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Abstract

Primary myelofibrosis (PMF), polycythemia vera (PV) and essential thrombocythemia (ET) form the classical  
BCR-ABL1-negative myeloproliferative neoplasms (MPNs) that are driven by a constitutive activation of JAK2 signaling. PMF  
as well as secondary MF (post-ET and post-PV MF) are the most aggressive MPNs. Presently, there is no curative treatment,  
except allogenic hematopoietic stem cell transplantation. JAK inhibitors, essentially ruxolitinib, are the therapy of reference  
for intermediate and high-risk MF. However, presently the current JAK inhibitors behave mainly as anti-inflammatory drugs,  
improving general symptoms and spleen size without major impact on disease progression. A better understanding of the genetics  
of MF, the biology of its leukemic stem cells (LSCs), the mechanisms of fibrosis and of cytopenia and the role of inflammatory  
cytokines has led to new approaches with the development of numerous therapeutic agents that target epigenetic regulation, 
telomerase, apoptosis, cell cycle, cytokines and signaling. Furthermore, the use of a new less toxic form of interferon-α has been 
revived, as it is presently one of the only molecules that targets the mutated clone. These new approaches have different aims: 
(a) to provide alternative therapy to JAK inhibition; (b) to correct cytopenia; and (c) to inhibit fibrosis development. However, 
the main important goal is to find new disease modifier treatments, which will profoundly modify the progression of the disease 
without major toxicity. Presently the most promising approaches consist of the inhibition of telomerase and the combination of 
JAK2 inhibitors (ruxolitinib) with either a BCL2/BCL-xL or BET inhibitor. Yet, the most straightforward future approaches can be 
considered to be the development of and/or selective inhibition of JAK2V617F and the targeting MPL and calreticulin mutants by 
immunotherapy. It can be expected that the therapy of MF will be significantly improved in the coming years.
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Introduction
The classical BCR-ABL1-negative myeloproliferative neoplasms 
(MPNs) (denoted here thereafter MPNs) include three different  
disorders, essential thrombocythemia (ET), polycythemia vera 
(PV) and primary myelofibrosis (PMF). They may be seen as  
3 stages of the same disorder as they are all driven by constitu-
tive activation of JAK2 by mutations in 3 genes1,2. Disease 
phenotype and prognosis are related to the precise disease 
driver mutation along with its genetic status (heterozygous or  
homozygous), but also to the presence of other acquired  
“clonal” driver mutations. The latter are also associated with 
other myeloid malignancies and clonal hematopoiesis, but 
they do not per se induce MPN. The combination of acquired  
mutations, their number and order of acquisition play a cen-
tral role in the phenotype and prognosis1–3. In addition, inherited  
genetic factors and environmental cues such as inflammation 
and iron metabolism dysregulation may also impact phenotype  
and prognosis1.

PMF is the most severe MPN. Diagnosis is based on bone  
marrow histology with the presence of megakaryocyte (MK)  
proliferation and marrow fibrosis (grade 2–3) associated with 
osteosclerosis in advanced cases4,5. Secondary MF is pre-
ceded by an ET or a PV. An overt PMF can be preceded by  
an early-PMF (pre-fibrosis) that shares many features with ET,  
but differs by the presence of a splenomegaly, increased bone 
marrow cellularity with dysplastic MK proliferation and  
eventually low-grade marrow fibrosis (grade<2). Most PMFs 
have disease driver mutations, except a subgroup denoted as  
triple negative PMF5,6.

The severity of the disease is related to the risk of leukemic 
transformation (14–25%), severe cytopenia, thromboembolic, 
hemorrhagic and infectious complications, cardiovascular  
disorders and cachexia.

There is no curative treatment of MF except allogeneic hemat-
opoietic stem cell (HSC) transplantation, which remains risky, 
despite major progress in its management. Thus, to progress 
in the therapy of PMF, it is crucial to better understand the  
precise molecular bases of MPN and MF development.

MF and mutations
Disease driver mutations
MPN MF can be induced by 3 disease driver mutations.  
JAK2V617F is the predominant mutation present in around 
55%–60% PMF1,2. JAK2V617F is a gain of function (GOF) 
mutation not located in the kinase domain, but in the  
pseudo-kinase (PK) domain. The V617F mutation activates the 
kinase domain by dimerization of the mutated PK domains,  
stabilizing a dimer state and removing negative regulation on 
the kinase domain7. The mutation can be heterozygous, or  
homozygous. JAK2V617F can induce constitutive signaling 
downstream of the three main “myeloid” homodimeric recep-
tors (EPOR, G-CSFR, MPL), explaining that it may induce  
the three diseases. The 3 main signaling pathways include 
the STAT activation (STAT1, STAT3 and STAT5, according 
to the receptors), the PI3K/AKT/mTOR and the RAS/MAPK  

pathways. JAK2V617F not only induces proliferation of hemat-
opoietic stem cell progenitor (HSCP) cells but gives a strong  
proliferative advantage to maturing precursors. It also acti-
vates or primes mature cells, inducing an inflammatory 
response, mainly through STAT3 activation and favoring 
thrombosis. Phylogenic reconstitution of the clone history in  
JAK2V617F MPN has shown that the mutation arises decades 
before disease development or in utero, giving the possibility  
of an early therapeutic approach8.

CALR mutations (mut) are the predominant disease driver muta-
tion in JAK2 and MPL wild type (WT) PMF1,2. All described  
mutations are deletions/insertions in the exon 9, inducing a 
frameshift (-1/+2), creating a new C-terminus with positively 
charged and hydrophobic residues and lacking the KDEL  
endoplasmic reticulum (ER) retention signal. The two most fre-
quent mutations are del52 (type-1) and ins5 (type-2), del52  
mutations being enriched in PMF in comparison to ET9. CALR 
is a chaperone of the ER that plays a major role in the qual-
ity control of secreted glycoproteins and in calcium metabo-
lism. The CALRmut, thanks to their C-terminus, specifically 
bind to N-glycosylated MPL via the lectin domain10–12. The  
CALRmut/MPL complex traffics to the cell surface; CALRmut  
are oligomers that dimerize MPL leading to persistent JAK2  
activation13,14. CALRmut induce cell signaling at the cell sur-
face via MPL or by being secreted and behaving as rogue 
cytokines that secondary bind to the immature sugars of MPL 
only present in the clone and by oligomerizing with endogenous  
CALRmut15. Thus, CALRmut can be directly targeted by dif-
ferent approaches. CALRmut may also exert effects via  
impaired calcium ER retention and subsequent activation of 
an ER stress response16,17. While CALRmut MPN develop on 
average nearly a decade before JAK2V617F MPN, CALRmut  
are acquired later in adult life, as inferred by mathematical  
modeling18. However, in a case of monozygotic twins it was  
shown that the mutation was acquired during fetal life19.

