The Measurement of Profit

1.

Total sales revenue = 250,000 x £2.50 = £625,000 Profit = £625,000 - £125,000 = £500,000

2.

Total sales revenue = $2,300 \times £1.80 = £4,140$ Total costs = $(2,300 \times £0.20) + £2,000 = £2,460$ Profit = £4,140 - £2,460 = £1,680

3.

Yearly sales = 1,400 x 12 = 16,800 Total sales revenue = 16,800 x £120 = £2,016,000 Variable cost per unit = (£120 / 5) x 2 = £48 Total costs = $(16,800 \times £48) + (£75,000 \times 12) = £1,706,400$ Profit = £2,016,000 - £1,706,400 = £309,600

4.

Variable costs = £10 / 4 = £2.50 Total variable costs = £2.50 x 150,000 = £375,000 Total revenue = £10 x 150,000 = £1,500,000 Fixed costs = £1,500,000 - (£375,000 + £250,000) = £875,000

5.

Total revenue = $910 \times £7.50 = £6,825$ Total variable costs = £6,825 - (£3,000 + £2,005) = £1,820Variable cost per bunch of flowers = £1,820 / 910 = £2

6.

Total costs = $(10,000 \times £25) + £200,000 = £450,000$ Total Revenue = £450,000 + £50,000 = £500,000 Selling price per unit = £500,000 / 10,000 = £50

7.

Variable costs = £12 / 3 = £4 Total variable costs = 25,000 x £4 = £100,000 Total revenue = 25,000 x £12 = £300,000 Fixed costs = £300,000 - (£100,000 + £80,000) = £120,000

Profit last year:

Selling price = £1.50 x 1.90 = £2.85 Total revenue = $20,000 \times £2.85 = £57,000$ Total costs = $(20,000 \times 1.50) + £15,000 = £45,000$ Profit = £57,000 - £45,000 = £12,000

Profit this year:

Total revenue = $26,000 \times £2.85 = £74,100$ Fixed costs = £15,000 x 1.15 = £17,250 Total costs = $(26,000 \times £1.50) + £17,250 = £56,250$ Profit = £74,100 - £56,250 = £17,850

Percentage increase in profit = $(£17,850 - £12,000) / £12,000 \times 100 = 48.75\%$

9.

Selling price in $2022 = £5 \times 0.95 = £4.75$ Number of units sold in $2022 = 50,000 \times 1.08 = 54,000$ units Total revenue in $2022 = 54,000 \times £4.75 = £256,500$ Total costs in $2022 = (54,000 \times £1.50) + £75,000 = £156,000$ Profit in 2022 = £256,500 - £156,000 = £100,500

10.

Profit between January and March

Total revenue = $8,000 \times £15 = £120,000$ Total costs = $(8,000 \times £5) + £15,000 = £55,000$ Profit = £120,000 - £55,000 = £65,000

Profit between April and June

New variable cost = £5 x 0.8 = £4 New price = £15 x 0.9 = £13.50 Total revenue = $10,000 \times £13.50 = £135,000$ Total costs = $(10,000 \times £4) + £15,000 = £55,000$ Profit = £135,000 - £55,000 = £80,000

Average profit = (£65,000 + £80,000) / 6 = £24,166.67

Decision Trees

1.

```
(0.7 \times £500,000) + (0.3 \times £50,000) = £365,000 (expected value)
```

2.

```
New 'success' sales amount = £500,000 x 1.05 = £525,000 (0.6 \times £525,000) + (0.4 \times £50,000) = £335,000 (expected value)
```

3.

```
(0.8 \times £220,000) + (0.2 \times £90,000) = £194,000 (expected value) £194,000 - £80,000 = £114,000 (net gain)
```

4.

$$(0.6 \times £340,000) + (0.4 \times £210,000) = £288,000$$
(expected value)

$$£288,000 - £180,000 = £108,000$$
(net gain)

5.

E-commerce

```
(0.7 \times £120,000) + (0.3 \times £40,000) = £96,000 (expected value) £96,000 - £80,000 = £16,000 (net gain)
```

New branch

$$(0.8 \times £90,000) + (0.2 \times £55,000) = £83,000$$
 (expected value) £83,000 - £65,000 = £18,000 (net gain)

The new branch should be chosen, as it has the highest net gain

Option 1

```
Low sales = £50,000 – (£50,000 / 8) = £43,750 (0.6 x £50,000) + (0.4 x £43,750) = £47,500 (expected value) £47,500 - £20,000 = £27,500 (net gain)
```

Option 2

```
High sales = £40,000 x 1.15 = £46,000 (0.7 x £46,000) + (0.3 x £40,000) = £44,200 (expected value) £44,200 - £18,000 = £26,200 (net gain)
```

Option 1 should be chosen, as it has the highest net gain

7.

Reduce Prices

```
(0.7 \times £1,200,000) + (0.3 \times £700,000) = £1,050,000 (expected value) £1,050,000 - £400,000 = £650,000 (net gain)
```

Increase Promotion

```
(0.8 \times £1,400,000) + (0.2 \times £500,000) = £1,220,000  (expected value) £1,220,000 - £600,000 = £620,000 (net gain)
```

Reduce prices should be chosen, as it has the highest net gain

8.

UK Park

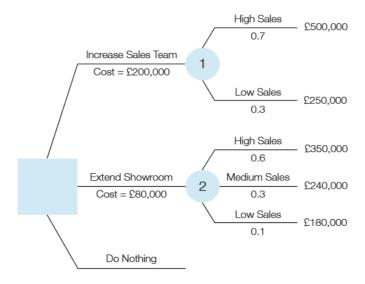
```
(0.7 \times £2,200,000) + (0.3 \times £800,000) = £1,780,000 (expected value) £1,780,000 - £1,500,000 = £280,000 (net gain)
```

South of France Park

```
(0.6 \times £3,000,000) + (0.4 \times £1,800,000) = £2,520,000 (expected value) £2,520,000 - £2,200,000 = £320,000 (net gain)
```

South of France should be chosen, as it has the highest net gain

Delivery service


 $(0.7 \times £120,000) + (0.2 \times £80,000) + (0.1 \times £30,000) = £103,000$ (expected value) £103,000 - £60,000 = £43,000 (net gain)

Extend premises

 $(0.6 \times £140,000) + (0.3 \times £70,000) + (0.1 \times £35,000) = £108,500$ (expected value) £108,500 - £80,000 = £28,500 (net gain)

The delivery service should be chosen, as it has the highest net gain

10.

Increasing size of sales team

 $(0.7 \times £500,000) + (0.3 \times £250,000) = £425,000$ (expected value) £425,000 - £200,000 = £225,000(net gain)

Extend the showroom

 $(0.6 \times £350,000) + (0.3 \times £240,000) + (0.1 \times £180,000) = £300,000$ (expected value) £300,000 - £80,000 = £220,000 (net gain)

Increasing the size of the sales team should be chosen, as it has the highest net gain

Market share, size and growth

1.

```
Business A = (£20m/£240m) \times 100 = 8.33\%
Business B = (£18m/£150m) \times 100 = 12\%
Business C = (£10m/£80m) \times 100 = 12.5\%
```

Business A has the lowest market share

2.

