is there a planktonic signal?
Objectives

INSITE

“The magnitude of the effects of man-made structures compared to the spatial and temporal variability of the North Sea ecosystem, considered on different time and space scales”
Objectives

INSITE

“The magnitude of the effects of man-made structures compared to the spatial and temporal variability of the North Sea ecosystem, considered on different time and space scales”

SIGNAL

“The magnitude of the effects of man-made structures compared to the spatial and temporal variability of the North Sea ecosystem, considered on different time and space scales”
Objectives

INSITE

“The magnitude of the effects of man-made structures compared to the spatial and temporal variability of the North Sea ecosystem, considered on different time and space scales”

SIGNAL

“The magnitude of the effects of man-made structures compared to the spatial and temporal variability of the North Sea ecosystem, considered on different time and space scales”
Objectives

INSITE

“The magnitude of the effects of man-made structures compared to the spatial and temporal variability of the North Sea ecosystem, considered on different time and space scales”

SIGNAL

“The magnitude of the effects of man-made structures compared to the spatial and temporal variability of the North Sea ecosystem, considered on different time and space scales”
Plankton: Why?

the first layer of the oceanic food chain
Plankton: Why?

Fundamental compartment in Ecosystems

Trap carbon

oxygen

Plankton Science for Our Future Oceans

www.sahfos.ac.uk
Plankton: Why?

Fundamental compartment in Ecosystems

Trap carbon

Oxygen

Food

www.sahfos.ac.uk

Plankton Science for Our Future Oceans
Plankton: Why?

Fundamental compartment in Ecosystems

Trap carbon

oxygen

Food

Resilience

Bioresource

www.sahfos.ac.uk

Plankton Science for Our Future Oceans
SAHFOS: About Us

Ships of opportunity (SOOPS)

Sir Alister Hardy Foundation for Ocean Science
Plankton Science for Our Future Oceans

www.sahfos.ac.uk
SAHFOS: Continuous Plankton Recorder

A platform for Integrated Ocean Observing

Sir Alister Hardy Foundation for Ocean Science
Plankton Science for Our Future Oceans

Plankton Science for Our Future Oceans

www.sahfos.ac.uk
CPR: from 1931 to present

longest running, most extensive marine ecological survey

6,647,274 nm (32x Earth-Moon)

> 250,000 samples

> 175,000,000 biological records
SAHFOS: North Sea

longest running, most extensive marine ecological survey

From 1970 to 2015
~55000 samples

Per year
~1200 samples

Per Month
~100 samples

www.sahfos.ac.uk

Plankton Science for Our Future Oceans
Objectives

“The magnitude of the effects of man-made structures compared to the spatial and temporal variability of the North Sea ecosystem, considered on different time and space scales”
Objectives

“The magnitude of the effects of man-made structures compared to the spatial and temporal variability of the North Sea ecosystem, considered on different time and space scales”
Objectives

"The magnitude of the effects of man-made structures compared to the spatial and temporal variability of the North Sea ecosystem, considered on different time and space scales"

Signal

Planktonic

~800 taxa

Selection

www.sahfos.ac.uk
Data: plankton selection

MMS = artificial substrate

Data: plankton selection

MMS = artificial substrate

Echinoderms (starfish)

Planktonic

Benthic

www.sahfos.ac.uk

Plankton Science for Our Future Oceans
Data: plankton selection

Meroplankton: Only a part of their lives as plankton

Copyright Robin K Herman. Scientific Illustrator. www.rkherman.net
Data: plankton: selection

Holoplankton as a “control”

Meroplankton

Holoplankton

www.sahfos.ac.uk

Plankton Science for Our Future Oceans
Data: plankton: selection

10 taxa or groups

Holoplankton Meroplankton Echinoderms larvae Decapods larvae Phytoplankton Copepods

www.sahfos.ac.uk Plankton Science for Our Future Oceans
Data: Man-Made Structures (MMS)

~1500 MMS
Data: Man-Made Structures (MMS)

~1500 MMS

www.sahfos.ac.uk

Plankton Science for Our Future Oceans
Data: Man-Made Structures (MMS)

~1500 MMS

MMS positions

Weight underwater

www.sahfos.ac.uk

Plankton Science for Our Future Oceans
Data: Area selection

Areas with MMS and high quality biology

www.sahfos.ac.uk

Plankton Science for Our Future Oceans
Data: Area selection

Areas with MMS and high quality biology
Signals: Extraction

Meroplankton
Signals: Extraction

Meroplankton

Physical environment

Timeseries

www.sahfos.ac.uk
Signals: Extraction

Meroplankton

Physical environment

Timeseries

www.sahfos.ac.uk Plankton Science for Our Future Oceans
Objectives

SIGNAL

“The signal of man-made structures compared to the spatial and temporal variability of the North Sea planktonic ecosystem, considered on different time and space scales”
Objectives