GOF MPL mutations are much rarer (around 5%). Mutations  
occur either in the cytosolic juxta-membrane domain at 
W515, usually W515L/K, or in the transmembrane domain,  
MPLS505N, both types leading to MPL dimerization and  
TPO independent megakaryopoiesis1,2,20. Other mutations can 
be found all along the MPL sequence. They are much rarer  
and exert weak GOF20.

“Clonal” driver mutations
In 80% of PMF, other “clonal” driver mutations are found 
that impact disease and prognosis. ASXL1, EZH2, SRSF2 
and IDH1/IDH2 mutations are associated with an adverse  
prognosis5. Other mutations such as in N-RAS, K-RAS, CBL and 
other splicing genes induce also a worsened prognosis5. The  
role of these mutations in prognosis may also depend on the 
disease driver mutations. For example, the prognosis of CALR  
type-1 mutations is not altered by an ASXL1 mutation.

The role of TP53 mutations in prognosis is controversial but  
may be important in the choice of therapy21.
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PMF is a heterogeneous disease concerning its prognosis 
due to the complex molecular alterations. Scores have been 
developed to stratify the prognosis and improve the choice 
of therapy based on clinical data, very high risk cytogenetic  
abnormalities (-7, i(17q), inv(3)/3q21, 12p-/12p11.2, 11q-/11q23,  
or other autosomal trisomies not including +8/+9) and  
high-molecular-risk mutations (HMR) (ASXL1, SRSF2, EZH2, 
IDH1 and U2AF1Q157)4,5.

Physiopathology of the marrow fibrosis
Marrow fibrosis (myelofibrosis) per se is characterized by the 
accumulation of extracellular matrix (ECM) fibers, namely  
collagen, that disorganizes the bone marrow environment and 
impairs hematopoiesis. It starts with the formation of a loose  
network of reticular fibers made of collagen III (grade-1) and 
then progresses with the accumulation of fibers composed  
of collagen I (grade-2) that will further accumulate with the  
appearance of an osteosclerosis (grade-3)6.

Marrow fibrosis can be associated with very different patholo-
gies, such as auto-immune disorders, cancer metastases,  
lymphoma and myeloid malignancies. PMF may progress 
in two stages: one with a major myeloproliferation and the  
second called “myelodepletive” characterized by cytopenia22. 
PMF is associated with important extra-medullary hematopoiesis  
(EMH), more particularly in the spleen. The marrow fibrosis  
is usually considered to be reactive, as consequence of a  
cross-talk between the clonal disorder and stromal cells, 
which secrete ECM. ECM is also regulated by MKs that 
synthesize different types of collagen and extra-domain-A  
fibronectin and lysyl-oxidase, an enzyme playing an important  
role in ECM organization23,24.

TGF-β1 plays a central role in the development of all types 
of fibrosis and appears indispensable for marrow fibrosis  
development in mouse models25,26. It acts on mesenchymal 
stem cells (MSC) by inducing their proliferation and pro-
gramming them to myofibroblasts and osteoblasts. TGF-β1 is 
secreted as an inactive latent form in a complex with TGF-β  
propeptide also called latency-associated protein (LAP), and 
latent TGF-β binding protein (LTBP). TGF-β1 is activated  
by different mechanisms including the interaction with αv 
integrins or the ECM such as thrombospondin 1 or the produc-
tion of reactive oxygen species (ROS)25. In MF patients, the  
latent and active TGF-β1 levels are increased in bone marrow  
and plasma. The mechanism of TGF-β1 activation in MF is  
not clearly established and could be either related to the ROS 
level or the presentation of latent TGF-β1 on the cell surface  
by GARP through LAP binding to be subsequently activated 
by integrins. Initially it was found that GARP is only expressed 
on immune cells, but it is also present on the membrane  
of MKs/platelets as well as of some stromal cells27,28.

The other important determinant is the role of inflammation, 
more particularly of pro-fibrotic cytokines. The development 
of inflammation is an early event in the development of MPN.  
It has been shown that numerous plasma pro-inflammatory 
cytokines, such as IL8, IL12 and IL15 are predictive of the  

PMF prognosis5. The hematopoietic cells of the MPN as 
well as hematopoietic cells not belonging to the clone and  
non-hematopoietic cells are involved in inflammation29. It has 
been underscored that stromal cell inflammation may precede  
the development of the disease30. Pro-inflammatory cytokines 
may act by: (a) promoting a clonal advantage for cytokines  
(IL1β, IL8, TNFα and IL6)31; (b) inducing ROS release that 
may activate the latent TGF-β1; (c) reprogramming the Gli+ 
Lep+ MSC to myofibroblasts (IL1β and IL6 and alarmins 
S1008A/S1009A);32, and (d) acting on TGF-β1 synthesis and 
activation (IL13)28. Overall, the JAK/STAT3 and the NFκB 
pathways are important in the synthesis of pro-inflammatory  
cytokines and their effects29,33.

MKs appear to be a key cell determinant in marrow fibro-
sis development, as suggested by their close localization 
with collagen fibers34. They are the most important source 
of TGF-β1 in the bone marrow with a latent form that can 
be presented at the cell surface. In addition, MKs synthesize  
pro-inflammatory cytokines, chemokines and pro-angiogenic 
factors as well as ECM. The secretion of TGF-β1 and other  
pro-inflammatory cytokines, which are packaged in α-granules,  
is probably favored by the dysmegakaryopoiesis and the acti-
vation of MKs, as shown by the cell surface expression of  
P-selectin associated with an increased emperipolesis35.

These last years, the role of monocytes in marrow fibrosis devel-
opment has been highlighted. Indeed, monocytes can release 
a lot of pro-inflammatory cytokines. In addition, SLAMF7  
monocytes can differentiate to fibrocytes that are also considered 
as important mediators of marrow fibrosis in the JAK2V617F  
mouse model36,37. In this case, the marrow fibrosis will not only 
be a reactive process, but may directly derive from the clone. 
Recently, it has been suggested that Tregs play a central role  
in TGF-β1 production and activation and may also limit the 
CD8 T cell immune reaction against the clone27. Mast cells  
may also be involved in TGF-β1 activation by IL13 secretion28.