Market Value = £4bn

Business A = £4bn x 0.30 = £1.2bnBusiness B = £4bn x 0.20 = £0.8bnBusiness C = £4bn x 0.25 = £1 bnBusiness D = £4bn x 0.10 = £0.4bnBusiness E = £4bn x 0.15 = £0.6bn

3.

Sales revenue now = $100 \times £480 = £48,000$

Sales revenue next year = £48,000 x 1.10 = £52,800Sales revenue in two years = £52,800 x 1.10 = £58,080Sales revenue in three years = £58,080 x 1.10 = £63,888

Difference in sales revenue = £63,888 - £48,000 = £15,888

4.

5.

$$(£575,000 / 7) \times 100 = £8,214,285.71$$

6. 2023 = £5bn x 1.06 = £5.3bn 2024 = £5.3bn x 1.06 = £5.62bn

Sales revenue last year = £69,525 / 1.03 = £67,500Market size by value last year = £459,000 / 1.02 = £450,000Market share = $(£67,500 / £450,000) \times 100 = 15\%$

8.

Market size by value

2,500 x £5 = £12,500 £12,500 / 10 = £1,250 £1,250 x 100 = £125,000

Market size by volume

2,500 / 10 = 250 250 x 100 = 25,000 units

9.

150,000 × 1.35 = 202,500 (202,500 / 25) x 100 = 810,000 units

10.

The market has grown by 15% every year between 2020 and 2022 2023 market size by value = £5.29m x 1.15 = £6.0835m Market share of the business in 2023 = (£1.51m / £6.0835m) x 100 = 24.82%

Price and Income Elasticity of Demand

Price Elasticity of Demand

1.

Demand will change by = $10\% \times -0.4 = -4\%$ New weekly demand = $500 \times 0.96 = 480$ products

2.

Percentage price change = $(£1.60 - £2) / 2 \times 100 = -20\%$ Percentage change in demand = $-20\% \times -2 = 40\%$ New demand = $800 \times 1.4 = 1,120$ burgers

3.

Percentage change in demand = $(4,000 - 5,000) / 5,000 \times 100 = -20\%$ Percentage price increase = $(£15 - £10) / £10 \times 100 = 50\%$ Price elasticity of demand = -20% / 50% = -0.4

4.

Current weekly revenue = $600 \times £1 = £600$ New price = £1 x 0.8 = £0.80 Percentage change in demand = $-20\% \times -3 = 60\%$ New demand = $600 \times 1.6 = 960$ ice creams New revenue = $960 \times £0.80 = £768$ Percentage change in revenue = $(£768 - £600) / £600 \times 100 = 28\%$

5.

Current weekly profit

Total sales revenue = $400 \times £50 = £20,000$ Total costs = $(400 \times £10) + £10,000 = £14,000$ Profit = £20,000 - £14,000 = £6,000

Price increase = $(£60 - £50) / £50 \times 100 = 20\%$ Percentage change in demand = $20\% \times -0.2 = -4\%$ New demand = $400 \times 0.96 = 384$ units

New total sales revenue = $384 \times £60 = £23,040$ New total costs = $(384 \times £10) + £10,000 = £13,840$ New profit = £23,040 - £13,840 = £9,200

Difference in weekly profit = £9,200 - £6,000 = £3,200

Income Elasticity of Demand

1.

Percentage increase in demand = $(832 - 800) / 800 \times 100 = 4\%$ Income increased by = 4% / +0.8 = 5%

2.

Percentage increase in sales = (6,400 - 5,000) / 5000 = 28%Income elasticity of demand = 28% / 7% = +4

3.

Percentage change in demand = $-0.3 \times 2.3\% = -0.69\%$ New revenue = $(1 - 0.0069) \times 25,000,000 \times 0.99 = £24,579,225$

4.

Percentage change in income between 2015 and 2016 = $(105 - 100) / 100 \times 5 = 5\%$ Percentage change in demand between 2015 and 2016 = $+1.3 \times 5\% = 6.5\%$ Number of luxury handbags sold in 2016 = $1,800 \times 1.065 = 1,917$ bags

5.

Change in demand for bread rolls = $\pm 0.4 \times -5\% = -2\%$ New daily demand for bread rolls = $\pm 400 \times 0.98 = 392$ bread rolls Change in demand for ciabattas = $\pm 2 \times -5\% = -10\%$ New daily demand for ciabattas = $\pm 100 \times 0.90 = 90$ ciabattas Currently weekly revenue = ± 1.386 New weekly revenue = ± 1.386 New weekly revenue = ± 1.386

Difference in weekly revenue = (£1,386 - £1,293.48) = £92.52

Calculation of Operations Data

Labour Productivity

1.

Labour productivity = 240,000 / 150 = 1,600 units per staff member

2.

Number of employees = 125,400 / 550 = 228 employees

3.

Labour productivity last year = 45,000 / 100 = 450 units per person Labour productivity this year = $60,000 / (100 \times 1.20) = 500$ units per person Percentage difference in labour productivity = $(500 - 450) / 450 \times 100 = 11.11\%$

4.

Employees last year = 159 / 1.06 = 150 employees Units produced last year = 19,800 / 1.10 = 18,000Labour productivity last year = 18,000 / 150 = 120 units per employee

5.

Factory A employees = $(15,000 / 100) \times 20 = 3,000$ Factory C employees = $(15,000 / 100) \times 30 = 4,500$

Factory A labour productivity = 450,000 / 3,000 = 150 units per employee Factory C labour productivity = 562,500 / 4,500 = 125 units per employee

Unit Costs

1.

Total costs of producing 60,000 units = $(60,000 \times £1.50) + £15,000 = £105,000$ Cost per unit = £105,000 / 60,000 = £1.75 per unit

Business A = $(100,000 \times £0.40) + £40,000 = £80,000$ Cost per unit = £80,000 / 100,000 = £0.80 per unit

Business B = $(50,000 \times £1.50) + £25,000 = £100,000$ Cost per unit = £100,000 / 50,000 = £2 per unit

Business C = $(80,000 \times £0.80) + £60,000 = £124,000$ Cost per unit = £124,000 / 80,000 = £1.55 per unit

Business A has the lowest cost per unit

3.

Unit costs before cost increase = $(40,000 \times £0.50) + £10,000 = £30,000$ Cost per unit before increase = £30,000 / 40,000 = £0.75 per unit

Unit costs after cost increase = $(40,000 \times £0.80) + £10,000 = £42,000$ Cost per unit after increase = £42,000 / 40,000 = £1.05 per unit

Percentage difference = $(£1.05 - £0.75) / £0.75 \times 100 = 40\%$

4.

FC = £8,000 per month (£96,000 / 12)

Total cost in July = $(500 \times £20) + £8,000 = £18,000$ Unit cost in July = £18,000 / 500 = £36 per unit

Total cost in October = $(800 \times £20) + £8,000 = £24,000$ Unit cost in October = £24,000 / 800 = £30 per unit

5.

Total cost in the UK = $(400,000 \times £2) + £120,000 = £920,000$ Unit cost in the UK = £920,000 / 400,000 = £2.30

Total cost in Poland = $(400,000 \times £1.60) + £108,000 = £748,000$ Unit cost in Poland = £748,000 / 400,000 = £1.87

Difference in unit costs = £2.30 - £1.87 = £0.43

(Note: Poland variable cost calculated by £2 x 0.80 and fixed cost calculated by £120,000 x 0.90)

Capacity and Capacity Utilisation

1.