SIGNAL

“The signal of man-made structures compared to the spatial and temporal variability of the North Sea planktonic ecosystem, considered on different time and space scales”

Domination of environment
Objectives

SIGNAL

“The signal of man-made structures compared to the spatial and temporal variability of the North Sea planktonic ecosystem, considered on different time and space scales”

Domination of environment

Notion of temporal scales

- Influence throughout all scales
- Influence at small scales (month)
- Influence at medium scales (seasons)
- Influence at large scales (years)
Treat the signals: investigate scales
Treat the signals: investigate scales

Timeseries

dbMEM
Treat the signals: investigate scales

- Large (several years)
- Medium (seasonal)
- Fine (several months)
- Very Fine (few months)

Timeseries

dbMEM

www.sahfos.ac.uk

Plankton Science for Our Future Oceans
Treat the signals: investigate scales
Treat the signals: investigate scales

Timeseries = raw signals

All scales are mixed (from months to decades)
Treat the signals: investigate scales

dbMEM

All scales

Large scales
Treat the signals: investigate scales

Pure large scales signal
Focused on inter-annual variability
Treat the signals: investigate scales

- All scales
- Seasonal scales
Treat the signals: investigate scales

Pure medium scales signal
Focused seasonal variability
Results

Meroplankton signal at large temporal scales: 1 area
Results

Meroplankton signal at large temporal scales: all 21 areas
Results

Meroplankton signal at large temporal scales: all 21 areas
Results

Meroplankton at large temporal scales
Results

Mero plankton at large temporal scales
Results

Meroplankton at large temporal scales versus MMS
Results

Merooplankton at large temporal scales *versus* SST
Results

Meroplankton at large temporal scales *versus* Wind
All results

21 areas of interest

10 species/groups of plankton

4 environmental parameters

4 scales investigated
All results

21 areas of interest

10 species/groups of plankton

4 environmental parameters

4 scales investigated

~300 timeseries

~1200 models

~3000 correlations
All results

All results large scales

<table>
<thead>
<tr>
<th>Pixels</th>
<th>C. finmarchicus'</th>
<th>C. helgolandicus'</th>
<th>C. longipes'</th>
<th>Decapod'</th>
<th>Echinoderm'</th>
<th>Meroplankton'</th>
<th>PCI</th>
<th>Sea Surface Temperature</th>
</tr>
</thead>
<tbody>
<tr>
<td>41</td>
<td>-0.20</td>
<td>0.15</td>
<td>0.22</td>
<td>0.14</td>
<td>0.34</td>
<td>0.11</td>
<td>0.38</td>
<td>0.11</td>
</tr>
<tr>
<td>47</td>
<td>0.31</td>
<td>0.31</td>
<td>0.31</td>
<td>0.18</td>
<td>0.18</td>
<td>0.18</td>
<td>0.11</td>
<td>0.31</td>
</tr>
<tr>
<td>62</td>
<td>0.34</td>
<td>0.31</td>
<td>0.31</td>
<td>0.18</td>
<td>0.18</td>
<td>0.18</td>
<td>0.11</td>
<td>0.31</td>
</tr>
<tr>
<td>67</td>
<td>0.35</td>
<td>0.35</td>
<td>0.35</td>
<td>0.23</td>
<td>0.23</td>
<td>0.23</td>
<td>0.23</td>
<td>0.23</td>
</tr>
<tr>
<td>68</td>
<td>0.36</td>
<td>0.36</td>
<td>0.36</td>
<td>0.25</td>
<td>0.25</td>
<td>0.25</td>
<td>0.25</td>
<td>0.25</td>
</tr>
<tr>
<td>71</td>
<td>0.37</td>
<td>0.37</td>
<td>0.37</td>
<td>0.28</td>
<td>0.28</td>
<td>0.28</td>
<td>0.28</td>
<td>0.28</td>
</tr>
<tr>
<td>72</td>
<td>0.38</td>
<td>0.38</td>
<td>0.38</td>
<td>0.31</td>
