intab

WIRELESS SYSTEM
#Mocibus

2018-12-21

Table of contents

intab

Center of Excellence
Maét, analysera och férsta

TABLE OF CONTENTS 2
1.1 TABLES 3
SCOPE 4
2.1 PURPOSE 4
2.2 DOCUMENT OVERVIEW 4
2.3 DOCUMENT HISTORY 4
APPLICABLE DOCUMENTS 5
NOTES 5
4.1 GLOSSARY 5
4.2 ABBREVIATIONS 5
GENERAL 6
MODBUS PROTOCOL OVERVIEW 6
6.1 PHYSICAL LAYER 6
6.2 DATALINK LAYER 6
6.2.1 Timing 8
6.3 DATA ENCODING 8
6.3.1 Normal data 8
6.3.2 CRC 8
6.4 MODBUS DATA MODEL 8
WISENSYS IMPLEMENTATION 9
7.1 THE PHYSICAL INTERFACE ON THE RS-485 1/O BOARD 9
7.2 SENSOR INFORMATION 9
7.2.1 General 9
7.2.2 Sensor measurements 10
7.2.3 Flag byte 16
7.3 SENSOR COMMAND WRITE AND READ 17
7.3.1 General 17
7.3.2 Sensor commands 17
7.4 SUPPORTED COMMANDS/RESPONSES/ERRORS 19
7.4.1 Read Input Registers 19
7.4.2 Write multiple registers 19
7.4.3 Read holding registers 20
7.4.4 Exception response 20
SERIAL COMMUNICATION EXAMPLES 21
8.1.1 Read Input Registers 21
8.1.2 Write multiple registers 22
8.1.3 Read holding Registers 23
TCP/IP COMMUNICATION EXAMPLES 23
9.1.1 Read Input Registers 23
9.1.2 Write multiple registers 24
9.1.3 Read holding Registers 25

1.1 Tables

Table 1: Modbus input register mapping

Table 2: Sensor measurements

Table 3: Humidity/Temperature sensor example
Table 4: Pulse sensor example

Table 5: Flag byte

Table 6: Modbus holding register mapping
Table 7: Sensor commands

Table 8: Sensor 1 example

Table 9: Sensor 12 example

Table 10: Sensor 1 example

Table 11: Read Input Registers command

Table 12: Normal Read Input Registers response
Table 13: Write Multiple Registers command
Table 14: Normal Write Multiple Registers response
Table 15: Read Holding Registers command
Table 16: Normal Holding Registers response
Table 17: Exception response

Table 18: Supported Modbus exception codes

intab

Center of Excellence
Maét, analysera och férsta

14
15
15
16
17
18
18
19
19
19
19
20
20
20
20
21
21

"
Center of Excellence
Maét, analysera och férsta

2 SCOPE
2.1 PURPOSE

This document describes the Modbus implementation for the I/O Board of the WiSensys system. In this document
the limitations and possible deviations to the Modbus Application Protocol Specification will be listed as well as
explained why this is done.

2.2 DOCUMENT OVERVIEW

The document is divided into a number of sections:
- an overview of MODBUS;
- how to configure the interface
- communication examples.

23 DOCUMENT HISTORY
Rev. Date Author Fault/Chance
PA1 2005-12-06 GePI Initial Version
PA2 2005-12-09 JoTu Formatting and small changes
R1A 2006-02-14 GePl Some minor changes
PB1 2006-02-15 GePI
P1B2 2006-07-14 HaHo - Restructuring of the document
- Better description of the implementation limitation chosen for the
design
R1B 2006-07-19 HaHo Made an R release after review comments on P1B2
P1C1 2008-10-09 HaHo Added new sensor types
- Low voltage sensor - CO; sensor
- Energy sensor - Pulse sensor
- Energy Multi sensor - Pulse Energy sensor
P1C2 2010-08-05 HaHo Added new sensor types
P1C3 2011-06-26 HaHo Register descriptions for the mili-voltage sensor was wrong, it only
described a single register, but the mili-voltage sensor uses 2 registers
P1C4 2017-04-16 Wilo - Added function codes 0x03 and 0x10 to write sensor parameters
- Added new sensor types
P1C5 2017-06-21 Wilo - Changed register definitions and examples for function
codes 0x03 and 0x10
P1C6 2017-06-30 Wilo Chapter 7.3.2:
- Changed ID output active time from 4096 to 8192
- Changed Sensor type Current to Wireless Motor Control
- Added sensor type Wireless Valve Control
- Added and updated Examples
Chapter 8 and 9: Updated examples
P1C7 2017-09-30 Wilo Chapter 7.2.3 changed bit 1 to reserved
P1C8 2017-12-04 Wilo Chapter 7.2.2 and 7.3.2:
- Added sensor type tap (Wireless Valve Control)
- Updated tap sensor register definitions
- Added “MODBUS extended feature” which increases the
registers per sensor from 10 to 20.
- Added RSSI value to modbus register 19.
P1C9 2018-04-03 Wilo Added sensor type pressure
P1C10 2018-11-28 Wilo Added sensor type all-in-one
Corrected device type for Temperature 2 decimals

3 APPLICABLE DOCUMENTS

[1] Title: MODBUS Application Protocol specification
Author: www.MODBUS-IDA.org
Doc. no.:

Revision: vl.la

[2] Title: MODBUS over serial line specification and implementation guide
Author: www.MODBUS.org
Doc. no.:

Revision: v1.0

[3] Title: General WiV Radio Protocol
Author: Han Hoekstra
Doc. no:

Revision: P1A15

4 NOTES

4.1 GLOSSARY

4.2 ABBREVIATIONS

BE Big Endian

FAQ Frequently Asked Questions
LE Little Endian

LSB Least Significant Byte
LSW Least Significant Word
MSB Most Significant Byte
MSW Most Significant Word
Wiv Wireless Value

Word 16-bit value

intab

Center of Excellence
Maét, analysera och férsta

"
Center of Excellence
Maét, analysera och férsta

5 General
This section gives a global overview of the MODBUS protocol as used for the WiSensys sensor system.
The WiSensys MODBUS IO board has the possibility to connect to the MODBUS using an RS485 connection. The

implementation is an implementation of the MODBUS slave protocol and is a subset of the protocol as described in
[1]. The RTU version of the protocol has been implemented; this means only none ASClI binary data will be used.