Units per week = $50,000 \times 1.08 = 54,000 \text{ units per week}$

2.

Capacity last year = 441,000 / 1.05 = 420,000 units per year

3.

Capacity utilisation = $(17,000 / 25,000) \times 100 = 68\%$

4.

Theatre capacity = $(476 / 85) \times 100 = 560$ people

5.

Current output = $(24,000 \times 5) \times 50 = 6,000,000$ Capacity utilisation = $(6,000,000/10,000,000) \times 100 = 60\%$

6.

Total capacity between January and June = 600,000Actual output between January and June = 35,000 + 50,000 + 45,000 + 40,000 + 55,000 + 50,000 = 275,000 units Average capacity utilisation = $(275,000 / 600,000) \times 100 = 45.83\%$

Current capacity = $(42,750 / 95) \times 100 = 45,000$ New capacity after extension = $45,000 \times 1.20 = 54,000$ Increase in capacity = 54,000 - 45,000 = 9,000

8.

7.

Current capacity = $(450 / 60) \times 100 = 750$ Capacity per screen = 750 / 3 = 250New capacity = 750 - 250 = 500New capacity utilisation = $(450 / 500) \times 100 = 90\%$

9.

Based on the scenario, if the business increased capacity by 10%, then for every 110 units that the business could produce, the business is only producing 75 units New capacity utilisation = $(75 / 110) \times 100 = 68.18\%$

```
Current capacity = (237,500 / 95) \times 100 = 250,000
New capacity after move = 250,000 \times 1.875 = 468,750
New output = 237,500 + 100,000 = 337,500
New capacity utilisation = (337,500 / 468,750) \times 100 = 72\%
```

Inventory Control

1.

Total amount of this component used by the business during months 1-5 inclusive:

Month 1: 800 units Month 2: 800 units Month 3: 800 units Month 4: 800 units Month 5: 1,000 units

Total = 4,200 units

Number of days during the 5-month period = $30 \times 5 = 150 \text{ days}$ Average daily usage across months 1-5 = 4,200 units/150 days = 28 units per day

2.

200 units

3.

Inventory holding in month 1 = 1,000 units Order triggered after 40% of the inventory has been used = $1,000 \times 0.4 = 400$ units Re-order level = 1,000 units -400 units = 600 units

4.

Number of components used by the business each day in month 1 = 800 units/30 days = 26.67 units Lead time = 400 units/26.67 units = 15 days

5.

Usual delivery = 800 units x 0.75 = 600 units extra components Total re-order quantity in month 6 = 800 units + 600 units extra + 200 units for buffer inventory = 1,600 units

Return on Investment

1.

Annual percentage return = $(£120,000 / £300,000) \times 100 = 40\%$

2.

Cost of investment = $(£60,000 / 25) \times 100 = £240,000$

3.

Store 1

Investment = £205,000 x 0.45 = £92,250Return on investment= (£65,000 / £92,250) x 100 = 70.46%

Store 2

Investment = £205,000 x 0.30 = £61,500Return on investment = (£50,000 / £61,500) x 100 = 81.30%

Store 3

Investment = £205,000 x 0.25 = £51,250 Return on investment = (£27,000 / £51,250) x 100 = 52.68%

Store 2 had the highest return on investment

4.

Total additional revenue = (£15,000 + £18,000 + £20,000) = £53,000Total additional costs = (£5,000 + £7,000 + £10,000) = £22,000

Total return = £53,000 - £22,000 = £31,000

Total return investment after 3 years = $(£31,000 / £140,000) \times 100 = 22.14\%$

5.

Additional revenue = $(£150,000 \times 1.35) - £150,000 = £52,500$ Additional labour costs = $(£50,000 \times 1.20) - £50,000 = £10,000$ Other additional costs = £20,000

Annual return = £52,500 – (£10,000 + £20,000) = £22,500 Annual percentage return on investment = (£22,500 / £100,000) x 100 = 22.5%

Analysing budgets

```
1.
Profit Budget = £450,000 x 1.05 = £472,500
2.
Expenditure Budget = £250,000 x 0.98 = £245,000
3.
1/5 of £25,000 = £25,000 / 5 = £5,000
Expenditure budget = £25,000 - £5,000 = £20,000
4.
Revenue budget = £25,000 x 1.15 = £28,750
2/5th of £20,000 = (£20,000 / 5) x 2 = £8,000
Expenditure budget = £20,000 + £8,000 = £28,000
Profit budget = £28,750 - £28,000 = £750
5.
Budgeted food revenue in September = £5,800 x 1.06 = £6,148
Budgeted drink revenue in September = £1,900 x 1.06 = £2,014
Stock expenditure = £1,250 x 0.98 = £1,225
Profit/Loss budget = (£6,148 + £2,014) - (£1,225 + £1,000 + £120) = £5,817
6.
Profit variance = £730,000 - £850,000 = £120,000 adverse
7.
Profit budget = £325,000 - £210,000 = £115,000
Actual revenue = £325,000 - £50,000 = £275,000
Actual expenditure = £210,000 x 1.08 = £226,800
Actual profit = £275,000 - £226,800 = £48,200
Profit variance = £48,200 - £115,000 = £66,800 adverse
8.
Actual total profit = £24,000 + £16,000 = £40,000
Budgeted total profit = £20,000 + £18,000 = £38,000
Total profit variance = £40,000 - £38,000 = £2,000 favourable
```

Actual store revenue = £22,000 x 1.05 = £23,100 Actual online revenue = (£6,000 / 5) x 4 = £4,800 Actual total revenue = £23,100 + £4,800 = £27,900

Actual wages expenditure = £8,000 + £500 = £8,500 Actual stock expenditure = £6,000 x 0.98 = £5,880Actual other costs = £2,100 Actual total expenditure = £8,500 + £5,880 + £2,100 = £16,480

Budgeted total revenue = £22,000 + £6,000 = £28,000 Budgeted total expenditure = £8,000 + £6,000 + £2,000 = £16,000

Actual profit = £27,900 - £16,480 = £11,420 Budgeted profit = £28,000 - £16,000 = £12,000

October profit variance = £11,420 - £12,000 = £580 adverse

10.

Total actual revenue = £184,000 + £190,000 + £208,000 = £582,000 Total actual expenditure = £170,000 + £178,000 + £181,000 = £529,000 Total actual profit = £582,000 - £529,000 = £53,000

Total budgeted revenue = £175,000 + £182,000 + £205,000 = £562,000 Total budgeted expenditure = £162,000 + £171,000 + £182,000 = £515,000 Total budgeted profit = £562,000 - £515,000 = £47,000

Total profit variance = £53,000 - £47,000 = £6,000 favourable

Cash Flow Forecasts

1.

October net cash flow = £10,000 - £4,000 = £6,000 October opening balance = £8,000 October closing balance = £8,000 + £6,000 = £14,000

2.

