HAPTICS AND AUTOMOTIVE HMI
Technology and trends report
January 2018
The automotive industry is on the cusp of a ‘perfect storm’ of trends driving radical design change. Mary Barra (CEO of General Motors) predicts more change in the industry in the next five to ten years than in the previous fifty.

At the same time, increasingly sophisticated haptic technologies are coming to market – including Ultrahaptics’ own ultrasonic mid-air technology.

The use of haptics is still under-explored in human-machine interfaces (or HMIs). As such, it offers opportunities to create unique, market-leading products that effectively respond to a changing landscape.

Haptics are an intuitive and non-visual mode of interaction, and are one way of reconciling the contradictory market trends of greater connectivity and better safety. Next-generation automotive HMI will utilise haptics to reduce driver distraction and ‘eyes off the road’ time.

Looking further into the future, the quality of the AR and VR experiences on offer in autonomous vehicle cabins will provide a new dimension to brand experience and differentiation between car manufacturers. Haptics – the ability to touch, not just see, virtual objects – will make AR and VR experiences more immersive and intuitive.

At Ultrahaptics, we believe that haptics will change HMIs in ways we are only just beginning to imagine. We look forward to developing the next generation of automotive HMI with you.

Steve Cliffe
CEO and President, Ultrahaptics
The evolution of the connected car continues to accelerate. Centre stacks feature more and more electronics and larger visual displays, while instrument clusters and heads-up displays (HUDs) are becoming more three-dimensional and interactive.

We increasingly understand that for interfaces to be intuitive, they have to be multi-modal. Future vehicle HMI will leverage multiple new technologies and machine learning to fuse inputs and outputs targeting different human senses.

Driver distraction is estimated to contribute to over 3,000 deaths every year in the US alone. Reconciling safety with connectivity is a key challenge driving the development of next-generation vehicle HMI.

It is widely accepted that autonomous vehicles will be a commercial reality sometime in the 2020s. Cabins will become mobile extensions of our future immersive workspaces and virtual social environments, and passengers will expect to interact seamlessly with family, friends and colleagues, wherever they are.

“Nearly 70 percent of US adults say that they want the new technology in their vehicle, but only 24 percent feel that the technology already works perfectly.”

AAA survey, 2017

1 https://www.nhtsa.gov/risky-driving/distracted-driving
2 http://newsroom.aaa.com/2017/10/new-vehicle-infotainment-systems-create-increased-distractions-behind-wheel/
STRENGTHS AND LIMITATIONS OF HAPTICS IN AUTOMOTIVE

<table>
<thead>
<tr>
<th>HAPTIC STRENGTHS</th>
<th>HAPTIC LIMITATIONS</th>
</tr>
</thead>
<tbody>
<tr>
<td>NON-VISUAL</td>
<td>SHORT-RANGE</td>
</tr>
<tr>
<td>Secondary information can be communicated to drivers and tasks completed without taking eyes off the road.</td>
<td>We can see objects a relatively long distance away, but we can only feel things within reach.</td>
</tr>
<tr>
<td>INTUITIVE CONTROL</td>
<td>REQUIRES PHYSICAL CONTACT</td>
</tr>
<tr>
<td>Controls incorporating haptic feedback are more intuitive and reduce mental load.</td>
<td>Until recently, touch-based interfaces required physical contact with a screen or other device.</td>
</tr>
<tr>
<td>PERSONALISATION & PRIVACY</td>
<td>LIMITED BANDWIDTH</td>
</tr>
<tr>
<td>Haptic technologies can transmit information to the driver alone, without disturbing passengers.</td>
<td>Detailed information or instructions cannot be conveyed through touch (unless using a specialist language such as Braille).</td>
</tr>
<tr>
<td>SENSITIVITY</td>
<td>POTENTIALLY INTRUSIVE</td>
</tr>
<tr>
<td>A 2013 study showed that human fingertips can distinguish a pattern as thin as 13 nanometres from a smooth surface.</td>
<td>Drivers need to have a choice whether or not to receive haptic feedback. This should be a design consideration.</td>
</tr>
<tr>
<td>REACTION TIME</td>
<td></td>
</tr>
<tr>
<td>Reaction times to haptic stimuli are 1.7 times quicker than to visual stimuli.</td>
<td></td>
</tr>
<tr>
<td>ENGAGEMENT</td>
<td></td>
</tr>
<tr>
<td>Haptics are proven to increase user engagement.</td>
<td></td>
</tr>
</tbody>
</table>

Our senses complement each other and are designed to work together. Incorporating haptics into control systems complements the primarily visual task of actually driving a car. Haptics creates user experiences that are more intuitive and less reliant on drivers taking their eyes off the road. They reduce driver distraction and mental load.