6 MODBUS protocol overview

This section is taken from [1] and is presented here as a reference only, not as a complete specification of the Modbus
protocol.

6.1 Physical Layer

The communication will use RS-485 as physical layer. The communication is in an asynchronous format with one start
bit, eight data bits, one parity bit, and one stop bit. Even and odd parity is supported. If no parity is specified, the
number of stop bits can be user configured for either one or two stop bits. Baud rates supported are 1200 — 115K2
baud.

6.2 Datalink Layer

The MODBUS protocol defines a simple protocol data unit (PDU) independent of the underlying communication

layers. The mapping of MODBUS protocol on specific buses or network can introduce some additional fields on the
application data unit (ADU).

i} -
ADU
- -
PDU

Figure 1: General MODBUS frame

The MODBUS application data unit is built by the client that initiates a MODBUS transaction. The function indicates
to the server what kind of action to perform. The MODBUS application protocol establishes the format of a request
initiated by a client.

The function code field of a MODBUS data unit is coded in one byte. Valid codes are in the range of 1 ... 255 decimal
(128 — 255 reserved for exception responses). When a message is sent from a Client to a Server device the function
code field tells the server what kind of action to perform. Function code "0" is not valid.

Sub-function codes are added to some function codes to define multiple actions.
The data field of messages sent from a client to server devices contains additional information that the server uses to
take the action defined by the function code. This can include items like discrete and register addresses, the quantity

of items to be handled and the count of actual data bytes in the field.

The data field may be nonexistent (of zero length) in certain kinds of requests, in this case the server does not require
any additional information. The function code alone specifies the action.

"
Center of Excellence
Maét, analysera och férsta

If no error occurs related to the MODBUS function requested in a properly received MODBUS ADU the data field of a
response from a server to a client contains the data requested. If an error related to the MODBUS function requested
occurs, the field contains an exception code that the server application can use to determine the next action to be
taken.

For example a client can read the ON/OFF states of a group of discrete outputs or inputs or it can read/write the data
contents of a group of registers.

When the server responds to the client, it uses the function code field to indicate either a normal (error-free)
response or that some kind of error occurred (called an exception response). For a normal response, the server simply
echoes to the request the original function code.

Client Server
| Initiate request \
|I'In1:linncnd;e| Darta Reguest |'

Error detected in the action
Initiate an error

|
| Exception Function code Exception code

]

iy

| Receive the response

Figure 2: MODBUS transaction (error free)

For an exception response, the server returns a code that is equivalent to the original function code from the request
PDU with its most significant bit set to logic 1.

Client Server

Initiate request |

Function code| Data Request
| | | xﬁ; Perform the action

Initiate the response

r]Fmt:tinncode| Data Response |
Receive the response

The size of the MODBUS PDU is limited by the size constraint inherited from the first MODBUS implementation on
Serial Line network (max. RS485 ADU = 256 bytes).

Therefore:
MODBUS PDU for serial line communication = 256 - Server address (1 byte) - CRC (2 bytes) = 253 bytes.

The MODBUS protocol defines three PDUs. They are:
- MODBUS Request PDU, mb_req_pdu
- MODBUS Response PDU, mb_rsp_pdu
- MODBUS Exception Response PDU, mb_excep_rsp_pdu

The Modbus PDU also contains a CRC checksum, this is a standard CRC16, meaning the initial value is OXFFFF and
polynomial value is 0xA001 see [2].

"
Center of Excellence
Maét, analysera och férsta

6.2.1 Timing

MessageTimeout A request shall be answered within 100 mSec

InterCharTimeout The Time between two consecutive characters shall be less than 3 character times. At
@9600 this is 3.1 mSec

6.3 Data Encoding
6.3.1 Normal data

MODBUS uses a ‘big-Endian’ representation for addresses and data items. This means that when a numerical quantity
larger than a single byte is transmitted, the most significant byte is sent first. So for example:

Register size Value
16-bits 0x1234 the first byte sent is 0x12 then 0x34
6.3.2 CRC

Unlike normal data, CRC values are transmitted as ‘little-Endian’. This means that the least significant byte is
transmitted first (LSB first). See also [2].

6.4 MODBUS Data model

MODBUS bases its data model on a series of tables that have distinguishing characteristics. The four primary tables
are:

Primary tables Object type Type of Comments

Discrete Input Single bit Read-Only | This type of data can be provided by an I/0 system.

Coils Single bit Read-Write | This type of data can be alterable by an application
program.

Input Registers 16-bit word Read-Only | This type of data can be provided by an I/0 system.

Holding Registers | 16-bit word Read-Write | This type of data can be alterable by an application
program.

The distinctions between inputs and outputs, and between bit-addressable and word addressable data items, do not
imply any application behavior. It is perfectly acceptable, and very common, to regard all four tables as overlaying
one another, if this is the most natural interpretation on the target machine in question.

For each of the primary tables, the protocol allows individual selection of 65536 data items, and the operations of
read or write of those items are designed to span multiple consecutive data items up to a data size limit which is
dependent on the transaction function code. It's obvious that all the data handled via MODBUS (bits, registers) must
be located in device application memory. But physical address in memory should not be confused with data
reference. The only requirement is to link data reference with physical address.

MODBUS logical reference numbers, which are used in MODBUS functions, are unsigned integer indices starting at
zero.

"
Center of Excellence
Maét, analysera och férsta

7 WiSensys implementation
7.1 The physical interface on the RS-485 1/0 Board

The physical interface on the RS-485 1/0 board can either be configured as a 4-wire (RS-422) or 2-wire (RS-485)
interface. When configured as RS-422 the user also has the option of setting the interface to full- or half-duplex
mode.

By default the interface is configured to work in half-duplex mode.