	January	February	March
Cash Inflows	£10,000	£12,000	£13,000
Cash Outflows	£4,000	£5,000	£5,500
Net Cash Flow	£6,000	£7,000	£7,500
Opening Balance	£3,000	£9,000	£16,000
Closing Balance	£9,000	£16,000	£23,500

3.

New net cash flow = £15,000 - £7,000 = £8,000 New closing balance = £16,000 + £8,000 = £24,000

4.

	January	February	March
Cash Inflows	£3,750	£4,500	£6,750
Cash Outflows	£1,050	£1,750	£4,200
Net Cash Flow	£2,700	£2,750	£2,550
Opening Balance	£2,500	£5,200	£7,950
Closing Balance	£5,200	£7,950	£10,500

	Quarter 1	Quarter 2
Cash Inflows	£31,250	£42,900
Cash Outflows	£66,000	£24,150
Net Cash Flow	(£34,750)	£18,750
Opening Balance	£24,000	(£10,750)
Closing Balance	(£10,750)	£8,000

Quarter 2

Cash Inflows = £7,000 x 1.60 = £11,200 Cash Outflows = £3,200 x 1.75 = £5,600 Net Cash Flow = £11,200 - £5,600 = £5,600 Closing balance = £5,600 + £5,800 = £11,400

7.

	January	February	March
Inflows			
Revenue	£20,000	£25,000	£31,250
Total Inflows	£20,000	£25,000	£31,250
Outflows			
Marketing	£4,000		
Wages	£6,250	£6,250	£6,250
Loan Repayments		£1,050	£1,050
Additional Costs	£3,000	£3,750	£4,687.50
Total Outflows	£13,250	£11,050	£11,987.50
Net Cash Flow	£6,750	£13,950	£19,262.50
Opening Balance	£15,000	£21,750	£35,700
Closing Balance	£21,750	£35,700	£54,962.50

8.

Net Cash Flow = $(£250,000 / 5) \times 2 = £100,000$ Total Outflow = (£100,000 / 4) = £25,000Inflows — Outflows = Net Cash Flow, so Total Cash Inflows = Net Cash Flow + Total Cash Outflows Total Cash Inflow = £100,000 + £25,000 = £125,000

9.

	Month 1	Month 2	Month 3	Month 4
Total Cash	£10,000	£9,000	£12,000	£17,000
Inflow				
Total Cash	£3,000	£4,000	£7,000	£3,000
Outflow				
Net Cash Flow	£7,000	£5,000	£5,000	£14,000
Opening	£0	£7,000	£12,000	£17,000
Balance				
Closing Balance	£7,000	£12,000	£17,000	£31,000

10.

Total cash inflows = £40,000 x 0.5 = £20,000

Total cash outflows = £40,000 x 0.4 = £16,000Outflows payable immediately = £16,000 x 0.6 = £9,600Net cash flow = £20,000 - £9,600 = £10,400

Break-Even Analysis (including margin of safety, contribution per unit and total contribution)

1.

Variable cost per unit = £2.50 / 5 = £0.50 Contribution per unit = £2.50 - £0.50 = £2.00 Total contribution = £2.00 x 20,000 units = £40,000

2.

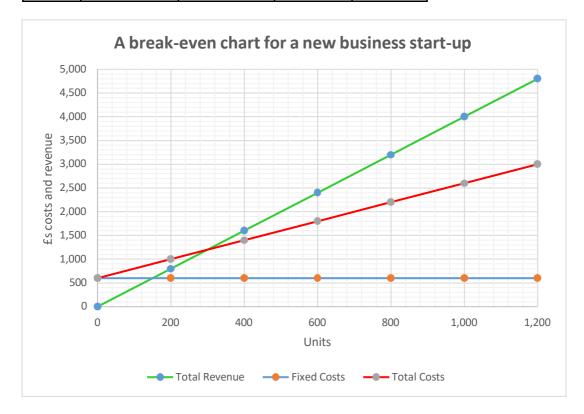
Current total monthly contribution = $(£3.00 - £1.20) \times 24,000 = £43,200$ New total monthly contribution = $(£3.20 - £1.20) \times (24,000 \times 0.98) = £47,040$ Difference in total monthly contribution = £47,040 - £43,200 = £3,840

3.

£50 / (£2.50 - £1.25) = 40 cupcakes

4.

Yearly fixed costs = £5,000 x 52 = £260,000 Yearly break-even = £260,000 / (£150 - £20) = 2,000 units Yearly margin of safety = 6,000 - 2,000 = 4,000 units


5.

Current break-even = £6,000 / (£4-£0.80) = 1,875 units Current margin of safety = 5,000 - 1,875 = 3,125 units

New fixed costs based on proposed move = £6,000 x 1.04 = £6,240New break-even based on proposed move = £6,240 / (£4 - £0.80) = 1,950 units New margin of safety based on proposed move = 5,000 - 1,950 = 3,050 units

Difference in margin of safety = 3,125 - 3,050 = 75 units

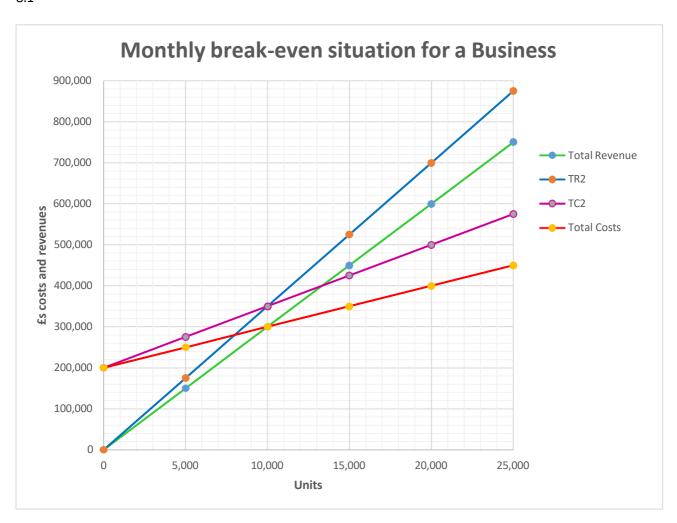
Output	Total Revenue	Variable Costs	Fixed Costs	Total Costs
0	£0	£0	£600	£600
200	£800	£400	£600	£1,000
400	£1,600	£800	£600	£1,400
600	£2,400	£1,200	£600	£1,800
800	£3,200	£1,600	£600	£2,200
1000	£4,000	£2,000	£600	£2,600
1200	£4,800	£2,400	£600	£3,000

6.2

Break-even point is 300 units

6.3

Weekly margin of safety = 1,200 units – 300 units = 900 units


Total variable costs at 2,500 units = £50,000 - £30,000 = £20,000 Total contribution at 2,500 units = £80,000 - £20,000 = £60,000

7.2

Total variable costs at 2,500 units = £20,000/2,500 = £8

7.3

Total profit at 3,000 units = £96,000 - £54,000 = £42,000

Total variable costs at 10,000 units (easiest point to read from the graph) = £300,000 - £200,000 = £100,000

Original variable cost per unit £100,000 / 10,000 = £10 New variable cost per unit = £10 x 1.50 = £15 Total costs at 25,000 units = $(25,000 \times £15) + £200,000 = £575,000$

TC2 correct intersection with "Y" axis at £200,000 TC2 correct total cost value above 25,000 units = £575,000

Original selling price per unit £300,000 / 10,000 = £30 (easiest point to read from the graph) Original contribution per unit = £30 - £10 = £20 New selling price to maintain contribution per unit = £35 Total revenue at 25,000 units at new selling price = 25,000 x £35 = £875,000

TR2 correct intersection with "Y" axis at £0
TR2 correct total revenue value above 25,000 units = £875,000

New break-even point = 10,000 units Original break-even point = 10,000 units Difference = 0 units

9.

