Designing to optimize costs and minimize environmental effects

Anton Edwards

University of the Highlands and Islands

&

Colin Griffiths

Structures in the Sea

Over-Engineered

High environmental effect of running

High environmental effect of manufacture

Low Risk of catastrophic environmental effect

Structures in the Sea

Under-Engineered

£ Low Capital £ Low Running

Low environmental effect of running

Low environmental effect of manufacture

High Risk of catastrophic environmental effect

Structures in the Sea

Optimally Engineered?

££ Modest Capital ££ Modest Running

Modest environmental effect of running

Modest environmental effect of manufacture

Low Risk of catastrophic environmental effect

Three Types of Environmental Costs

0

£ Cost

Searching for the Optimum among

Waves,

Tides,

& Currents

Mooring Forces Associated with Currents 2

Currents

Tidal

Wind

Turbulent

Modelling Extreme Currents

Deterministic Prediction

Tidal - Predictable

Wind & - Quasi-predictable Eddies

OR
Lumped
Statistical
Prediction

Statistical Prediction

Statistical Distribution of Lumped Speeds (30,000 measurements from Sound of Sleat)

Statistical Distribution of Lumped Speeds (30,000 measurements from Sound of Sleat)

Probability of Speed S or less

The Chance of less than a Particular Speed

The Chance of less than a Particular Speed (after a bit of fancy log-log manipulation!)

Chance of less than Speed S (Gareloch, 13000 x 10 minute data)

Return Periods in the Gareloch

	Years	> Speed cm/s	Factor above measured maximum
Measured	0.25	35	1
Predicted	1	43	1.2
	5	50	1.7
	50	60	1.8

Caution! Are Measurements Independent?

Weibull (2,2): Number of measurements needed for 50% chance of sampling the tail at speeds above the median

=> Diminishing returns from longer sampling

Reservations and Cautions

- Weibull parameters need estimation
- Check independence of measurements
- Tidal and Random: separate or together?
- Spring-neap cycles
- Seasonal effects

Thank you

A Technical Standard for Scottish Finfish Aquaculture. Marine Scotland. ISBN: 978-1-78544-372-5 pp 66-921

www.gov.scot/publications/technical-standard-scottish-finfish-aquaculture/

Mooring Forces Associated with Currents

The chance of exceeding a particular speed (after a bit of fancy log-log manipulation)

Log-Log Transformation of Exceedance Probability

Logarithm of Speed

The chance of exceeding a particular speed

Diminishing returns from longer sampling

Return Periods in the Gareloch

	Years	> Speed cm/s	Factor above measured maximum
Measured	0.25	35	1
Predicted	1	43	1.2
	5	50	1.7
	50	60	1.8