There are two more properties that must be set for the interface, these are baud rate and parity. The default baud
rate is 9600 baud and the parity is by default set to none. There are also a number of serial properties that can't be
set, these are fixed, they are:

- Number of databits : 8

- Number of startbits : 1

- Number of stopbits : 1

To summarise, the default communication is set to:
Half-duplex, 9600 baud, 8 databits, no parity, 1 startbit and 1 stopbit

7.2 Sensor information
7.2.1 General

To read sensor information the Modbus capability to read a input registers will be implemented. We use the
command “read input registers’. Because some sensors have the ability to measure multiple quantities and or the
measurement value exceeds the Modbus 16-bits register width, a block of 10 Modbus registers will be reserved per
sensor. When the |0 board “MODBUS extended feature” is available and enabled this will be 20. The explanation and
examples below assume the “MODBUS extended feature” is disabled. The following table lists the purpose of each of
these registers.

Register Description

number

0 LSB is the sensor type, see [3] for a description of the sensor types
MSB is a flag byte, see 7.2.3

1 The first 16-bit measurement value

i The second 16-bit measurement value (if required)

3 The third 16-bit measurement value (if required)

4 The fourth 16-bit measurement value (if required)

5 The fifth 16-bit measurement value (if required)

6 The sixth 16-bit measurement value (if required)

7 The seventh 16-bit measurement value (if required)

8 The eighth 16-bit measurement value (if required)

9 The ninth 16-bit measurement value (if required)

10-18 etc.. (Only implemented when “MODBUS extended feature” is enabled)

19 The RSSI value of the sensor
(Only implemented when “MODBUS extended feature” is enabled)

Table 1: Modbus input register mapping

Modbus allows up to 65536 input registers to be read, but since every sensor uses 10 registers, it will only be possible
to read data from sensor 1 to 6552, because the register numbering will translate directly to the sensor address
device ID.

Data for sensor 1 start at register 10 and ends at register 19. Sensor 2 will be from register 20 to 29 etc.. The last
sensor is 6552 which can be read from register 65520 to 65529.

"
Center of Excellence
Maét, analysera och férsta

It is only possible to read the registers belonging to a single sensor with one command. So when the Modbus
command specifies either a number of registers greater than 10 or a start register address and number of registers
that would mean reading the last registers of one sensor and the first registers of the next, the I/O board will report
back an error. For example when the start address is 15 and the number of registers to read is 8 then an error is
reported back. This is because register 15 to 19 belong to sensor 1 and register 20 to 22 belong to sensor 2 and it is
not allowed to read registers of more than 1 sensor in a single command.

When a request is done to read either a reserved register or the 2" measurement value for a sensor that only
supports measuring a single quantity, the 1/0 board will report the value Ox7FFF for that register. The value 0x7FFF is
chosen, because this is the maximum value for a signed 16-bit integer and most measurements will be signed 16-bit
integers.

7.2.2 Sensor measurements

The Modbus protocol is based on 16-bit registers, so the sensor data is mapped onto those 16-bit registers. For most
sensors, the 16-bit register is enough to represent its measurement values, but a number of sensors have 32-bit
measurement values, these are mapped onto 2 consecutive registers, with the first register holding the least
significant word and the second register the most significant word.

The table below lists all known sensor types, the quantities they can measure, the range of the measurement value

and the number of decimals included in the value. For sensors that have multiple measurement quantities, the first
listed quantity is in register 1, the second in register 2 etc..

10

intab

Center of Excellence
Maét, analysera och férsta

Sensor type Device Register Measurement Value range No. of
Type Quantity decimals
Temperature 0x01 1 Temperature -32768..32767 1
Humidity 0x02 1 Humidity -32768..32767 1
Humidity/Temp 0x03 1 Humidity -32768..32767 1
2 Temperature -32768..32767 1
Switch 0x04 1 Open/Close Oor1 0
Voltage 0x06 1 Voltage -32768..32767 2
Current 0x07 1 Current -32768..32767 2
Energy 0x08 1 Energy LSW
2 Energy MSW 0..2147483647 0
3 Power 0..65535 0
Low Voltage 0x0A 1 Voltage -32768..32767 3
Energy Multi 0x0B 1 Energy LSW
2 Energy MSW 0..2147483647 0
3 Power 0..65535 0
CO,/Hum/Temp 0x0C 1 CO, 0..32767 0
2 Humidity -32768..32767 1
3 Temperature -32768..32767 1
Pulse 0x0D 1 Pulses LSW
2 Pulses MSW 0..2147483647 0
Pulse Energy OxOE 1 kJ Energy LSW
2 kJ Energy MSW 0..2147483647 0
Dendrometer 0x10 1 Percentage 0..65535 2
Mili-voltage 0x11 1 Voltage LSW -2147483648.. 3
2 Voltage MSW 2147483647
RMS 0x12 1 Voltage -32768..32767 3
Contact Change 0x13 1 Open/Close Oor1 0
2 Regular measurement’ Oor1 0
Contact Percentage 0x14 1 Open/Close Oor1 0
2 Percentage closed 0..10000 2
RSSI 0x15 1 RSSI value 0..255 0
SDI-12 5 Channel 0x16 1 Channel 1 LSW -2147483648.. 3
2 Channel 1 MSW 2147483647
3 Channel 2 LSW -2147483648.. 3
4 Channel 2 MSW 2147483647
5 Channel 3 LSW -2147483648.. 3
6 Channel 3 MSW 2147483647
7 Channel 4 LSW -2147483648.. 3
8 Channel 4 MSW 2147483647
9 Channel 5 LSW? -2147483648.. 3
10 Channel 5 MSW? 2147483647
SDI-12 10 Channel 0x17 1 Channel 1 -32768..32767 1
2 Channel 2 -32768..32767 1
3 Channel 3 -32768..32767 1
4 Channel 4 -32768..32767 1
5 Channel 5 -32768..32767 1
6 Channel 6 -32768..32767 1
7 Channel 7 -32768..32767 1

10 means a measurement at the normal sensor measurement, a 1 means that the sensor has detected a
contact state change and send the change immediately, not at the normal measurement time.