Contribution per unit = £150,000 / 50,000 = £3 Variable cost per unit = £5 - £3 = £2

10.

Current break-even = £18,000 / (£1.20 – £0.80) = 45,000 units Variable cost after change in supplier = £0.80 - £0.05 = £0.75 New break-even = £18,000 / (£1.20 - £0.75) = 40,000 units Difference in break-even = 45,000 - 40,000 = 5,000 unit

Analysing Profitability

1.

Gross profit = £3.25m x 0.54 = £1.755mProfit from operations = £3.25m x 0.12 = £390,000Profit for the year = £3.25m x 0.045 = £146,250

2.

Gross profit margin = $(£85,000 / £450,000) \times 100 = 18.89\%$ Profit from operations margin = $(£28,000 / £450,000) \times 100 = 6.22\%$ Profit for year margin = $(£15,400 / £450,000) \times 100 = 3.42\%$

3.

Gross profit = £1,255,000 - £480,000 = £775,000 Gross profit margin = (£775,000 / £1,255,000) x 100 = 61.75%

Profit from operations = £775,000 - £350,000 = £425,000 Profit from operations margin = $(£425,000 / £1,255,000) \times 100 = 33.86\%$

Profit for the year = £425,000 - £85,500 = £339,500 Profit for the year margin = $(£339,500 / £1,255,000) \times 100 = 27.05\%$

Revenue = £1,255,000 x 1.15 = £1,443,250 Cost of sales = £480,000 x 1.22 = £585,600 Operating costs = £350,000 x 1.05 = £367,500 Net finance costs and tax = £85,500 x 1.08 = £92,340

Gross profit = £1,443,250 - £585,600 = £857,650 Gross profit margin = (£857,650 / £1,443,250) x 100 = 59.42%

Profit from operations = £857,650 - £367,500 = £490,150 Profit from operations margin = $(£490,150 / £1,443,250) \times 100 = 33.96\%$

Profit for the year = £490,150 - £92,340 = £397,810 Profit for the year margin = $(£397,810 / £1,443,250) \times 100 = 27.56\%$

5.

Product A Gross Profit = £140,000 x 0.45 = £63,000 Product B Gross Profit = £360,000 x 0.38 = £136,800 Product C Gross Profit = £780,500 x 0.52 = £405,860

Total Revenue = (£140,000 + £360,000 + £780,500) = £1,280,500Total Gross Profit = (£63,000 + £136,800 + £405,860) = £605,660

Profit from operations = £605,660 - £500,000 = £105,660 Profit from operations margin = $(£105,660 / £1,280,500) \times 100 = 8.25\%$

Profit for the year = £105,660 - £72,000 = £33,660 Profit for the year margin = $(£33,660 / £1,280,500) \times 100 = 2.63\%$

6.

Gross profit = £10,600,000 x 0.45 = £4,770,000 Profit from operations = £10,600,000 x 0.25 = £2,650,000 Profit for the year = £10,600,000 x 0.05 = £530,000

7.

Sales revenue = £10,600,000 x 1.11 = £11,766,000 Gross profit = £4,770,000 x 1.05 = £5,008,500 Profit from operations = £2,650,000 x 1.04 = £2,756,000 Profit for the year = £530,000 x 0.98 = £519,400

Gross profit margin = $(£5,008,500/£11,766,000) \times 100 = 42.57\%$ Profit from operations margin = $(£2,756,000/£11,766,000) \times 100 = 23.42\%$ Profit for the year margin = $(£519,400/£11,766,000) \times 100 = 4.41\%$

Product 1 sales revenue = £2,800,000 x 0.15 = £420,000 Product 1 gross profit = £420,000 x 0.45 = £189,000

Product 2 sales revenue = £2,800,000 x 0.20 = £560,000 Product 2 gross profit = £560,000 x 0.40 = £224,000

Product 3 sales revenue = £2,800,000 x 0.32 = £896,000 Product 3 gross profit = £896,000 x 0.38 = £340,480

Product 4 sales revenue = £2,800,000 x 0.33 = £924,000 Product 4 gross profit = £924,000 x 0.24 = £221,760

Total gross profit = £975,240 Gross profit margin = $(£975,240 / £2,800,000) \times 100 = 34.83\%$

Profit from operations = £975,240 - £450,000 = £525,240 Profit from operations margin = $(£525,240 / £2,800,000) \times 100 = 18.76\%$

9.

Last Year

Revenue = £450,000 Profit from operations = £450,000 x 0.12 = £54,000Net finance costs and tax = £54,000 x 0.375 = £20,250Profit for the year = (£54,000 - £20,250) / £450,000 x 100 = 7.5%

Two Years Ago

Revenue = £600,000 Profit from operations = £600,000 x 0.08 = £48,000Net finance costs and tax = £48,000 x 0.375 = £18,000Profit for the year margin = (£48,000 - £18,000) / £600,000 x 100 = 5%

10.

Sales revenue = £600,000 x 1.15 = £690,000 Profit from operations margin = (£52,400 / £690,000) x 100 = 7.59% Net finance costs and tax = £52,400 x 0.375 = £19,650 Profit for the year margin = (£52,400 - £19,650) / £690,000 x 100 = 4.75%

Calculation of Human Resource Data

Labour Turnover

```
1.
```

Labour turnover = $(81/1,350) \times 100 = 6\%$

2.

 $80 \times 0.15 = 12$ employees $(12/2) \times £1,250 = £7,500$

3.

5,600/16 = 350 workers $(42/350) \times 100 = 12\%$

4.

Store A = $500 \times 0.12 = 60$ employees. $60 \times 0.10 = 6$ employees Store B = $500 \times 0.16 = 80$ employees. $80 \times 0.025 = 2$ employees Store $C = 500 \times 0.18 = 90$ employees. $90 \times 0.10 = 9$ employees Store D = $500 \times 0.12 = 60$ employees. $60 \times 0.05 = 3$ employees Store E = $500 \times 0.24 = 120$ employees. $120 \times 0.075 = 9$ employees Store F had 0% labour turnover

Total number of employees who left the business last year = 29 employees

5.