It must be underscored that an increased level of TPO in the 
mouse model called TPOhigh or the administration of MPL  
agonist, such as romiplostim, in mouse and in non-human pri-
mates leads to the development of a severe marrow fibrosis38.  
Similarly, in humans, administration of romiplostim may 
induce a moderate marrow fibrosis, which regresses at the 
arrest of the treatment39. In addition, the MPLW515L retrovi-
ral mouse model and MPLS504N knock in (KI) mice (human  
MPLS505N) develop a rapid marrow fibrosis40,41. Moreover, 
the genetic reversion of Jak2V617F to Jak2 WT in Jak2V617F  
KI mice induces a marrow fibrosis regression42. All these 
results demonstrate that a very strong activation of the  
TPO/MPL/JAK2 pathway is sufficient to induce the marrow  
fibrosis development and a pro-inflammatory state.

Presently, none of the pharmaceutical approaches have really 
improved the prognosis of high-risk MF4,43–45. Thus, besides  
JAK2 inhibitors and IFNα, many new therapies are in develop-
ment, targeting different cellular processes, such as apoptosis,  
cell cycle, epigenetic regulators, signaling pathways, telomerase,  
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or directly the leukemic stem cell (LSC). Many of these thera-
pies are developed in association with JAK2 inhibitors with 
the risk of increasing hematological toxicity. The two principal  
goals of these new therapies are to: (a) significantly impact 
the clonal disorder and thus to revert the MF and to increase  

patient survival, and (b) provide alternative therapies in case 
of JAK2 inhibitor resistance or intolerance4,43–45. Other thera-
pies have also been designed to improve the cytopenia and  
to target the marrow fibrosis. Selected ongoing clinical trials  
are shown in Table 1 A and B.

Table 1. Selected clinical trials.

A) Ongoing clinical trials; recruiting patients

drug mechanism of action ongoing clinical trial recruiting MF patients

Pacritinib jak inhibitor phase 3 : Pacritinib 200mg BID vs 
P/C therapy (PACIFICIA)

≥ int1 risk 
platelets < 50,000/µL 
JAK inh naive (1st L) 
limited exposure JAK inh (2nd L)

Pegasys interferon phase 1/2 : Pegasys + ruxolitinib 
(RUXOPeg)  
phase2/3 : COMBI-I and COMBI-II

≥ int1 risk 
JAK inh naive (1st L) 

Rogepinterferon 
alpha 2b 

interferon phase 2 prePMF/low/int1 risk 

Imetelstat telomerase inhibitor phase 3 : Imetelstat vs BAT int2/high risk 
R/R JAK inh (2nd L)

Pelabrasib BET inhibitor phase 3 : Pelabrasib vs placebo + 
ruxolitinib (MANIFEST-2) 

≥ int1 risk 
JAK inh naive (1st L)

BMS-986158 BET inhibitor phase 1b/2 : monotherapy or + 
ruxolitinib or + fedratinib 

≥ int1 risk 
JAK inh naive (1st L) 

ABBV-744 BET inhibitor phase 1b : monotherapy or 
+ navitoclax or + ruxolitinib 

int2/high risk 
R/R /intolerant JAK inh (2nd L)

Bromedemstat LSD1 inhibitor phase 2 : Bromedemstat + 
ruxolitinib 

≥ int1 risk 
A : R/R/intolerant JAK inh (2nd L) 
B : JAK inh naive (1st L) 

Parsaclisib PI3Kẟ inhibitor phase 3 : Parsaclisib vs placebo + 
ruxolitinib 
(LIMBER-313)

≥ int1 risk 
JAK inh naive (1st L) 

AUY922 HSP90 inhibitor phase 2 ineligible JAK inh (1st L) 
R/R JAK inh (2nd L)

TP-3654 PIM inhibitor phase 1/2 ≥ int1 risk 
R/R JAK inh (2nd L) 
ineligible JAK inh (1st L)

abemaciclib CDK4/6 inhibitor phase 1 ≥ int1 risk 
inadequate resp JAK inh (2nd L)

TL-895 BTK tyrosine kinase 
inhibitor 

phase 2 
Phase 1b/2 : TL-895 + ruxolitinib

≥ int1 risk 
R/R/intolerant JAK inh (2nd L) 
ineligible JAK inh (1st L) 
JAK inh naive (1st L) 
suboptimal resp JAK inh (2nd L)

Navitoclax BCL2, BCL-xL,BCL-W 
inhibitor 

phase 3 : navitoclax + ruxolitinib vs 
BAT (TRANSFORM-2)

int2/high risk 
R/R /intolerant/suboptimal resp JAK 
inh (2nd L)

KRT-232 MDM2 inhibitor phase 2/3 : KRT-232 vs BAT 
phase 1b/2 : KRT-232 + ruxolitinib

≥ int1 risk 
failure of JAK inh (2nd L) 
≥ int1 risk 
suboptimal resp JAK inh (2nd L)
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drug mechanism of action ongoing clinical trial recruiting MF patients

Selinexor XPO1 inhibitor phase 2 : selinexor vs P/C therapy 
phase 2 : selinexor single arm 
phase 1/2 : selinexor + ruxolitinib

≥ int1 risk 
R/R/intolerant JAK inh (2nd L) 
≥ int1 risk – JAK inh naive (1st L)

GB2064 LOXL2 inhibitor phase 2a int2/high risk 
R/R/intolerant JAK inh (2nd L) 
ineligible JAK inh (1st L)

PXS-5505 LOX inhibitor phase 1/2a int2/high risk 
R/R/intolerant JAK inh (2nd L) 
ineligible JAK inh (1st L)

Luspatercept ActRIIA ligand trapping phase 3 : luspatercept vs placebo 
(INDEPENDENCE)

anemia on JAK inh 

KER-050 modified ActRIIA ligand 
trapping 

phase 2 : monotherapy or + 
ruxolitinib

anemia on JAK inh/ineligible JAK inh 

Nivolumab PD-L1 inhibitor phase 2 : nivolumab + fedratinib int2/high risk 
R/R/suboptimal resp JAK inh (2nd L)

Tagraxofusp IL3 fused to diphteria 
targeting CD123 + LSC 

phase 1 post-transplant maintenance

B) Ongoing clinical trials; active but not recruiting patients

drug mechanism of action ongoing clinical trial active not 
recruiting

MF patients

Mivebresib BET inhibitor Phase 1b : monotherapy or + 
ruxolitinib or + navitoclax

≥ int1 risk 
R/R/intolerant JAK inh (2nd L)

Navitoclax BCL2, BCL-xL,BCL-W 
inhibitor 

phase 3 : navitoclax + ruxolitinib vs 
ruxolitinib (TRANSFORM-1)

int2/high risk 
JAK inh naive (1st L) 