Haptic warnings are hard to miss and drivers react quickly to them. Vibrotactile haptic technology in advanced driver-assistance systems (ADAS) has been shown to improve lane-keeping by 30%.

Because the sense of touch is one of our most primal senses, we also respond instinctively and emotionally to haptics. It is an effective way of increasing people’s sense of control and connection.

"Non-visual modalities for secondary information make a lot of sense.”
Gary Burnett, Professor of Transport Human Factors, Faculty of Engineering, University of Nottingham, UK

The sense of touch has been instrumental in the development of our tools and technology. Drivers already rely on haptic feedback every time they turn a steering wheel or press a pedal.

However, creating tactile sensations through electronics is a relatively new field. Today, consumer electronics are moving beyond simple vibrotactile effects, force feedback devices are increasingly sophisticated, and ground-breaking technologies such as ultrasound-based haptics are entering the market.

As automotive design evolves through different levels of autonomy, legacy haptics such as mechanical control systems and basic vibrotactile and surface haptics will be combined with and eventually supplanted by these new technologies. Haptics will become fully integrated into vehicle HMI (and also car configurator kiosks and automotive design software), enabling manufacturers to deliver increasingly intuitive, personalised and innovative user experiences.

HAPTICS AT DIFFERENT LEVELS OF AUTONOMY

<table>
<thead>
<tr>
<th>LEVEL 0</th>
<th>LEVEL 1</th>
<th>LEVEL 2</th>
<th>LEVEL 3</th>
<th>LEVEL 4</th>
<th>LEVEL 5</th>
</tr>
</thead>
<tbody>
<tr>
<td>No automation</td>
<td>Automation of driver assist functions</td>
<td>Partial automation of central driving functions</td>
<td>Fully automated but a human may be required to take over</td>
<td>Fully automated but vehicle is constrained to specific use-cases</td>
<td>Fully automated in all driving scenarios</td>
</tr>
</tbody>
</table>

MECHANICAL CONTROL SYSTEMS: Traditional mechanical controls such as steering wheels and pedals already rely on haptics.

LEVEL 1

Automation of driver assist functions

LEVEL 2

Partial automation of central driving functions

LEVEL 3

Fully automated but a human may be required to take over

LEVEL 4

Fully automated but vehicle is constrained to specific use-cases

LEVEL 5

Fully automated in all driving scenarios

LEVELS OF AUTONOMY

Most new road cars today are at Level 2.

ADVANCED DRIVER-ASSISTANCE SYSTEMS (ADAS): Vibrotactile technology is already widely used in ADAS. Haptics will increasingly become the dominant mode for drivers’ alert systems.

ELECTRONIC CONTROL SYSTEMS: Surface and mid-air haptics will be fused in increasingly sophisticated ways with other technologies and machine learning in centre stacks, passenger-centred infotainment systems, HUDs, seat and window controls and security systems.

AR AND VR: Haptics will be a key component of high-grade AR and VR experiences in autonomous vehicle cabins.

CUSTOMER EXPERIENCES: Haptic effects will become commonplace in customer experiences across all sectors and form an integral part of car configurator kiosks.

COMPUTER-AIDED DESIGN (CAD): Haptics will be incorporated into CAD programs in combination with AR and VR across all sectors including automotive.
HOW MID-AIR HAPTICS WORKS

Ultrahaptics’ patented algorithms modulate ultrasound waves to create haptic sensations in mid-air. No controllers or wearables are needed: the “virtual touch” technology uses ultrasonic transducers to project shapes and textures directly onto the user’s hands.

Ultrahaptics’ technology means that every cubic centimetre of the space within a car can potentially be turned into a programmable haptic interface.

In-car installations typically include an array of ultrasonic transducers mounted under the fascia of a product or in a separate control panel and combined with a hand-tracking system. They can provide the sensation of touch up to a metre away from the surface. The accuracy of the sensation is less than a finger-width apart, and can track hand position, hand shape and gestures.