Total number of employees last year = $320 \times 1.15 = 368$ $368 \times 0.25 = 92 \text{ employees}$

Labour productivity

```
364,000 / 52 = 7,000  units per week
7,000/4,000 = 1.75
```

2. Total manufacturing staff = $(84/7) \times 5 = 60 \text{ staff}$ 60/2 = 30 staff per shift $30 \times 15 = 450$ units of output per shift

3. Total manufacturing staff = 60 + 6 = 66 staff Staff per shift = 66/2 = 33 staff Total output = 450 x 1.10 = 495 495/33 = 15 units

```
4.
Current output per worker, per week = 32,000/40 = 800 units
After training = 800 x 1.2 = 960 units
5.
Total number of workers = £748,000/£22,000 = 34 workers
Daily output = 228,480/240 = 952 units
Daily labour productivity = 952/34 = 28 units
```

Employee costs as a percentage of turnover

```
1.
(£127,500/£850,000) \times 100 = 15\%
2.
Turnover = 245,000 x £2.50 = £612,500
£612,500 \times 0.20 = £122,500
3.
Turnover = (£648,000/80) \times 100 = £810,000
Employee costs as a percentage of turnover = (£202,500/ £810,000) x 100 = 25%
4.
Worker pay this year = £18,000 x 1.04 = £18,720
Total labour costs = £18,720 x 10 = £187,200
Turnover this year = £600,000 x 1.10 = £660,000
Employee costs as a percentage of turnover = (£187,200/£660,000) x 100 = 28.36%
5.
Labour costs last year = £250,000 x 0.20 = £50,000
Turnover based on new capacity = £250,000 x 1.15 = £287,500
Labour costs based on new capacity = £50,000 x 1.05 = £52,500
Employee costs as a percentage of turnover = (£52,500/£287,500) \times 100 = 18.26\%
```

```
Labour costs per unit
```

```
1. £34,500/6,000 = £5.75

2. Total number of tables per year = 335 \times 25 = 8,375
£50,250/8,375 = £6

3. 8,375 \times 1.20 = 10,050
£50,250/10,050 = £5

4. Total manufacturing cost per car = £14,000/1.40 = £10,000 Labour cost per car = £10,000 \times 0.15 = £1,500

5. Total labour costs = £400,000 \times 0.30 = £120,000 Total output = 50 \times 1,000 = 50,000 units
```

Financial Ratio Analysis

Return on Capital Employed

1.

ROCE = $(£4m / £20m) \times 100 = 20\%$

2.

Operating Profit = £12m x 0.15 = £1.8 million

Labour cost per unit = £120,000/50,000 = £2.40

3.

Capital employed = £14m + £7m = £21m Return on capital employed = $(£2m / £21m) \times 100 = 9.52\%$

4. Operating profit = £2.5m x 0.08 = £200,000 Capital employed = £1m + £250,000 = £1.25m Return on capital employed = (£200,000/£1.25m) x 100 = 16%

```
Operating profit = £5m - (£2m + £1.9m) = £1.1m
Capital employed = £0.5m + £1.8m = £2.3m
Return on capital employed = (£1.1m / £2.3m) \times 100 = 47.83\%
```

Liquidity

1.

Current Ratio = £200,000/ £160,000 = 1.25:1

2.

Current assets = £600,000 Current liabilities = £400,000 Current ratio = £600,000 / £400,000 = 1.5:1

3.

Current assets = $£2m \times 1.8 = £3.6m$

4.

Current assets = £800,000 Current liabilities = £800,000 x 0.8 = £640,000Current ratio = £800,000 / £640,000 = 1.25:1

5.

Current ratio before Current assets = £350,000 Current liabilities = £200,000 Current ratio = £350,000 / £200,000 = 1.75:1

Current ratio after
Inventory = £220,000
Receivables = £50,000
Cash = £30,000
Current assets = £300,000
Current liabilities = £150,000
Current ratio = £300,000 / £150,000 = 2:1

Gearing

1.

£300,000 / (£500,000 + £300,000) x 100 = 37.5%

2.

Gearing = $(£9m / £15m) \times 100 = 60\%$

3.

Non-current liabilities = £5m x 0.20 = £1m

4.

Current gearing

Gearing =£6.75m / (£6.75m + £8.25m) x 100 = 45%

New gearing

Non-current liabilities = £6.75m + £2m = £8.75m

Gearing = £8.75m / (£8.75m + £8.25m) x 100 = 51.47%

5.

Current gearing

Non-current liabilities = £4m x 1.9 = £7.6m

Gearing = $(£7.6m / £19m) \times 100 = 40\%$

New gearing

Additional borrowing = £8m

Gearing = $(£7.6m + £8m) / (£19m + £8m) \times 100 = 57.78\%$

Efficiency Ratios

 $(£80,000 / 8) \times 12 = £120,000$ Net cash flows in Year 4 = £120,000

```
Payables days = (£10,000 / £250,000) \times 365 = 14.6 \text{ days}
Receivables days = (£24,000 / £800,000) \times 365 = 10.95  days
2.
Inventory turnover = £140m / £50m = 2.8 \text{ times or } 130.36 \text{ days } (365 / 2.8)
3.
Cost of sales = £150m - £80m = £70m.
Average inventory held = £70m / 20 = £3.5m
Payables days = (£4m / £22m) \times 365 = 66.36 \text{ days}
Receivables days = (£11m / £55m) \times 365 = 73 \text{ days}
Inventory turnover = £22m / £10m = 2.2 times or 165.91 days (365 / 2.2)
5.
Cost of sales = £900,000 - £400,000 = £500,000
Payables = £50,000 x 0.2 = £10,000
Receivables = £90,000 x 0.4 = £36,000
Payables days = (£10,000 / £500,000) \times 365 = 7.3 \text{ days}
Receivables days = (£36,000 / £900,000) \times 365 = 14.6 \text{ days}
Investment Appraisal
Payback
1.
After 3 years £170,000 has been returned (£50,000 + £60,000 + £60,000) leaving £30,000 to be
Year 4 net cash flow = £80,000
(£30,000 / £80,000) \times 12 = 4.5 \text{ months}
Payback = 3 years and 4.5 months
2.
Total net cash flows after 3 years = £220,000
That leaves £80,000 to be repaid (£300,000 - £220,000)
```

Net Cash Flows:

Year 1 = £100,000 Year 2 = £120,000 Year 3 = £120,000 Year 4 = £140,000 After 2 years £220,000 has been repaid (£100,000 + £120,000) leaving £105,000 to be repaid Year 3 net cash flow = £120,000 (£105,000 / £120,000) x 12 = 10.5 months Payback = 2 years and 10.5 months

4.

Year 3 inflows = £200,000 x 1.10 = £220,000 Year 3 outflows = £80,000 x 1.10 = £88,000 Year 3 net cash flow = £220,000 - £88,000 = £132,000 (£105,000 / £132,000) x 12 = 9.54 Payback = 2 years and 9.55 months

5.

Net Cash Flows:

Year 1 = £350,000 Year 2 = £350,000 Year 3 = £500,000 Year 4 = £700,000 Year 5 = £750,000 After 3 years £1,200,000 has been returned leaving £500,000 to be repaid (£500,000 / £700,000) x 12 = 8.57 Payback = 3 years and 8.57 months

Accounting Rate of Return (ARR)

1.

Total Return = £37,000 x 4 - £120,000 = £28,000 Average Annual Return = £28,000/4 = £7,000 ARR = (£7,000/£120,000) x 100 = 5.83%

2.