Navitoclax BCL2, BCL-xL,BCL-W 
inhibitor 

phase 2 : monotherapy or + 
ruxolitinib (REFINE)

int2/high risk 
R/R/intolerant JAK inh (2nd L)

Siremadlin 
Crizanlizumab 

Sabatolimab 

Rineterkib 
NIS793

MDM2 inhibitor 
Monoclonal antibody 
P-selectin 
Monoclonal antibody 
TIM-3 
ERK inhibitor 
Monoclonal antiboby 
TGFβ1-2 

phase 1b/2 : Platform Study of 
Novel Ruxolitinib Combinations in 
Myelofibrosis Patients (ADORE)

≥ int1 risk 
treated with ruxolitinib since 12 weeks 
(2nd L)

Abbreviations: BID: twice a day; P/C: per physician choice; Int1: intermediate-1 risk following the DIPSS score; 1st L: first line; JAK inh: 
JAK inhibitor; Int2: intermediate-2 risk following the DIPSS score; high risk: high risk following the DIPSS score; prePMF: prefibrotic primary 
myelofibrosis; 2nd L: second line; vs: versus; BAT: Best available therapy; R/R relapsed/refractory; resp: response.

JAK2 inhibitors
Ruxolitinib was the first JAK inhibitor to be approved in the 
treatment of intermediate and high-risk MF. Ruxolitinib is a 
JAK1/2 inhibitor without selective effect on JAK2V617F or on 
oncogenic activation of JAK2WT by CALR or MPL mutants  
(see Figure 1A). It has become the reference for treatment 
of MF by reducing general symptoms, splenomegaly and 
improving the quality of life in around 50% of cases. The 
main toxicities are anemia and thrombocytopenia, in line with  
on-target effects. Despite an initial response, around 50% of 
the patients will discontinue ruxolitinib within 3 years mainly 
due to a lack/loss of response, cytopenia and/or progression to  
blast phase. However, it may also exert non-hematological  

side effects, the most prevalent being weight gain with 
increased levels of cholesterol and triglycerides and infections 
such as urinary infections and reactivation of herpes Zoster, 
tuberculosis and hepatitis B. There is some suspicion of an 
increased frequency of non-melanoma-skin cancers and B cell  
non-Hodgkin lymphoma. An abrupt termination may lead to 
the ruxolitinib discontinuation syndrome with a rapid increase 
in the spleen volume and a cytokine release syndrome46.  
Overall, in most patients, ruxolitinib has no significant effect 
on the progression of the disease and minor effect on the  
clonal disorder4. Some mutations such as ASXL1 are pre-
dictive of a poor response to ruxolitinib. ASXL1, as well as 
EZH2 and RAS, mutations can be acquired during treatment47.  
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Figure 1. Targets and pathways of new therapies alone or in combination with JAK2 inhibitor (derived from reference 43). A) Signaling 
pathways, B) Apoptosis, C) Cell cycle, D) Epigenetic regulation, E) Myelofibrosis. The Figures have been created with bioRender.

Ruxolitinib has a moderate effect on patient survival, except 
in patients with a prolonged response to treatment. For these  
reasons, other JAK2 inhibitors have been developed.

Fedratinib, a JAK2/FLT3 inhibitor, is the second approved JAK 
inhibitor in MF. Results are similar to ruxolitinib, with better  
splenomegaly response, but an increased non-hematological  
toxicity48. Fedratinib is indicated for patients intolerant or 
resistant to ruxolitinib, although in the US it can be used as a  
frontline therapy. Fedratinib has an increased gastrointestinal  
toxicity in comparison to ruxolitinib. There may be an 
increased risk of Wernicke encephalopathy due to thiamine 
deficiency as a consequence of a gastrointestinal toxicity and 
a controversial inhibition of the thiamine transporter-2. It is  
recommended to follow the thiamine levels during therapy49.

Pacritinib is a JAK2/FLT3 inhibitor and also inhibits IRAK1, 
implicated in myddosome, which regulates the synthesis of 
numerous pro-inflammatory cytokines including type I IFN.  
S100A8/9 (calprotectin) and IL33 that induce myddosome  
signaling are involved at the pre-fibrosis stage by reprogram-
ming MSC into myofibroblasts22,50. However, no clear evidence 
exists that pacritinib inhibits marrow fibrosis development. 
Pacritinib also targets the activin receptor-type 1 (ACVR1/ALK2).  
The best indication of pacritinib concerns patients with marked 
thrombocytopenia and/or anemia. The main specific side 

effect is gastrointestinal toxicity, as described for fedratinib.  
In addition, in the initial clinical trial, it was suggested that 
pacritinib was associated with an increased risk of severe  
bleeding and cardiac events. It was not confirmed in the  
recent clinical trials51.

Momelotinib, recently FDA approved, is a JAK1/2 inhibitor 
that also targets ACVR1/ALK2 that transduces the BMP signal  
and regulates the liver synthesis of hepcidin43,52. Hepcidin is 
involved in the anemia of inflammatory disorders by seques-
tering the iron. Therefore, the principal advantage of momelo-
tinib is to alleviate anemia4. The main specific side effects  
are thrombocytopenia, gastrointestinal toxicity, headache, 
peripheral sensory neuropathy and first-dose effect (dizziness,  
hypotension, or flushing).

In clinical trials, momelotinib and pacritinib exhibit similar 
effects as ruxolitinib on general symptoms and splenomegaly, 
but may correct the anemia in patients, alleviating the need  
for RBC transfusion4. Pacritinib seems to be a safe option 
for MF patients with severe thrombocytopenia53. It has to 
be confirmed by the undergoing randomized phase III study  
(PACIFICA).

None of these inhibitors display a selective inhibition on the 
oncogenic activation of JAK2, thus they do not induce molecular  
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remission, whereas a strong JAK2 inhibition induces pro-
found cytopenia. In agreement, resistance is not associated with 
JAK2 mutations in patients. When mutations in the RAS path-
way occur during therapy, they can be present either in the  
JAK2V617F clone or JAK2WT cells54.

Therefore, there is a need for the development of JAK2V617F  
selective inhibitors or molecules targeting the activation of  
JAK2WT by CALR and MPL mutants (see last section).