CASE STUDY: Harman

HARMAN combined gesture control, Ultrahaptics’ mid-air technology and their custom graphical user interface (GUI) to develop an intuitive system that can control multiple in-vehicle systems, including audio infotainment. The system responds to the driver’s gesture commands with tactile sensations confirming instructions have been recognised and accepted.

KEY BENEFITS OF ULTRASONIC MID-AIR HAPTICS

Safety: Reduces cognitive load, driver distraction and ‘eyes off the road’.

No physical contact: No touchscreens, controllers or wearable devices needed.

Flexible: Virtual controls and alerts that can change from second to second according to user needs.

Three-dimensional interaction: Allows the development of innovative HMI.

Enables innovative design: Reduces the need for screens, buttons and knobs, enabling sleek, contemporary design solutions.

Product differentiation and wow factor: A ground-breaking technology that makes experiences memorable and products unique.

“Our haptic feedback solution makes the driving experience safer by enabling drivers to keep their eyes on the road while still maintaining intuitive control of infotainment and audio systems.”

Stefan Marti, VP, Future Experience, Harman
CONTROL. REACT. EXPERIENCE.
Uses of ultrasonic mid-air haptics in automotive

HEADS-UP DISPLAYS (HUDs)
Enable drivers to reach out and touch virtual controls and alerts in front of the steering wheel.

DRIVER MONITORING & ALERTS
Leverage mid-air haptics within sensor fusion systems to create flexible, discreet and effective ADAS.

AUTONOMOUS VEHICLE CABINS
Generate mid-air tactile sensations in any zone within automotive cabins of the future, and combine with AR and VR.

IMMERSIVE PRODUCT DESIGN
Accelerate design and innovation through natural interaction and a richer sense of presence and control.

PASSENGER-CENTRED INFOTAINMENT SYSTEMS
Install sophisticated and personalised passenger-centred infotainment systems without overloading the cabin with screens and controls.

HIDDEN OR HARD TO ACCESS CONTROLS
Allow simple, intuitive adjustment of seats, windows and other hard-to-find or hidden controls. Create virtual controls that find the driver’s hand or provide non-visual confirmation that actions have been anticipated and accepted.

CENTRE CONSOLE CONTROLS
Create a three-dimensional zone of interaction in mid-air above the centre console. Intuitive control of air-conditioning, navigation, media and other systems while keeping eyes on the road.

CASE STUDY: Bosch concept cars
Ultrahaptics’ mid-air technology was combined with gesture-recognition infotainment controls in Bosch concept cars shown at CES 2017 and 2018. When drivers reach out to give a gesture command, the system uses tactile sensations to assure them their hands are in the right place. A second haptic response is then given to confirm that the command has been accepted.
COLLABORATE WITH ULTRAHAPTICS
Technology and implementation roadmap

Concept cars from Bosch and Harman include ultrasonic mid-air haptics.

Controls: starting with simple centre console controls and moving into HUDs, instrument clusters and advanced control systems.

Ultrahaptics’ technology becomes part of sensor fusion/machine learning systems for driver monitoring, awareness and anticipation.

New mid-air haptics platform and Generation 2 transducers

Automotive compliant hardware and software

Inclusion in autonomous vehicle cabins as part of a complete immersive solution.

ABOUT ULTRAHAPTICS

Ultrahaptics was founded in 2013 based on technology developed at the University of Bristol, UK. Since then, the company has raised $40m in two rounds of funding and established a worldwide presence, opening offices in California, Germany and Singapore.

Ultrahaptics is currently engaged with blue-chip clients from numerous markets, including multiple automotive OEMs and tier 1 suppliers. The first products featuring Ultrahaptics’ technology launched commercially in 2017.

PRODUCTS AND PROGRAMS

Ultrahaptics has a number of products and programs that enable customers to work with Ultrahaptics’ technology, build prototypes, run user studies, and validate the technology before launching a commercial development program. From plug-and-play development kits and customer programs with sophisticated software tools and expert support, to reference designs and licensing models, we support you from idea to market.

To find out more about our products and programs go to https://www.ultrahaptics.com or contact us info@ultrahaptics.com | UK: +44 117 3259002 | US: +1 650 600 9916