2 Use only when the |0 board “MODBUS extended feature” is available and enabled

11

intab

Center of Excellence
Maét, analysera och férsta

8 Channel 8 -32768..32767 1
9 Channel 9 -32768..32767 1
10 Channel 102 -32768..32767 1
Temperature 2 decimals 0x19 1 Temperature -32768..32767 2
Extended voltage Ox1A 1 Voltage -32768..32767 2
Temperature 3 Channel 0x1C 1 Temperature 1 -32768..32767 1
2 Temperature 2 -32768..32767 1
3 Temperature 3 -32768..32767 1
Temperature 5 Channel 0x1D 1 Temperature 1 -32768..32767 1
2 Temperature 2 -32768..32767 1
3 Temperature 3 -32768..32767 1
4 Temperature 4 -32768..32767 1
5 Temperature 5 -32768..32767 1
RS232 5 Channel 32 bit Ox1E 1 Channel 1 LSW -2147483648.. 0
2 Channel 1 MSW 2147483647
3 Channel 2 LSW -2147483648.. 0
4 Channel 2 MSW 2147483647
5 Channel 3 LSW -2147483648.. 0
6 Channel 3 MSW 2147483647
7 Channel 4 LSW -2147483648.. 0
8 Channel 4 MSW 2147483647
9 Channel 5 LSW? -2147483648.. 0
10 Channel 5 MSW? 2147483647
Modbus 5 channel 32 bit Ox1F 1 Channel 1 LSW -2147483648.. 0
2 Channel 1 MSW 2147483647
3 Channel 2 LSW 2147483648.. 0
4 Channel 2 MSW 2147483647
5 Channel 3 LSW 2147483648.. 0
6 Channel 3 MSW 2147483647
7 Channel 4 LSW 2147483648.. 0
8 Channel 4 MSW 2147483647
9 Channel 5 LSW? 2147483648.. 0
10 Channel 5 MSW? 2147483647
Modbus 10 channel 16 bit 0x20 1 Channel 1 -32768..32767 0
2 Channel 2 -32768..32767 0
3 Channel 3 -32768..32767 0
4 Channel 4 -32768..32767 0
5 Channel 5 -32768..32767 0
6 Channel 6 -32768..32767 0
7 Channel 7 -32768..32767 0
8 Channel 8 -32768..32767 0
9 Channel 9 -32768..32767 0
10 Channel 10? -32768..32767 0
RS232 1 Channel 32 bit 0x21 1 Channel 1 LSW -2147483648.. 0
2 Channel 1 MSW 2147483647
RS232 2 Channel 32 bit 0x22 1 Channel 1 LSW -2147483648.. 0
2 Channel 1 MSW 2147483647
3 Channel 2 LSW -2147483648.. 0
4 Channel 2 MSW 2147483647
RS232 3 Channel 32 bit 0x23 1 Channel 1 LSW -2147483648.. 0
2 Channel 1 MSW 2147483647
3 Channel 2 LSW -2147483648.. 0
4 Channel 2 MSW 2147483647
5 Channel 3 LSW -2147483648.. 0
6 Channel 3 MSW 2147483647

12

intab

Center of Excellence
Maét, analysera och férsta

RS232 4 Channel 32 bit 0x24 1 Channel 1 LSW -2147483648.. 0
2 Channel 1 MSW 2147483647
3 Channel 2 LSW -2147483648.. 0
4 Channel 2 MSW 2147483647
5 Channel 3 LSW -2147483648.. 0
6 Channel 3 MSW 2147483647
7 Channel 4 LSW -2147483648.. 0
8 Channel 4 MSW 2147483647
RS232 1 Channel 16 bit 0x25 1 Channel 1 -32768..32767 0
RS232 2 Channel 16 bit 0x26 1 Channel 1 -32768..32767 0
2 Channel 2 -32768..32767 0
RS232 3 Channel 16 bit 0x27 1 Channel 1 -32768..32767 0
2 Channel 2 -32768..32767 0
3 Channel 3 -32768..32767 0
RS232 4 Channel 16 bit 0x28 1 Channel 1 -32768..32767 0
2 Channel 2 -32768..32767 0
3 Channel 3 -32768..32767 0
4 Channel 4 -32768..32767 0
RS232 5 Channel 16 bit 0x29 1 Channel 1 -32768..32767 0
2 Channel 2 -32768..32767 0
3 Channel 3 -32768..32767 0
4 Channel 4 -32768..32767 0
5 Channel 5 -32768..32767 0
RS232 6 Channel 16 bit 0x2A 1 Channel 1 -32768..32767 0
2 Channel 2 -32768..32767 0
3 Channel 3 -32768..32767 0
4 Channel 4 -32768..32767 0
5 Channel 5 -32768..32767 0
6 Channel 6 -32768..32767 0
RS232 7 Channel 16 bit 0x2B 1 Channel 1 -32768..32767 0
2 Channel 2 -32768..32767 0
3 Channel 3 -32768..32767 0
4 Channel 4 -32768..32767 0
5 Channel 5 -32768..32767 0
6 Channel 6 -32768..32767 0
7 Channel 7 -32768..32767 0
RS232 8 Channel 16 bit 0x2C 1 Channel 1 -32768..32767 0
2 Channel 2 -32768..32767 0
3 Channel 3 -32768..32767 0
4 Channel 4 -32768..32767 0
5 Channel 5 -32768..32767 0
6 Channel 6 -32768..32767 0
7 Channel 7 -32768..32767 0
8 Channel 8 -32768..32767 0
RS232 9 Channel 16 bit 0x2D 1 Channel 1 -32768..32767 0
2 Channel 2 -32768..32767 0
3 Channel 3 -32768..32767 0
4 Channel 4 -32768..32767 0
5 Channel 5 -32768..32767 0
6 Channel 6 -32768..32767 0
7 Channel 7 -32768..32767 0
8 Channel 8 -32768..32767 0
9 Channel 9 -32768..32767 0
RS232 10 Channel 16 bit Ox2E 1 Channel 1 -32768..32767 0
2 Channel 2 -32768..32767 0