IFNα
IFNα is an old therapy of MPN, as it has been used since 
1988 in ET and PV55,56. IFNα has become one of the major 
therapies in ET and PV for two reasons: (a) the toxicity of  
IFNα has been alleviated by using prolonged half-life type 1  
IFN, and (b) it is the only available treatment that can act on 
the clonal disorder and may induce a deep molecular remis-
sion (in 25% of the cases)57. The efficacy of IFNα on the  
clonal disorder is dependent on the dose and the type of dis-
ease driver mutation. It is decreasingly efficient in targeting 
homozygous JAK2V617F, heterozygous JAK2V617F, CALR  
type-2 and CALR type-158. However, the hematological remis-
sion is not dependent on the disease driver mutation. The role 
of associated mutations in the resistance to IFNα therapy is  
controversial. It clearly selects DNMT3A mutations whether 
they are biclonal or associated with JAK2V617F59. The mech-
anism by which IFNα therapy acts on the clonal disorder  
is not completely elucidated. There is strong evidence using  
mouse models that it targets JAK2V617F HSCs by inducing:  
(a) their entry in the cell cycle as normal HSCs, but without 
reentry in quiescence, thus principally leading to exhaustion 
of mutated cells (b) their apoptosis and eventually senescence  
through ROS accumulation and p53 induction, and (c) a shift 
of JAK2V617F HSCs to MK/myeloid biased HSCs with lower  
long-term reconstitution capacities57,60,61. (Figure 2A)

It is suggested that IFNα targets JAK2V617F HSCs, and to 
a much lower extent CALRmut HSCs, because JAK2V617F  
primes HSCs to an IFNα response by increasing STAT1  
levels and activation, and consequently inducing expression 
of interferon stimulated genes (ISG)62. The effects of IFNα  
appear dependent of p53 and, although not demonstrated 
clinically, one has to exert caution with respect to the use of  
IFNα therapy in the presence of a TP53 mutation. In addi-
tion, IFNα may induce an immune response against the 
malignant cells. Finally, it has been shown that the induction  
of the p38 pathway by IFNα through PKCδ and ULK1 is  
involved in the therapeutic effect of IFNα63.

At present, the use of an IFNα therapy in MF is limited by its  
toxicity with, as seen in its first trials, a low effect on the  
splenomegaly. However, preliminary results suggest that 
pegylated IFN may be efficient in MF, even in high-risk MF.  
As in PV, the treatment may decrease the JAK2V617F VAF  
and seems to have an effect on the survival in responder 
patients. It remains that treatment was stopped in nearly 

75% of the patients due either to disease progression or  
intolerance64. Thus, it will be important to improve the IFN  
therapy to better target LSCs and to limit treatment length.

Combination of IFNα with ruxolitinib is being tested in clini-
cal assays, although ruxolitinib as a JAK1/2 inhibitor decreases 
IFNα signaling65. However, ruxolitinib by its powerful  
anti-inflammatory effect may increase the tolerance to IFNα.  
Preliminary results suggest some efficacy of this combination  
in certain PV and MF patients, even those previously intolerant  
to IFNα therapy, with a decrease in JAK2V617F VAF and in  
fibrosis65,66. A recent preclinical study in Jak2V617F knock-in  
mice suggested that the use of fedratinib, a JAK2 inhibitor  
seems more efficient and may allow a decrease in the IFNα  
dose, and thus to have less toxic effects67.

Four other combinations have been experimentally efficient  
in preclinical studies (see Figure 2A):

•    Arsenic trioxide with IFNα more efficiently tar-
gets the JAK2V617F LSC than IFNα alone, allowing  
long-term remission68. The combination increases PML 
overexpression and enhances PML nuclear bodies  
activity through sumoylation/oligomerization, leading to  
senescence68.

•    A ROCK inhibitor (fasudil) enhanced the effects of 
IFNα on JAK2V617F hematopoietic cells in a mouse  
model63. Activation of ROCK1/2 acts as a feedback  
regulator of IFNα signaling by interacting with UKL1. 

•    Induction of p53 plays an important role in targeting  
JAK2V617F clone by IFNα. Combination of IFNα 
with a MDM2 inhibitor decreased the transplantabil-
ity of human JAK2V617F HSPC into immunodeficient  
mice69. However, no clear synergy between IFNα and 
a MDM2 inhibitor (idasanutlin) was found in a phase 1  
clinical trial in PV70.

•    Combination of IFNα and 5-azacytidine seems  
extremely efficient in preclinical models71.

Overall, the risk of all these combinations is to increase the  
hematological toxicity of IFNα.

Molecules in clinical development
Telomerase inhibitor (Figure 1D)
Both telomere shortening and reactivation were observed in 
MPN. A molecule called imetelstat is a 13-mer lipid-conjugated  
oligonucleotide that inhibits telomerase activity. After initial  
testing in ET, imetelstat was tested in MF with a moderate  
effect on symptoms and spleen volume reduction, but appar-
ently increased survival43,72. A phase 3 clinical trial is ongoing  
in MF with the goal to demonstrate an effect on overall  
survival73. Liver toxicity, although transient, is a limitation, 
as well as cytopenias. Thus, imetelstat could be an alternative  
for patients that are intolerant or resistant to JAK inhibitors 
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Figure 2. Approaches selectively targeting the disease drivers. A) Interferon alpha, B) JAK2V617F, C) Calreticulin mutants. The Figures 
have been created with bioRender.

and could represent one of the rare treatments that may induce  
disease modification.

Most other treatments are developed, essentially, in  
combination with ruxolitinib.

Epigenetic regulator inhibitors (Figure 1D)
BET inhibitors
The Bromodomain and Extra-Terminal motif (BET) proteins 
interact with acetylated histones and transcription factors to 
induce gene expression such as MYC and genes downstream,  
NF-κB and TGF-β. Either small molecule inhibitors or BET 
degraders have been developed. In mouse models, the asso-
ciation of JQ-1 BET inhibitor and ruxolitinib was synergic in  
reducing fibrosis and the clonal disorder74. The effects are due 
to inhibiting NFκB transactivation and thus inflammation. In  
addition, a BET degrader targets the LSC in xenografts75.

Clinical trials are on-going using another BET inhibitor (pela-
bresib) alone or associated with ruxolitinib. Preliminary results 
suggest an efficiency with a decrease in JAK2V617F VAF, an  
effect on the marrow fibrosis and on anemia76.

LSD1 inhibitor
LSD1 (KDM1A), an H3K4 demethylase, is involved in transcrip-
tional repression by the coREST complex77. It associates with 
GFI1/GFI1b and plays an important role in LSC self-renewal  
and differentiation. In addition, it regulates STAT3 activity. 
In JAK2V617F mouse models, LSD1 inhibition alleviates the  
myeloproliferative disorder and reduces MF acting in synergy 
with ruxolitinib78. It reduces the inflammation by decreasing  
inflammatory cytokine synthesis including IL8.

Bomedemstat, a LSD1 inhibitor, has been tested in human with 
some effects on the spleen volume, general symptoms, and  
the VAF of some mutations, such as ASXL1 and fibrosis77.