<td>0.31</td>
<td>0.31</td>
<td>0.31</td>
<td>0.31</td>
</tr>
<tr>
<td>73</td>
<td>0.39</td>
<td>0.39</td>
<td>0.39</td>
<td>0.33</td>
<td>0.33</td>
<td>0.33</td>
<td>0.33</td>
<td>0.33</td>
</tr>
<tr>
<td>74</td>
<td>0.40</td>
<td>0.40</td>
<td>0.40</td>
<td>0.35</td>
<td>0.35</td>
<td>0.35</td>
<td>0.35</td>
<td>0.35</td>
</tr>
<tr>
<td>76</td>
<td>0.41</td>
<td>0.41</td>
<td>0.41</td>
<td>0.38</td>
<td>0.38</td>
<td>0.38</td>
<td>0.38</td>
<td>0.38</td>
</tr>
<tr>
<td>77</td>
<td>0.42</td>
<td>0.42</td>
<td>0.42</td>
<td>0.41</td>
<td>0.41</td>
<td>0.41</td>
<td>0.41</td>
<td>0.41</td>
</tr>
<tr>
<td>78</td>
<td>0.43</td>
<td>0.43</td>
<td>0.43</td>
<td>0.44</td>
<td>0.44</td>
<td>0.44</td>
<td>0.44</td>
<td>0.44</td>
</tr>
<tr>
<td>79</td>
<td>0.44</td>
<td>0.44</td>
<td>0.44</td>
<td>0.46</td>
<td>0.46</td>
<td>0.46</td>
<td>0.46</td>
<td>0.46</td>
</tr>
<tr>
<td>81</td>
<td>0.45</td>
<td>0.45</td>
<td>0.45</td>
<td>0.48</td>
<td>0.48</td>
<td>0.48</td>
<td>0.48</td>
<td>0.48</td>
</tr>
<tr>
<td>83</td>
<td>0.46</td>
<td>0.46</td>
<td>0.46</td>
<td>0.50</td>
<td>0.50</td>
<td>0.50</td>
<td>0.50</td>
<td>0.50</td>
</tr>
<tr>
<td>92</td>
<td>0.47</td>
<td>0.47</td>
<td>0.47</td>
<td>0.52</td>
<td>0.52</td>
<td>0.52</td>
<td>0.52</td>
<td>0.52</td>
</tr>
<tr>
<td>93</td>
<td>0.48</td>
<td>0.48</td>
<td>0.48</td>
<td>0.54</td>
<td>0.54</td>
<td>0.54</td>
<td>0.54</td>
<td>0.54</td>
</tr>
<tr>
<td>94</td>
<td>0.49</td>
<td>0.49</td>
<td>0.49</td>
<td>0.56</td>
<td>0.56</td>
<td>0.56</td>
<td>0.56</td>
<td>0.56</td>
</tr>
<tr>
<td>95</td>
<td>0.50</td>
<td>0.50</td>
<td>0.50</td>
<td>0.58</td>
<td>0.58</td>
<td>0.58</td>
<td>0.58</td>
<td>0.58</td>
</tr>
<tr>
<td>98</td>
<td>0.51</td>
<td>0.51</td>
<td>0.51</td>
<td>0.60</td>
<td>0.60</td>
<td>0.60</td>
<td>0.60</td>
<td>0.60</td>
</tr>
</tbody>
</table>

www.sahfos.ac.uk

Plankton Science for Our Future Oceans
Synthesis

is there a planktonic signal?
Is there a planktonic signal?

Signals in plankton are linked with environment (STT)
Especially at large and seasonal scales
Below seasonal level, it is very hard to get a clear signal
Synthesis

SIGNAL

is there a planktonic signal?

Signals in plankton are linked with environment (STT)
Especially at large and seasonal scales
Below seasonal level, it is very hard to get a clear signal

Remove environmental signal from biology
Remaining signal can’t be explain by MMS
Conclusion

SIGNAL

is there a planktonic signal?

No. At least not a those scales.
Future research opportunities

Exploring finer scales => need new data
Future research opportunities

Exploring finer scales => need new data

New Measurements

Fluorometer
+ oil detection

Holographic particle imager

www.sahfos.ac.uk

Plankton Science for Our Future Oceans
Future research opportunities

Exploring finer scales => need new data

New Measurements
Fluorometer + oil detection
Holographic particle imager

Sampling
New routes
Security ships

www.sahfos.ac.uk
Plankton Science for Our Future Oceans
Future research opportunities

Exploring finer scales => need new data

New Measurements
- Fluorometer + oil detection
- Holographic particle imager

Sampling
- New routes
- Security ships

New CPR
- Static CPR
- Mini CPR

www.sahfos.ac.uk

Plankton Science for Our Future Oceans
Thank you.