13

intab

Center of Excellence
Maét, analysera och férsta

3 Channel 3 -32768..32767 0
4 Channel 4 -32768..32767 0
5 Channel 5 -32768..32767 0
6 Channel 6 -32768..32767 0
7 Channel 7 -32768..32767 0
8 Channel 8 -32768..32767 0
9 Channel 9 -32768..32767 0
1 Channel 102 -32768..32767 0
Modbus 5 channel float O0x2F 1 Channel 1 32-bit float 0
2 Channel 2 IEEE 754
3 Channel 3 32-bit float 0
4 Channel 4 IEEE 754
5 Channel 5 32-bit float 0
6 Channel 6 IEEE 754
7 Channel 7 32-bit float 0
8 Channel 8 IEEE 754
9 Channel 9° 32-bit float
1 Channel 102 IEEE 754
Temperature 2 Channel 0x30 1 Temperature 1 -32768..32767 1
2 Temperature 2 -32768..32767 1
Temperature 4 Channel 0x31 1 Temperature 1 -32768..32767 1
2 Temperature 2 -32768..32767 1
3 Temperature 3 -32768..32767 1
4 Temperature 4 -32768..32767 1
Temperature 6 Channel 0x32 1 Temperature 1 -32768..32767 1
2 Temperature 2 -32768..32767 1
3 Temperature 3 -32768..32767 1
4 Temperature 4 -32768..32767 1
5 Temperature 5 -32768..32767 1
6 Temperature 6 -32768..32767 1
Load Cell 0x33 1 Weight -32768..32767 3
Tap 0x34 1 Close/Open (Tap) Oor1 0
2 Open/Close (Contact) Oor1 0
3 Voltage -32768..32767 2
Pressure 0x35 1 Pressure -32768..32767 1
2 Temperature -32768..32767 1
All-In-One 0x36 1 Temperature -32768..32767 1
2 Humidity -32768..32767 1
3 CO, 0..32767 0
4 Lux LSW -2147483648.. 2
5 Lux MSW 2147483647
6 Movement Oor1 0

Table 2: Sensor measurements

"
Center of Excellence
Maét, analysera och férsta

Examples:

Humidity/Temperature sensor with 16-bit measurements
Let's assume we have a combined humidity/temperature sensor with device ID 23 and the humidity is 45.4% and the
temperature is 29.7 °C. Note: the flag byte is set to 0 for this example.

This means that the Modbus request must start reading from input register 230, read 10 registers and the reply will
indicate the registers having the following values :

Register | 230 231 232 233 234 235 236 237 238 239
Value | 0x0003 | 0x01C6 | 0x0129 | Ox7FFF | Ox7FFF | Ox7FFF | Ox7FFF | Ox7FFF | Ox7FFF | Ox7FFF
Hex
Dec | 3 454 297 32767 32767 32767 32767 32767 32767 32767

Table 3: Humidity/Temperature sensor example

Pulse sensor with a 32-bit measurement value
Let's assume we have a pulse sensor with device ID 12 and a pulse count of 19088743 (which is 0x01234567
hexadecimal). Note: the flag byte is set to 0 for this example.

This means that the Modbus request must start reading from input register 120, read 10 registers. The reply will
indicate the registers having the following values:

Register | 120 121 122 123 124 125 126 127 128 129
Value | 0x000D | 0x4567 | 0x0123 | Ox7FFF | Ox7FFF | Ox7FFF | Ox7FFF | Ox7FFF | Ox7FFF | Ox7FFF
Hex
Dec | 13 17767 291 32767 32767 32767 32767 32767 32767 32767

Table 4: Pulse sensor example

Register 121 contains the LSW part of the pulse count and 122 contains the MSW part of the pulse count. The device
receiving the Modbus reply must combine these 2 register values to get the original pulse count value.

15

"
Center of Excellence
Maét, analysera och férsta

7.23 Flag byte

The flag byte gives information about the sensor, each bit has a specific meaning, which is described in the table
below.

Bit Name Description
0 In reach Indicates if the sensor is in reach. 1 = in reach, 0 = out of reach
1 Reserved Reserved
2 Alarm Sensor alarm flag. 1 = sensor signals an alarm, 0 = no alarm
3
4
5
6
7

Table 5: Flag byte

In reach flag

This flag is used to indicate if a sensor is still in reach of the basestation responsible for servicing it. When the flag is
set, the sensor is still transmitting data to the basestation. When the flag is 0, the base has not received any
measurement messages from the sensor for a period of time. The time-out period depends on the sensors
measurement- and transmit interval as well as a programmable number of measurement messages that can be
missed. The actual time-out period can be calculated using this formula :

Time-out = MI * TI * MM
M measurement interval in seconds
Tit Transmit interval, this is the number of measurements that must be done before the data is send
MM the number of messages that can be missed before a sensor is considered out or range
Reserved
This flag is reserved.

Alarm flag

The alarm flag indicates that the current measurement (or one of the measurements for a sensor that measures
multiple quantities at the same time) has caused an alarm. This can be either because the measured value is below a
specified minimum trip value, or above a maximum trip value.

16

"
Center of Excellence
Maét, analysera och férsta

7.3 Sensor command write and read
7.3.1 General

To send sensor commands the Modbus capability to write a holding registers will be implemented. We use the
command “write multiple registers” for writing holding registers. To read the written value back the command “read
holding registers” will be implemented. To have the possibility to add more commands in the future, a block of 10
Modbus holding registers is reserved per sensor. When 10 board “MODBUS extended feature” is available and
enabled this will be 20. The explanation and examples below assume the “MODBUS extended feature” is disabled.

The holding registers are independent of the input registers which are read with command “read input registers”.
The following table lists the purpose of each of these holding registers.

Holding Description

Register

number

0 Reserved

1 Reserved

i Command 1, the 16-bit ID to send, (Valid range is 8191 - 12287)

3 Command 1, the 16-bit data to send (Valid range is -32768 — 32767)
4 Command 2, the 16-bit ID to send, (Valid range is 8191 - 12287)

5 Command 2, the 16-bit data to send (Valid range is -32768 — 32767)
6 Command 3, the 16-bit ID to send, (Valid range is 8191 - 12287)

7 Command 3, the 16-bit data to send (Valid range is -32768 — 32767)
8 Command 4, the 16-bit ID to send, (Valid range is 8191 - 12287)

9 Command 4, the 16-bit data to send (Valid range is -32768 - 327670)
10-19 Reserved (Only implemented when “MODBUS extended feature” is enabled)

Table 6: Modbus holding register mapping

Modbus allows up to 65536 holding registers to be written or read, but since every sensor uses 10 holding registers,
it will only be possible to write and read data for sensor 1 to 6552, because the holding register numbering will
translate directly to the sensor address device ID.