Protein arginine N-methyltransferase 5 (PRMT5)
PRMT5 is a protein arginine-methylase, which methylates  
histone and non-histone proteins. PRMT5 is phosphorylated 
by JAK2V617F, impairing its methylase activity, which leads 
to HSC expansion and to increased erythroid differentiation79.  
However, it was subsequently shown that in MPN, PRMT5 is 
overexpressed, which positively regulates E2F1 target genes.  
In MPN mouse models, a PRMT5 inhibitor (C220) decreases 
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myeloproliferation and systemic inflammation. Combination  
with ruxolitinib was more effective than individual therapy80. 
The PRMT5 inhibitor, PRT543, is now being evaluated in  
MF patients44.

HDAC inhibitors (Figure 1A and D)
HDACs are a large family of proteins that can deacetylate his-
tones leading to gene repression but also gene activation. They 
also deacetylate non-histone proteins such as HSP90. The  
rationale to develop HDAC inhibitors was that HDACs 1-3 
play an important role in HSC biology and self-renewal and  
HDAC1/2 are involved in erythroid and MK differentiation81. 
In addition, HSP90 behaves as chaperone for JAK2V617F, 
their interaction requiring HSP90 deacetylation by HDAC682.  
In vitro combinations of a pan-HDAC inhibitor and ruxolitinib  
were very effective83. However, clinical trials were quite  
disappointing in MF with regards to toxicity (neutropenia and 
thrombocytopenia)84. Specific inhibitors of HSP90/HDAC6 or 
HDAC11 involved in oncogenic JAK/STAT signaling could  
be more relevant82,85.

Inhibitors of signaling molecules (Figure 1A)
Numerous signaling pathways are induced by the onco-
genic activation of JAK2. Ruxolitinib only partially blocks 
these signaling pathways, such as the PI3K/AKT/mTOR and  
ERK/MAPK pathways, especially in CALRmut MPN.

Inhibitors of the PI3K pathway
The PI3K pathway through AKT and mTOR plays an impor-
tant role in both cell proliferation and survival for key targets  
p27 and BAD. Both in vitro studies and MPN mouse mod-
els have shown that pan-PI3K, mTOR, and AKT inhibitors 
have major effects on the MPN, with a synergistic effect with  
ruxolitinib86–88. However, pan-PI3K inhibitors have an impor-
tant dose-dependent toxicity. PI3Kδ is the most expressed  
PI3K isoform in MF CD34+ cells. Parsaclisib, a new generation  
PI3Kδinhibitor, is being tested in phase 3 clinical trials of MF 
in association with ruxolitinib4,43,60,89. However, the clinical  
trial has been recently discontinued due to a lack of efficiency  
on the reduction of spleen volume. Pleckstrin-2 could be  
another target of this pathway90.

MEK and ERK inhibitors (Figure 1 A and E)
The RAS/MAPK pathway plays an important role in the resist-
ance to ruxolitinib, with the frequent occurrence or selection 
of mutations on this pathway during ruxolitinib treatment54.  
Mouse models have shown that MEK/ERK inhibition increases 
the effects of JAK2 inhibition on the myeloproliferation, MF 
and systemic inflammation by decreasing the level of numer-
ous pro-inflammatory cytokines and osteopontin33,91. The effi-
cacy of a combination between an ERK inhibitor (rineterkib)  
and ruxolitinib is being tested in a clinical trial43.

PIM (Figure 1 B and C)
The PIM family is composed of serine-threonine kinases 
that are the direct transcriptional targets of STAT5. They are 
constitutively active kinases only regulated by their expres-
sion. They cooperate with MYC in oncogenesis. PIM1 is  

overexpressed in MF CD34+ cells. Genetic deletion or phar-
macologic inhibition of PIM together with ruxolitinib has a 
major effect on the myeloproliferative disorder, reducing the  
fibrosis by decreasing the TGF-β1 level92–94.

HSP90
HSP90 is as a molecular chaperone with numerous substrate 
proteins, including JAK2V617F. Its inhibition leads to the  
degradation of total and phospho-JAK2. In MPN mouse mod-
els, the combination of ruxolitinib with an HSP90 inhibitor 
was more efficient than ruxolitinib alone by further decreas-
ing JAK/STAT signaling95,96. An initial clinical trial with  
AUY922 induces a severe non-hematologic toxicity97. A com-
bination of PU-H71 with ruxolitinib is currently being evaluated  
in MF patients.

Apoptosis inducers (Figure 1C) and Cell cycle inhibitors 
(Figure 1D)
Targeting key molecules implicated in proliferation and 
cell survival downstream of JAK2 appears as an interesting  
therapeutic approach.

CDK4/6 inhibitor
CDK4/6 are key molecules in cell cycle entry as they phos-
phorylate Rb when activated. In contrast to CDK4, CDK6 is  
involved in stress hematopoiesis and hematological malig-
nancies and regulates transcription in both kinase-dependent  
and -independent manners. CDK6 is overexpressed in CD34+ 
cells from MPN. JAK2V617F regulates CDK6 through  
CDC25A or PIM. Several CDK4/CDK6 inhibitors, including  
palbociclib, have been approved for the treatment of solid  
tumors, with an acceptable hematological toxicity. CDK6 abla-
tion has a major effect on the myeloproliferative disorder, but 
also on inflammation inhibiting NFκB and TGF-β signaling98.  
CDK4/CDK6 inhibitors exert a synergistic therapeutic effect 
with ruxolitinib and a PIM inhibitor in mouse models92,99. CDK6  
PROTAC is under development100.

Aurora A kinase inhibitor
Aurora A is a serine threonine kinase involved in G2/M tran-
sition and the organization of the spindle, regulating many 
other targets. Aurora A inhibition in acute megakaryoblastic  
leukemia leads to differentiation101. In mouse models, its inhi-
bition ameliorated MF102. A phase 1 clinical study was per-
formed with a response in 30% of cases, including a decrease  
in MF and JAK2V617F/CALR VAF without major toxicity103.

BCL2 family inhibitor
The BCL2 family includes pro-survival molecules such as 
BCL2, BCL-xL and MCL1 and pro-apoptotic molecules. BCL2  
and MCL1 regulate the survival of early stages of hemat-
opoiesis whereas BCL-xL is indispensable for erythroblasts  
and MKs. BCL-xL and BCL2 are direct targets of STAT5 and 
indirect targets of the PI3K pathway and are overexpressed  
in MPN60. Venetoclax, a BCL2 inhibitor, is now a promising  
therapy in AML. In MPN, there is a need to also target  
BCL-xL. Navitoclax is an inhibitor of BCL2, BCL-xL and  
BCL-W. In JAK2V617F cell lines, there was a synergy between 
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JAK2 inhibition and navitoclax, also leading to reversal  
of the ruxolitinib resistance104. Phase 2 clinical trials of this 
combination were promising with a very significant decrease 
in the spleen volume, a decrease of fibrosis, including some 
patients with a resolution of the marrow fibrosis and of the  
JAK2V617F/CALR VAF44,105. Furthermore, the thrombocy-
topenia was manageable and, surprisingly, the anemia was 
partially corrected. Phase 3 clinical trials are ongoing. This  
combination seems to be one of the most effective.