Total return = (£600,000 - £400,000) - £140,000 = £60,000Average Annual Return = £60,000/5 = £12,000ARR = $(£12,000/£140,000) \times 100 = 8.57\%$

Site A

Total Cost = £1,400,000 + (£100,000 x 5) = £1,900,000 Total Return = (£425,000 x 5) - £1,900,000 = £225,000 Average Annual Return = £225,000/5 = £45,000 ARR = (£45,000/£1,400,000) x 100 = 3.21%

Site B

Total Cost = £2,000,000 + (£40,000 x 5) = £2,200,000 Total Return = (£425,000 x 1.25) x 5 - £2,200,000 = £456,250 Average Annual Return = £456,250/5 = £91,250 ARR = (£91,250/£2,000,000) x 100 = 4.56%

4.

Total Cash Inflows = £120,000+£150,000+£180,000+£240,000+£260,000 = £950,000
Total Cash Outflows = £100,000 + (£220,000+£170,000+£130,000+£130,000+£120,000) = £870,000
Total Return = £950,000 - £870,000 = £80,000
Average Annual Return = £80,000/5 = £16,000
ARR = (£16,000/£100,000) x 100 = 16%

5.

Option 1

Total Return June = £1,500 July = $(£1,500 \times 1.2) = £1,800$ August = $(£1,800 \times 1.2) = £2,160$ September = $(£2,160 \times 1.2) = £2,592$ (£1,500 + £1,800 + £2,160 + £2592) - £4,000 = £4,052 Average Monthly Return = £4,052/4 = £1,013 ARR = $(£1,013/£4,000) \times 100 = 25.33\%$

Option 2

Total Return = £2,500 x 4 + (£2,500 x 0.8) - £6,000 = £6,000 Average Monthly Return = £6,000/5 = £1,200 ARR = (£1,200/£6,000) x 100 = 20%

Net present value

1

Year	Net Cash Flows	7% Discount Factor	Present Value
0	(£150,000)	1	(£150,000)
1	£175,000	0.935	£163,625
2	£220,000	0.873	£192,060
3	£280,000	0.816	£228,480
NPV = £434,165		Total	£434,165

2.

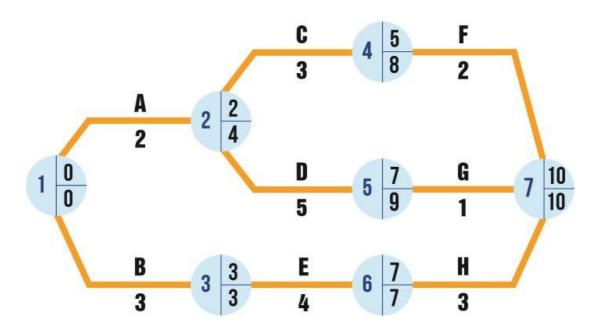
Year	Net Cash Flow	5 % Discount	Present Value
		Factor	
0	(£120,000)	1	(£120,000)
1	£30,000	0.952	£28,560
2	£40,000	0.907	£36,280
3	£40,000	0.864	£34,560
4	£55,000	0.823	£45,265
5	£80,000	0.784	£62,720
NPV = £87,385		Total	£87,385

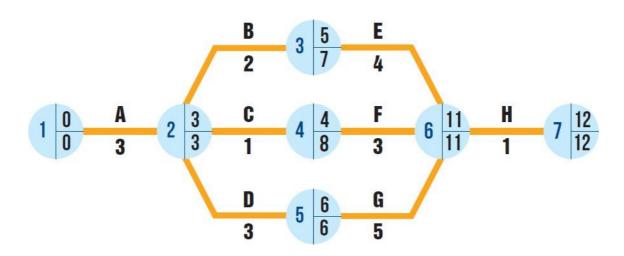
3. Machine 1

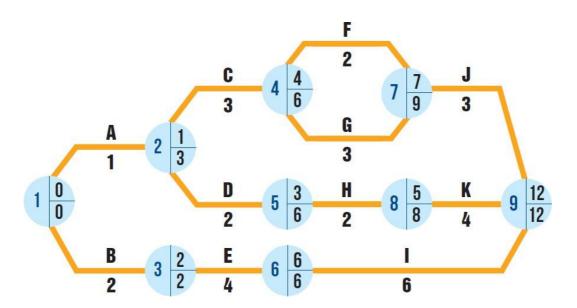
Year	Net Cash Flow	5% Discount	Present Value
		Factor	
0	(£200,000)	1	(£200,000)
1	£40,000	0.952	£38,080
2	£55,000	0.907	£49,885
3	£70,000	0.864	£60,480
4	£83,000	0.823	£68,309
5	£91,000	0.784	£71,344
NPV = £88,098		Total	£88,098

Machine 2

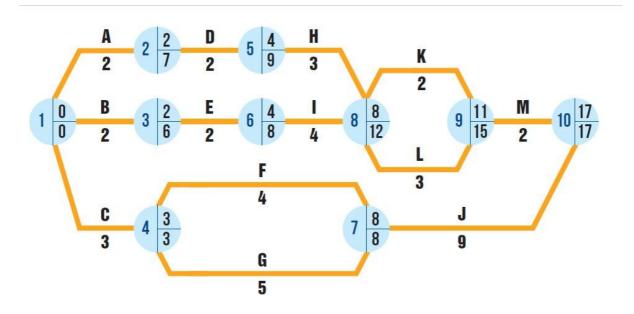
Year	Net Cash Flow	5% Discount	Present Value
		Factor	
0	(£300,000)	1	(£300,000)
1	£90,000	0.952	£85,680
2	£94,000	0.907	£85,258
3	£106,000	0.864	£91,584
4	£120,000	0.823	£98,760
5	£125,000	0.784	£98,000
NPV = £159,282		Total	£159,282


Machine B should be chosen

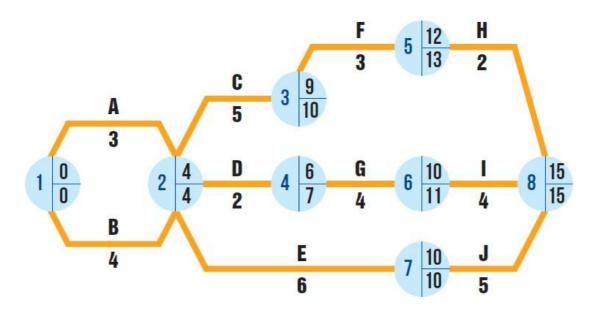

Year	Cash Inflows	Cash Outflows	Net Cash	10% Discount	Present Value
			Flow	Factor	
0		(£450,000)	(£450,000)	1	(£450,000)
1	£130,000	£6,500	£123,500	0.909	£112,261.50
2	£195,000	£9,750	£185,250	0.826	£153,016.50
3	£260,000	£13,000	£247,000	0.751	£185,497
4	£325,000	£16,250	£308,750	0.683	£210,876.25
5	£390,000	£19,500	£370,500	0.621	£230,080.50
NPV = £441,731.75			Total	£441,731.75	


Year	Cash Inflows	Cash	Net Cash Flow	10% Discount	Present Value
		Outflows		Factor	
0		(£100,000)	(£150,000)	1	(£100,000)
1	£60,000	£12,000	£48,000	0.909	£43,632
2	£66,000	£13,200	£52,800	0.826	£43,612.80
3	£72,600	£14,520	£58,080	0.751	£43,618.08
NPV = £30,862.88			Total	£30,862.88	

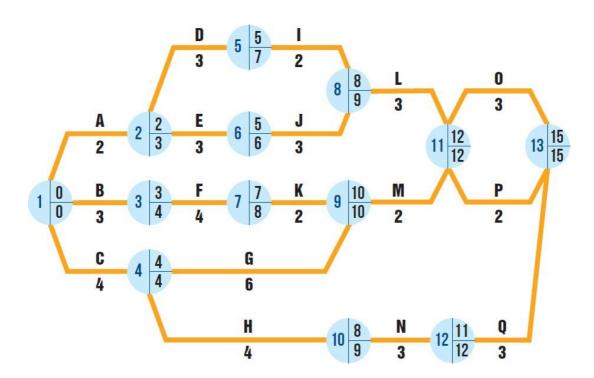
Network Analysis


1.