Data for sensor 1 starts at holding register 10 and ends at holding register 19. Sensor 2 will be from holding register
20 to 29 etc.. The last sensor is 6552 which uses holding register 65520 to 65529.

It is only possible to write or read the holding registers belonging to a single sensor with one command. So when the
Modbus command specifies either a number of holding registers greater than 10 or a start holding register address
and number of holding registers that would mean reading the last holding register of one sensor and the first
holding registers of the next, the I/0 board will report back an error. For example when the start address is 15 and
the number of registers to read is 8 then an error is reported back. This is because holding register 15 to 19 belong to
sensor 1 and holding register 20 to 22 belong to sensor 2 and it is not allowed to write or read registers of more than
1 sensor in a single command.

When a request is done to read a reserved register, the /0 board will report the value 0x7FFF for that register. When
arequest is done to write a reserved register the normal response is send back but the value is not stored.

When the Modbus command couldn’t be send to the base board the register with the ID will be cleared. This could
be one of the following reasons:

- Auto paired sensor not yet synchronized (Can be checked in Sensorgraph)

- IDvalue not supported by sensor

7.3.2 Sensor commands

The Modbus protocol is based on 16-bit registers, so the sensor data is mapped onto those 16-bit registers.

17

"
Center of Excellence
Maét, analysera och férsta

The table below lists all known sensor types that support the capability to write a sensor commands with Modbus
protocol. The table also lists the register number, register quantity, the value or range and the number of decimals
included in the value.

Sensor type Device Register Register Value or value No. of
Type Quantity range decimals
T.B.D T.B.D 2 ID for 8192 0
(Wireless Motor Control) output active time A
3 Data for -32768..32767 0
Output active time A (seconds)
Tap 0x34 2 ID for 8192 0
(Wireless Valve Control) output active time A
3 Data for -32768..32767 0
Output active time A (seconds)
4 ID for 8196 0
sample interval overrule (4s
T.B.D)
5 Data for 0 = not active 0
sample interval overrule (4s | 1 =active
T.B.D)

Table 7: Sensor commands
Notes:

The registers must be written in pairs or multiple pairs, first ID and second Data register.

The register pair number where the ID and Data is written may be chosen freely once after power up as long as the ID
& Data are written in pairs in register 2&3, 4&5, 6&7 or 8&9. Once a ID is written on a specific register you may not use
this register to write another ID.

The same ID may not be written in two different ID registers

Examples:
Sensor with Output active time A

Let's assume we have a sensor with device ID 1 and we want to write the value 0x0200 for
“Output active time A".

This means that the Modbus request must start writing at holding register 12 and write 2 registers. For writing 2
registers the write multiple registers command 0x10 will have the following values:

Holding | 12 13
Register

Value | 0x2000 | 0x0200
Hex

Dec | 8192 512

Table 8: Sensor 1 example

Sensor with sample interval overrule to 1 second
Let's assume we have a sensor with device ID 12 and we want to write the value 0x0001 for
“sample interval overrule to 1 second”.

This means that the Modbus request must start writing at holding register 126 and write 2 registers. For writing 2
registers the write multiple registers command 0x10 will have the following values:

18

"
Center of Excellence
Maét, analysera och férsta

Holding | 126 127
Register

Value | 0x2004 | 0x0001
Hex

Dec | 8196 1

Table 9: Sensor 12 example

Writing multiple sensor commands
Let’s assume we have a sensor with device ID 1 and we want to write the value 0x0003 for
output active time A, 0x0002 for output active time B and 0x0001 for sample interval overrule to 1 second

This means that the Modbus request must start writing at holding register 126 and write 6 registers. For writing 6
registers the write multiple registers command 0x10 will have the following values:

Holding | 12 13 14 15 16 17
Register
Value | 0x2000 | 0x0003 | 0x2001 | 0x0002 | 0x2004 | 0x0001
Hex
Dec | 8192 3 8193 2 8196 1

Table 10: Sensor 1 example
7.4 Supported commands/responses/errors
7.4.1 Read Input Registers

The WiSensys Modbus I/0 Board supports the Modbus ‘Read Input Registers’ command, which look as specified in
the table below

Slave address 1 Byte 1to 247

Function code 1 Byte 0x04

Start Address 2 Bytes 0x0010 to OxFFF9
Number of Input Registers 2 Bytes 0x0001 to 0x000A
CRC 2 Bytes OXXXXX

Table 11: Read Input Registers command

The reply to this command can either be a normal response message or an exception response in case there is a
problem with the command. First a normal response, see the table below for the message layout.

Slave address 1 Byte 1to 247
Function code 1 Byte 0x04
Byte count 1 Byte 2xN
Input Registers N x 2 Bytes

CRC 2 Bytes OXXXXX

Table 12: Normal Read Input Registers response
In the reply message N represents the number of registers as specified in the original command.
7.4.2 Write multiple registers

The WiSensys Modbus I/0 Board supports the Modbus ‘Write multiple registers’ command, which look as specified in
the table below

19

1 Byte 1to 247

1 Byte 0x10

2 Bytes 0x0010 to OxFFF9
2 Bytes 0x0001 to 0x000A
1 Bytes 2xN

N x 2 Bytes

2 Bytes OXXXXX

Table 13: Write Multiple Registers command

= @)
Center of Excellence
Mét, analysera och férsté

The reply to this command can either be a normal response message or an exception response in case there is a
problem with the command. First a normal response, see the table below for the message layout.

1 Byte 1to 247

1 Byte 0x10

2 Bytes 0x0010 to OxFFF9
2 Bytes 0x0001 to 0x000A
2 Bytes OXXXXX

Table 14: Normal Write Multiple Registers response

In the reply message N represents the number of registers as specified in the original command.