MDM2 inhibitor and the p53 pathway
MDM2 is an E3 ubiquitin ligase that negatively regulates p53 by 
degradation. p53 is a potent negative regulator of JAK2V617F 
signaling that is downregulated by MDM2 overexpression by 
JAK2V617F106. Results of a phase 2 trial with navtemadlin  
MDM2 inhibitor were encouraging, and further clinical trials 
including a phase 3 trial are being conducted in monotherapy 
or in combination with ruxolitinib in MF107. Some specific 
inhibitors of PPM1D, another P53 regulator, have been devel-
oped that could be combined with MDM2 inhibitors at lower 
doses to avoid gastro-toxicity108. However, the risk of such 
treatments is to select TP53 mutated subclone, thus patients  
with a TP53 mutation must be excluded109.

Selective inhibitors of nuclear export (Figure 1D)
A shRNA screening on a JAK2V617F cell line identified a  
particular sensitivity to the inhibition of the nuclear export 
transport (NE) machinery110. These results were confirmed  
in primary MF CD34+ cells and in a mouse model with a 
combination of a specific NE compound (selinexor) and  
ruxolitinib110. The effects of inhibiting NE are presumably 
related to the accumulation of tumor suppressor proteins in the 
nucleus, especially p53. A phase 2 clinical trial with selinexor  
is ongoing in MF JAK2 inhibitor intolerant patients111.

Other inducers of apoptosis
LCL-161 is a second mitochondrial activator of caspases 
(SMAC) mimetic that antagonizes inhibitors of apoptosis 
(IAP). In preclinical studies, LCL-161 induced JAK2V617F 
cell apoptosis that was rescued by JAK2 inhibition112. Thus a 
phase-2 clinical trial in monotherapy was performed and gave  
encouraging results in old high-risk patients113.

Targeting the marrow fibrosis (Figure 1E)
These approaches are based on the marrow fibrosis mechanism.

First Approach
The first approach targets the external cues involved in  
fibrosis development or their signaling.

•    A first trial was performed using an anti-TGF-
β1antibody, but it only includes 3 patients with a response  
essentially on the anemia scale114. A second assay was 
conducted with AVID 200, a TGF-β1/3 ligand trap  
(TGF-β receptor ectodomains fused to a human Fc 
domain). Treatment of GATA1low mice by AVID200 
reduced marrow fibrosis115. A preliminary clinical trial  

led to the improvement of thrombocytopenia. Another 
trial is programmed with a new anti-TGF-β1 monoclonal  
antibody (MoAb).

•    Approaches blocking inflammatory cytokines or their sig-
naling such as IL8, IL13 or IL1β and S100A8/S100A9  
were promising in MPN mouse models with synergis-
tic or additive effects with ruxolitinib28,31,32,116. Inter-
estingly, pacritinib by inhibiting IRAK1 may inhibit  
the signaling of both IL1β and S100A8/S100A922.

•    JAK2V617F decreases the number of nestin cells  
involved in HSC regulation by inducing their apop-
tosis, due to an IL1β-induced damage of sympathetic 
nerves that innerve nestin cells117. Mirabegron, a β-3  
sympathomimetic agonist, has been tested in a phase 
2 clinical trial leading to a slight increase in nestin 
cells and decrease in fibrosis, but without altering the  
JAK2V617F VAF118.

Second Approach
•    Serum amyloid P (pentraxin 2) is capable of suppress-

ing fibrosis of many organs by inhibiting the differen-
tiation of monocytes into fibrocytes and by acting on 
macrophages and neutrophils. The recombinant form,  
PRM-151, has been shown to inhibit in vitro fibrocyte 
differentiation from PMF36. In addition, it prolonged  
survival of mice xenotransplanted with PMF hemat-
opoietic cells. Therefore, PRMT-151 has been tested in  
a phase 2 clinical trial with a regression of fibrosis and 
improvement of cytopenia in some patients119. It has  
been recently also tested in association with ruxolitinib 
in phase 1 and 2 clinical trials with an acceptable  
toxicity120.

•    Another closely related approach consists of the use 
of a SLAMF7 antibody to prevent differentiation of  
monocytes into fibrocytes37.

Third Approach
This approach concerns the targeting of Lysyl oxidase-like-2 
(LOXL2) and P-selectin.

•    LOXL2 is an enzyme that stabilizes the ECM by 
crosslinking collagen that is also involved in MK expan-
sion induced by PDGFB24. While it is overexpressed  
by MKs in marrow fibrosis mouse models, its pharmaco-
logical inhibition reduces marrow fibrosis121. A phase 2  
clinical trial using an anti-LOXL2 MoAb was con-
ducted in MF patients alone or in association with  
ruxolitinib, the results being disappointing122. A phase 
2 clinical trial is ongoing using an inhibitor of LOXL2, 
GB2064. In 4 patients a reduction in collagen fibrosis  
was observed at 6 months123.

•    P-selectin is a glycoprotein that is present in plate-
let and MK α-granules. It is translocated to the cell 
surface after activation. P-selectin is involved in the  
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emperipolesis of granulocyte precursors by MKs, lead-
ing to TGF-β1 release35. In the GATA1low mouse 
model, SELP (P-selectin gene) ablation or P-selectin  
blockage by a MoAb impairs MF development124. A 
phase 1 trial is programmed using a combination of  
ruxolitinib and a MoAb44.

Targeting cytopenia
All the previous approaches aim also to correct the cytope-
nia by modifying the disease. In addition, specific therapies for 
anemia are being tested in MF beyond the classical therapies  
(androgens, IMID agents and ESA)4,125. The first consists 
of a ligand trap strategy using the extracellular domain of  
ACVRIIB and IIA fused to the human IgG Fc domain for 
luspatercept and sotatercept, respectively. These ligand 
traps bind some members of the TGFβ superfamily, such as  
GDF11 that negatively regulates late stages of erythroid  
differentiation through SMAD2/3126. In addition, they may 
decrease hepcidin synthesis by trapping some BMPs involved  
in its synthesis and by increasing the level of erythroferrone 
as a consequence of an increased erythroid maturation and 
thus they mobilize the iron store. Both ligand traps have been  
tested in phase 2 clinical trials alone or in association with  
ruxolitinib to correct the anemia of MF. Around one third of the 
patients had a clinical response43,125. In addition, such therapies  
may have an effect on cachexia of advanced MF patients.