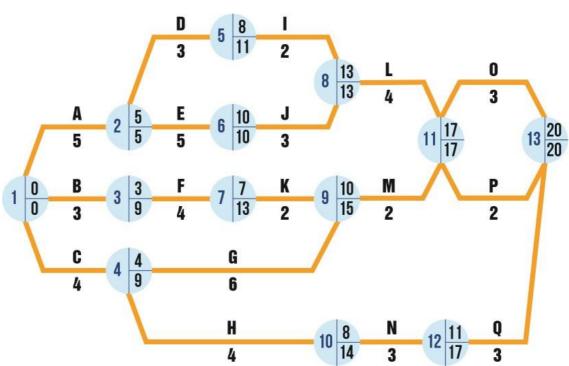
4.


Total float for activity D = 9 - 2 - 2 = 5Total float for activity I = 12 - 4 - 4 = 4

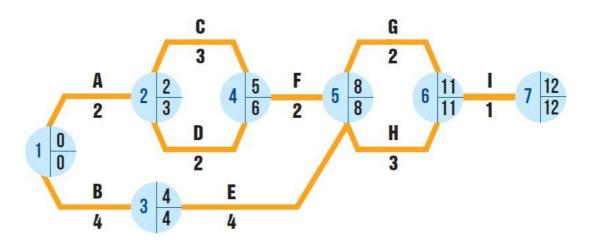
Critical path = C, G, J


Earliest start time for node 8 = 13

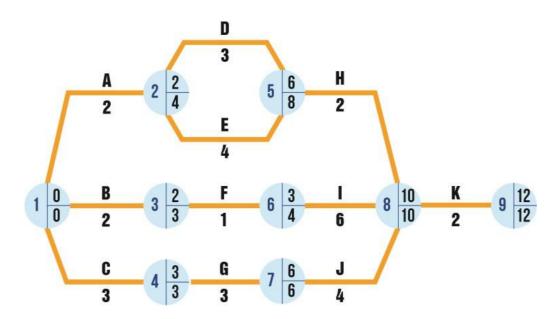
New completion time = 18


6.

Total float for activity G = 11 - 4 - 6 = 1Critical path = B, E, J



Critical path = C, G, M, O



Critical path = A, E, J, L, O

9.

Critical path = B, E, H, I

Critical path = C, G, J, K

Interpreting Index Numbers

1.

```
Sales in April = 3,240 x 0.95 = 3,078 laptops
Sales in May = 3,240 x 1.20 = 3,888 laptops
```

2.

```
House prices in 2013 = £195,000 x 1.10 = £214,500
House prices in 2016 = £195,000 x 1.15 = £224,250
Difference in house prices = £224,250 - £214,500 = £9,750
```

3.

```
Visitors in March = 2,000 \times 1.05 = 2,100
Visitors in April = 2,000 \times 0.95 = 1,900
Visitors in May = 2,000 \times 1.20 = 2,400
Visitors in June = 2,000 \times 1.10 = 2,200
Visitors in July = 2,000 \times 1.25 = 2,500
```

Total number of visitors over last 5 months = 11,100Average number of visitors = 11,100 / 5 = 2,220

4.

```
Business A unit sales in 2015 = 125,000 \times 1.20 = 150,000
Business A units sales in 2016 = 125,000 \times 1.24 = 155,000
Percentage difference in unit sales = (155,000 - 150,000) / 150,000 \times 100 = 3.33\%
```

5.

Business A appears to have the more motivated workforce as labour productivity has increased and labour turnover has fallen

Calculation Practice Assessment

```
Capital employed = £800,000 / 0.4 = £2,000,000

Total equity = £2,000,000 - £800,000 = £1,200,000

New non-current liabilities = £800,000 + £500,000 = £1,300,000

New capital employed = £1,300,000 + £1,200,000 = £2,500,000

New gearing ratio = (1,300,000 / £2,500,000) x 100 = 52%
```

Cost of sales = £2,000,000 - £1,200,000 = £800,000 Inventory turnover = £800,000 / £200,000 = 4 times

3.

3.1

Total net cash flows = £900,000 Total return = £900,000 - £400,000 = £500,000 Average return = £500,000 / 4 = £125,000 Average rate of return = (£125,000 / £400,000) x 100 = 31.25%

3.2

Year	Net Cash Flow	5 % Discount	Present Value
	(£000)	Factor	(£000)
0	(400)	1	(£400)
1	100	0.952	95.2
2	150	0.907	136.05
3	250	0.864	216
4	400	0.823	329.2
			774.45
NPV = 376.45		Total	376.45

(NPV = £376,450)

4.

Number of units produced last year = $350,000 \times 0.80 = 280,000$ Variable cost per unit = £1,680,000 / 280,000 = £6 Contribution per unit = £8 - £6 = £2

5.

Total variable costs last year = $400,000 \times £4 = £1,600,000$ Fixed costs last year = £2,000,000 - £1,600,000 = £400,000 Break-even point last year = £400,000 / (£8 - £4) = 100,000 units Margin of safety = 400,000 - 100,000 = 300,000 units

Budgeted profit last year = £800,000 - £300,000 = £500,000 Actual income last year = £800,000 x 1.06 = £848,000 Actual expenditure last year = £300,000 x 0.96 = £288,000 Actual profit last year = £848,000 - £288,000 = £560,000 Profit variance last year = £560,000 - £500,000 = £60,000 favourable

7.

2018 output = 500,000 x 0.9 = 450,000 2019 output = 500,000 x 0.8 = 400,000 2020 output = 500,000 x 0.95 = 475,000 2021 output = 600,000 x 0.80 = 480,000 2022 output = 600,000 x 0.85 = 510,000

Total output between 2018 and 2022 = 2,315,000 Average yearly output between 2018 and 2022 = 2,315,000 / 5 = 463,000

8.

Total current assets = £500,000 + £300,000 + £100,000 = £900,000 Total current liabilities = £200,000 + £300,000 = £500,000 Current ratio = £900,000 / £500,000 = 1.8:1

9.

Net gain of Option A = $(£2,000,000 \times 0.6) + (£500,000 \times 0.4) - £400,000 = £1,000,000$ Net gain of Option B = $(£400,000 \times 0.8) + (£250,000 \times 0.2) - £100,000 = £270,000$

10.

Total sales of the top 5 retailers = £1,020m Market share of the top 5 retailers = $(£1,020m / £2,000m) \times 100 = 51\%$

11.

Total contribution = 10,000 x £0.60 = £6,000 Additional profit = £6,000 - £2,000 = £4,000