7.4.3 Read holding registers

The WiSensys Modbus I/0 Board supports the Modbus ‘Read holding registers’ command, which look as specified in

the table below

1 Byte 1to 247

1 Byte 0x03

2 Bytes 0x0010 to OxFFF9
2 Bytes 0x0001 to 0x000A
2 Bytes OXXXXX

Table 15: Read Holding Registers command

The reply to this command can either be a normal response message or an exception response in case there is a
problem with the command. First a normal response, see the table below for the message layout.

1 Byte 1to 247
1 Byte 0x03

1 Byte 2xN

N x 2 Bytes

2 Bytes OXXXXX

Table 16: Normal Holding Registers response

In the reply message N represents the number of registers as specified in the original command.

7.4.4 Exception response

When the Modbus I/0 board detects a problem with a received command, it can reply with an exception response,

which is shown in the next table.

1 Byte 1to 247

1 Byte Command function code + 0x80
(bit 7)

1 Byte See table below

2 Bytes OXXXXX

20

"
Center of Excellence
Maét, analysera och férsta

Table 17: Exception response

The function code is the same as from the original command, but bit 7 is set to indicate an exception. The exception
code indicates to the receiver what the problem with the original command was. The exception codes are listed
below.

Exception Description

code
0x01 lllegal function, the received command is not supported
0x02 lllegal data address, the start address and/or number of registers is invalid. The problems could be :
e thestart address is invalid
e thelengthisinvalid, not between 0x01 and 0x0A
e the combination of start address and number of registers means returning data for more than
1 sensor
0x03 lllegal data value, something in the data is wrong. The problems could be :

e Sensor not found, or not supported
e Request would read registers for more than one sensor
o The Number of Registers is wrong

0x04 Slave device failure, this indicates an internal error in the |/O Board

Table 18: Supported Modbus exception codes

8 Serial Communication examples
8.1.1 Read Input Registers

A typical MODBUS RTU ‘Read Input Registers’ command (request) may look like this:
0x01 0x04 0x00 OxO0A 0x00 0x02 0x51 0xC9

The actual format of the data depends on the type of command desired. The example above is the MODBUS ‘Read
Input Registers’ function. The command above is a request to read 2 input registers starting from address 10.

0x01 The address of the slave device (WiSensys I/O Board) that should handle the command. Each slave
device has its own unique address.

0x04 Byte code for the MODBUS ‘Read Input Registers’ function.
0x00 0x0A The starting address of the registers to be read, 0x000A means the 1% register of sensor number 1.
0x00 0x02 The number of registers to be read. In this case ‘0 02’ indicates two register are to be read.

0x51 0xC9 The final two characters of the command string make up the CRC, used to check for errors in the
message.

A typical response to this example command could be:
0x01 0x04 0x04 0x00 0x01 0x00 0xD9 0x6B OxDE

0x01 The address of the slave device (WiSensys I/O Board) that sends the response
0x04 This is the function to which this message is a reply
0x04 The length byte indicating the number of bytes to follow, this is 2 x the number of register to read as

specified in the request

0x00 0x01 The value read from the 1% register. 00 01 means that this is a temperature sensor, because this is the
1%t register of a sensor block.

21

i n t a b Center of Excellence
Maét, analysera och férsta
0x00 0xD9 The value read from the 2™ register. Register data is read back as 16 bits. 00 D9 means the

temperature is 21.7 °C.

0x6B 0xDE The CRC for the response message.

8.1.2 Write multiple registers

A typical MODBUS RTU ‘Write multiple registers’ command (request) may look like this:
0x01 0x10 0x00 0xOC 0x00 0x02 0x04 0x20 0x00 0x04 0xD2 0x7A OxA7

The actual format of the data depends on the type of command desired. The command above is a request to write 2
holding starting from address 12.

0x01 The address of the slave device (WiSensys I/0O Board) that should handle the command. Each slave
device has its own unique address.

0x10 Byte code for the MODBUS ‘Write multiple register’ function.

0x00 0x0C The starting address of the holding registers to be written, 0x000C means the 3™ holding register of
sensor number 1.

0x00 0x02 The number of holding registers to be written. In this case ‘00 02’ indicates two holding registers are
to be written.

0x04 Byte count, the number of bytes to be written.

0x20 0x00 The value to write to the 3" holding register of sensor one. 0x20 0x00 means that value 8192 is written
in this holding register.

0x04 0xD2 The value to write to the 4" holding register of sensor one. 0x04 0xD2 means that value 1234 is
written in this holding register.
0x7A 0xA7 The final two characters of the command string make up the CRC, used to check for errors in the

message.

A typical response to this example command could be:
0x01 0x10 0x00 0x0C 0x00 0x02 0x81 OxCB

0x01 The address of the slave device (WiSensys I/O Board) that sends the response

0x10 This is the function to which this message is a reply

0x00 0x0C The starting address of the holding registers written, 0x000C means the 3" holding register of sensor
number 1.

0x00 0x02 The number of holding registers written. In this case ‘00 02" indicates that two holding register are
written.

0x81 0xCB The CRC for the response message.

22

"
Center of Excellence
Maét, analysera och férsta

8.1.3 Read holding Registers

A typical MODBUS RTU ‘Read holding registers’ command (request) may look like this:
0x01 0x03 0x00 0x0C 0x00 0x02 0x04 0x08

The actual format of the data depends on the type of command desired. The example above is the MODBUS ‘Read
holding registers’ function. The command above is a request to read 2 holding registers starting from address 12.

0x01 The address of the slave device (WiSensys I/O Board) that should handle the command. Each slave
device has its own unique address.

0x03 Byte code for the MODBUS ‘Read holding registers’ function.
0x00 0x0C The starting address of the registers to be read, 0x000C means the 3t register of sensor number 1.
0x00 0x02 The number of registers to be read. In this case ‘0 02’ indicates two register are to be read.

0x04 0x08 The final two characters of the command string make up the CRC, used to check for errors in the
message.

A typical response to this example command could be:
0x01 0x03 0x04 0x20 0x00 0x04 OxD2 0x68 Ox6E

0x01 The address of the slave device (WiSensys I/O Board) that sends the response
0x03 This is the function to which this message is a reply
0x04 The length byte indicating the number of bytes to follow, this is 2 x the number of register to read as

specified in the request
0x20 0x00 The value read from the 3™ register. 20 00 means the last written ID is 8192

0x04 0xD2 The value read from the 4" register. Register data is read back as 16 bits. 04 D2 means the last written
Data (for ID 8192) is 1234

0x68 0x6E The CRC for the response message.