The other approaches aim to target hepcidin, which is regu-
lated at the transcriptional level by IL6 (and other members 
of the family) through the GP130/JAK2/1/STAT3 pathway  
and by BMPs1/6, the first pathway being regulated by inflam-
mation, the second by an iron overload. Momelotinib tar-
gets both pathways of hepcidin regulation52. In addition, an  
ACVR1/ALK2 inhibitor (BMP pathway) is being tested in  
combination with ruxolitinib in anemia of MF43,125.

In the future, other approaches could be used in MF, includ-
ing hepcidin antagonists, whereas hepcidin mimetics appear  
quite efficient in the therapy of PV erythrocytosis. 

New approaches specifically targeting the clonal disease
Presently, most new therapies are based on the association of 
ruxolitinib with other molecules. However, the risk of drug 
combination is increased toxicity. It is important to develop 
new approaches targeting either specifically the disease driver 
mutants (JAK2V617F, CALR or MPL mutants) or directly the  
LSC.

These last years, there has been some progress in the develop-
ment of an immunotherapy against CALRmut and JAK2V617F  
MPNs.

Immunotherapy
JAK2V617F and CALRmut MPN clones may escape T cell sur-
veillance, even if CD4 or CD8 T cells directed against these 
mutants exist. These immune cells are rendered non-functional  

by the PD1/PD-L1 axis. However, a phase 2 clinical trial 
using pembrolizumab, an anti-PD1 antibody, failed to induce  
a clinical response127.

CALRmut generate a new C-terminus, with neo-antigens that 
could be targeted by immunotherapy. However, this approach 
may be limited by several factors: (a) MHC-1 having a high 
affinity for these neo-epitopes is under-represented in MPN  
patients128; (b) huge levels of soluble mutated CALR are  
present that inhibit the phagocytosis of dying cancer cells by 
dendritic cells and suppress the effects of PD-1 blockade129;  
and (c) CALR is implicated in the peptide loading on  
MHC-1130. A first trial using a peptide vaccine showed no clini-
cal response, although a strong immune response was observed 
mainly involving CD4+ T cells131. Trials are ongoing using 
a vaccine associated with an immune checkpoint inhibitor.  
Alternatively, it has been shown that a heteroclitic peptide 
with an optimized presentation by MHC-1 may permit to  
overcome this immunosuppressive state128.

LSC targeting
In MF, LSCs are skewed towards the MK lineage and aber-
rantly express MK/platelet antigens, such as G6B, defining 
new targets for immunotherapy132. In addition, CD123, the 
IL3α-receptor, is expressed on LSCs of numerous myeloid 
malignancies. Presently, tagraxofusp, a fusion protein consist-
ing of IL3 fused to diphteria toxin has been tested in a phase  
1/2 clinical trial, but with modest results133.

Direct targeting of the mutated disease drivers (Figure 2B and C)
Unexpectedly, CALRmut can be targeted more easily than 
JAK2V617F.

Using a large screening approach, it has been shown that inhi-
bition of N-glycosylation by several molecules can target the 
oncogenic CALRmut signaling by inhibiting the MPL mem-
brane expression134. Such an approach could be extended to  
MPL mutants. In addition, CALRmut multimerization is 
dependent on zinc, thus zinc chelators could be a valuable  
approach135.

The development of MoAbs targeting specifically the  
CALRmut induced positive expectations. Anti-CALRmut  
antibodies may either impair abnormal signaling of MPL/JAK2  
complexes or induce an immune reaction. Three different  
anti-CALRmut MoAbs, namely B3, 4D7 and INCA033989, 
were generated136–138. 4D7 and INCA033989 disrupt CALR  
mutant/MPL signaling136,137. These antibodies inhibit in vitro 
the growth of CALRmut/MPL cell lines and patient cells 
including in xenografts. In addition, this approach appears to  
have a major effect on the disease development in a murine 
model by targeting the LSC137,138. A clinical trial is in progress 
with INCA033989. Another antibody against CALRmut  
injected in CALRdel52 mice model led to a very rapid nor-
malization of platelet count and a decrease of LSK139. This 
response may reflect immunodepletion rather than signaling  
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interruption. Finally, a synthetic peptide inhibiting the inter-
action between MPL and CALRmut was able to inhibit  
the constitutive MPL/JAK2 signaling in vitro140.

Concerning JAK2, due to the frequently acquired resistance 
to type I JAK inhibitors (ruxolitinib, fedratinib), two type II  
JAK inhibitors that interact with a JAK2-inactive conforma-
tion were efficiently tested in preclinical studies, but were  
toxic141. A new type II JAK2 inhibitor (AJ1-10502) showed 
improved efficacy in comparison to ruxolitinib, with a  
selective effect on JAK2V617F cells142.

Specific JAK2V617F allosteric inhibitors theoretically seem 
the more straightforward approach to directly impact the 
clone without inducing cytopenia. Numerous progresses have 
been obtained in the structure of JAK2V617F by mutational 
approaches and by ultrastructural analysis143–145. Recently, a cryo-
EM structure of the complex between IFNAR2/JAK1V657F,  
the homologous mutation of JAK2V617F, has been obtained146. 
Despite the limitation using JAK1, this new structure indi-
cated dimerization of the mutated PK domains of JAK1. New 
small molecules inhibiting the dimerization of JAK2V617F  
may be promising. A limitation of this approach is that the 

conformation of JAK2V617F is close to the conformation of  
JAK2WT associated with the IFNγ receptor after ligand bind-
ing, raising the risk that such molecules may thus inhibit  
IFNγ signaling144.

Another approach will be to target JAK2V617F degradation. 
This has been recently reported in ALL by determining the 
structure of the interaction of ruxolitinib and baricitinib with  
JAK2147. A better knowledge of the JAK2V617F structure may  
also allow the development of specific PROTAC.

A last approach is to target the conformational differences 
between interaction of JAK2V617F or JAK2WT interacting 
with MPL and EPOR. This strategy using diabodies has been  
successful in targeting the EPOR/JAK2V617F interaction148.

In conclusion
Presently, efforts are geared towards finding new therapies 
that would profoundly modify the disease either based on drug 
combination or on the development of new compounds, some 
directly targeting the disease drivers. All these efforts would 
likely lead in the future to major advances in the treatment  
of MF. 
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