity along the Katheraini-Gatunganga road four miles south-east
of Kiganjo. The friable basaltic ashes on Kilima Kamuruana and in the neighbourhood,
in Inoi location, should be suitable as road dressing, and there are sporadic outcrops of
lateritic soils in the Kabingazi-Gatundori area north of Embu,

3. Graphite
Muscovite-biotite-graphite schists were found outcropping in the Thego river 100 yards
north of its confluence with the Sagana. The outcrop width of the graphitic schists was
estimated as 75 feet, the dip being nearly vertical. The schists are only notably graphitic
in thin bands, and the low percentage of graphite and the extremely fine flake size render
the deposit uneconomic. The tonnage available is in any case very small.

4. Water Supply

In the upper levels of the area there is an adequate rainfall, and the efficiency of the in-
digenous forest as a water storage area ensures that the majority of streams are perennial.
The lower cultivated slopes represent one of the richest agricultural areas in Kenya, on
account of the good water supply, adequate rainfall, and the fertile volcanic soil.

The drainage of the area is divided unequally between the Tana and Uaso Ngiro catch-
ments; the watershed between the two catchments is shown on Fig. 3. The sum of mean
daily discharge of all rivers draining the mountain in January 1958, was 1,807* cusecs (1,807
cubit feet per second, or 51-1 cubic metres per second), and this yields a figure of 1:06 cusecs
per square mile for the discharge area, an area larger than the area mapped. In contrast
to the total discharge from the mountain the discharge from the peak arca above the 14,000
foot contour is 13-6 cusecs, which is the sum of individual readings made in January 1958,
and this represents a yield of 1:05 cusecs per square mile. From gaugings made by the
Hydraulic Branch, Ministry of Works, at various elevations on the Northern Naro Moru
river it can be calculated that the yield per unit area is good in the peak area, that from the
moorland is much less, that from the forest belt between 7,000 and 11,000 feet is by far the
largest, while in the farming area there is a slight net loss. These calculations confirm that
the forest belt yields the greater proportion of the surface discharge, a conclusion which is
reinforced by a consideration of the dense drainage pattern in the forest belt, and by the fact
that the rainfall is generally highest on the forest. The effects of groundwater re-charge,
evaporation and transpiration are neglected, but are not likely to alter the conclusion that
the forest belt is the source of the greater part of the water discharged from Mt. Kenya.

The flow of the rivers on the lower western slopes between Kiganjo and Nanyuki is in-
sufficient to supply all the requirements of the farms, and the perennial rivers are in any
case too far apart. For these reasons a number of bore-holes have been sunk to provide”
additional water supplies. The positions of these bore-holes are indicated on the geological
map (at end). Details of the bore-holes and some logs extracted from the records of the
Hydraulic Branch, Ministry of Works, are given below:—

Depth to which Yield in

Bore-hole No. Location Depth-feet Water rises ft. Gallons/24 Hrs.
164 Bastard’s Fm., Nanyuki 284 150 5,760
167 Bastard’s Fm Nanyuk1 211 140 1,440

C286-D Graham’s Fm,, .. . 400 210 10,800
Naro Moru.
C290 Fowler’s Fm., Nanyuki 419 123 21,600
C291 Paice’s Fm., Burguret 356 78 17,280
C462-D Kagumo School. . .. 500 237 34,360
C514-D Graham’s Fm,, .. .. 515 380 33,600
Naro Moru.
C574 Kagumo School. . .. 453 237 50,400
C1619 Allens Fm., Burguret .. 522 17 78,000
C1704 Poolman’s Fm., Nanyuki 360 225 8,000
C2030 Kianyaga Police Post .. 623 298 11,135
C2371 Walkers Fm., Ndathi .. 400 106 21,600
C2638 Paices Fm., Burguret .. 227 45 215

*The discharge figures have been obtained from the Hydraulic Branch, Ministry of Works.
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. Log of bore-hole C462-D (Kagumo School)
Feet

0- 47 red clay soil.
47- 63 yellow clay with lava fragments.
63— 78 chocolate clay with lava fragments.
- 78— 85 dark grey clay with basalt fragments.
85— 93 weathered basalt fragments.
93-125 dark grey fresh basalt (Laikipian Basalts).
125-153 grey basalt.
153-160 grey clayey tuff.
160-168 light grey vesicular or tuffaceous basalt.
168-170 yellow mottled grey tuffaceous basalt.
170-177 greenish yellow clayey tuff.
177-200 drab grey soil or river wash.
200-209 mottled soil.
209-212 grey soil.
212-260 dark grey tuffaceous basalt.
260-284 grey vesicular basalt.
284-365 black rhyolitic tuff.
365-400 black to grey vesicular basalt.
400408 (no record).
408-442 black clay.
442-500 black vesicular lava.

The rhyolitic tuff between 284 and 365 feet may well represent the Nyeri Tuff, in which
case the black basalts below are Simbara Series.

Log of bore-hole C514-D (Graham’s Farm, South East of Naro Moru)
Feet

0- 20 light chocolate clay with lava fragments.

20-104 grey mixed lava and pebbles.
104-215 light grey fissured “kenyte”.
215-320 felspathic “kenyte”(?).
320-335 pale brown and mottled yellow soils and sediments. .
335-346 grey and yellow mottled coarse gravelly sediments with grey lava fragments.
346-350 pale grey sediments with lava gravels.
350420 drab old lake sediments.

It is possible that much that has been recorded as sediment in the log above is actually
pyroclastic.

. The records of the bore-holes suggest that in the lower western slopes, where most of
.the bore-holes have been drilled, there is no difficulty in finding adequate water at ‘depths
between 100 and 300 feet, there being ample re-charge from the perennial rivers traversing
the area. There is no risk with the present low density of bore-holes of depletion of ground
water.

The Sagana river is the largest in the area and has been used for the generation of hydro-
electric power at the Sagana Falls Power Station. The height of the falls is 97 feet, but the
head on the turbines has been raised to 118 feet by the construction of an earth dam, with
a 60 yard wide concrete spillway. Two intake pipes lead to two Gilkes turbines of 750 horse-
power each driving two alternating current generators. The installed capacity totals 1,200
kilowatts, but the plant is normally run at 1,000 kilowatts. A diesel-powered stand-by
alternator is used to supplement the turbines when one of the latter is shut down dur_mg
periods of low river flow. The generators feed a transmission line at a voltage of 11 kilo-
volts, and the lines carry electricity to Nyeri, Kiganjo, Kagumo and Karatina. :

A small diesel-powered generating station is situatéd on the Liki river just inside the
northern boundary of the area, and supplies Nanyuki township.

There are no possibilities for the construction of new large-scale public hydro-electric
undertakings in the area, for the flows of individual rivers are too variable and srpall to
make such ventures economic. Several private small-scale hydro-electric plants are in use,
however, especially in the upper part of the farming area, where contour trenches are dug.
to lead river water to a suitable spot to utilize the head for driving small generators.
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In several places in upper Embu district water power is utilized to drive simple water-
wheels for grinding maize. Two such mills are at Kabonge village in Rutue Location, and
Rutue mill near Thaita village in Inoi location. There is much scope for the expansion
such small water-driven mills, which could be also be used for saw-milling on a small scale.

5. Economic possibilities of the area

Since the geology of the area is almost entirely volcanic there is virtually no possibility
of the discovery of valuable mineral deposits. It is likely that the building stones will continue
to be exploited, and it is possible that small brick and tile industries may be started if suitable
clay deposits can be found.

The major economic activity in the area will continue to be based on agriculture, with
forestry and timber products providing a small but potentially important second industry.
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