9 TCP/IP Communication examples
92.1.1 Read Input Registers

A typical Modbus TCP frame ‘Read Input Registers’ command (request) may look like this:
0x00 0x00 0x00 0x00 0x00 0x06 0x01 0x04 0x00 0xOA 0x00 0x02

The actual format of the data depends on the type of command desired. The example above is the MODBUS ‘Read
Input Registers’ function. The command above is a request to read 2 input registers starting from address 10.

0x00 0x00 The Transaction identifier for synchronization between messages of server & client
0x00 0x00 The Protocol identifier, Zero for Modbus/TCP
0x00 0x06 The Length field, Number of remaining bytes in this frame

0x01 The address of the slave device (WiSensys I/0O Board) that should handle the command. Each slave
device has its own unique address.

23

"
Center of Excellence
Maét, analysera och férsta

0x04 Byte code for the MODBUS ‘Read Input Registers’ function.

0x00 0x0A The starting address of the registers to be read, 0x000A means the 1% register of sensor number 1.
0x00 0x02 The number of registers to be read. In this case '00 02’ indicates two register are to be read.

A typical response to this example command could be:

0x00 0x00 0x00 0x00 0x00 0x07 0x01 0x04 0x04 0x00 0x01 0x00 0xD9

0x00 0x00 The Transaction identifier for synchronization between messages of server & client

0x00 0x00 The Protocol identifier, Zero for Modbus/TCP

0x00 0x07 The Length field, Number of remaining bytes in this frame

0x01 The address of the slave device (WiSensys I/O Board) that sends the response
0x04 This is the function to which this message is a reply
0x04 The length byte indicating the number of bytes to follow, this is 2 x the number of register to read as

specified in the request

0x00 0x01 The value read from the 1% register. 00 01 means that this is a temperature sensor, because this is the
1%t register of a sensor block.

0x00 0xD9 The value read from the 2" register. Register data is read back as 16 bits. 00 D9 means the
temperature is 21.7 °C.

92.1.2 Write multiple registers

A typical Modbus TCP frame ‘Write multiple registers’ command (request) may look like this:

0x00 0x00 0x00 0x00 0x00 0x09 0x01 0x10 0x00 0x0C 0x00 0x02 0x04 0x20 0x00 0x00 0X0A

The command above is a request to write 2 holding register starting from address 12.

0x00 0x00 The Transaction identifier for synchronization between messages of server & client
0x00 0x00 The Protocol identifier, Zero for Modbus/TCP

0x00 0x09 The Length field, Number of remaining bytes in this frame

0x01 The address of the slave device (WiSensys I/O Board) that should handle the command. Each slave
device has its own unique address.

0x10 Byte code for the MODBUS ‘Write multiple register’ function.

0x00 0x0C The starting address of the holding registers to be written, 0x000C means the 3% holding register of
sensor number 1.

0x00 0x02 The number of holding registers to be written. In this case ‘00 02’ indicates two holding register is to
be written.

0x04 Byte count, the number of bytes to be written.

24

i n t a b Center of Excellence
Maét, analysera och férsta

0x20 0x00 The value to write to the 3""holding register of sensor one. 0x20 0x00 means that value 8192 is
written in this holding register.

0x00 0x0A The value to write to the 4" holding register of sensor one. 0x00 0x0A means that value 10 is written
in this holding register.

A typical response to this example command could be:

0x00 0x00 0x00 0x00 0x00 0x06 0x01 0x10 0x00 0x0C 0x00 0x02

0x00 0x00 The Transaction identifier for synchronization between messages of server & client

0x00 0x00 The Protocol identifier, Zero for Modbus/TCP

0x00 0x06 The Length field, Number of remaining bytes in this frame

0x01 The address of the slave device (WiSensys I/0O Board) that sends the response

0x10 This is the function to which this message is a reply

0x00 0x0C The starting address of the holding registers written, 0x000C means the 3% holding register of sensor
number 1.

0x00 0x02 The number of holding registers written. In this case ‘00 02’ indicates that two holding register are
written.

2.1.3 Read holding Registers

A typical Modbus TCP frame ‘Read holding registers’ command (request) may look like this:
0x00 0x00 0x00 0x00 0x00 0x06 0x01 0x03 0x00 0x0C 0x00 0x02

The actual format of the data depends on the type of command desired. The example above is the MODBUS ‘Read
holding Registers’ function. The command above is a request to read 2 input registers starting from address 12.

0x00 0x00 The Transaction identifier for synchronization between messages of server & client
0x00 0x00 The Protocol identifier, Zero for Modbus/TCP
0x00 0x06 The Length field, Number of remaining bytes in this frame

0x01 The address of the slave device (WiSensys I/0O Board) that should handle the command. Each slave
device has its own unique address.

0x03 Byte code for the MODBUS ‘Read holding registers’ function.

0x00 0x0C The starting address of the registers to be read, 0x000C means the 3t register of sensor number 1.
0x00 0x02 The number of registers to be read. In this case '00 02’ indicates two register are to be read.

A typical response to this example command could be:

0x00 0x00 0x00 0x00 0x00 0x07 0x01 0x03 0x04 0x10 0x00 0x00 0x10

0x00 0x00 The Transaction identifier for synchronization between messages of server & client

0x00 0x00 The Protocol identifier, Zero for Modbus/TCP

25

0x00 0x07

0x01

0x03

0x04

0x20 0x00

0x00 0x10

"
Center of Excellence
Maét, analysera och férsta

The Length field, Number of remaining bytes in this frame
The address of the slave device (WiSensys I/O Board) that sends the response
This is the function to which this message is a reply

The length byte indicating the number of bytes to follow, this is 2 x the number of register to read as
specified in the request

The value read from the 3™ register. 20 00 means the last written ID is 8192

The value read from the 4" register. Register data is read back as 16 bits. 00 10 means the last written
data (for ID8192)is 10

26

