School of Engineering and Technology

Title of Programme: Extended Engineering and Technology Degree Programme (Initial Year)

Programme Code: EIEF

For Collaborative: Consortium at Oaklands College / Barnet and Southgate College

Programme Specification

This programme specification is relevant to students entering:
16 September 2019

Associate Dean of School (Academic Quality Assurance):
Susan Murray

Signature

A programme specification is a collection of key information about a programme of study (or course). It identifies the aims and learning outcomes of the programme, lists the modules that make up each stage (or year) of the programme, and the teaching, learning and assessment methods used by teaching staff. It also describes the structure of the programme, its progression requirements and any programme-specific regulations. This information is therefore useful to potential students to help them choose the right programme of study, to current students on the programme, and to staff teaching and administering the programme.

Summary of amendments to the programme:

<table>
<thead>
<tr>
<th>Section</th>
<th>Amendment</th>
</tr>
</thead>
<tbody>
<tr>
<td>1, Table 1a, Table 1b</td>
<td>Removal of partner institutions HRC and NHC, Modules removed, Closed programmes removed (Biomedical and Manufacturing Engineering)</td>
</tr>
</tbody>
</table>

If you have any queries regarding the changes please email AQQ@herts.ac.uk
Programme Specification

Extended Engineering and Technology Degree Programme (Initial Year)

This programme specification (PS) is designed for prospective students, enrolled students, academic staff and potential employers. It provides a concise summary of the main features of the programme and the intended learning outcomes that a typical student might reasonably be expected to achieve and demonstrate if he/she takes full advantage of the learning opportunities that are provided. More detailed information on the teaching, learning and assessment methods, learning outcomes and content for each module can be found in Definitive Module Documents (DMDs) and Module Guides.

Section 1

Awarding Institution/Body: University of Hertfordshire
Teaching Institution: University of Hertfordshire
University/partner campuses: University of Hertfordshire / Oaklands College / Barnet and Southgate College
Programme accredited by: See Section D
Final Qualification: Not applicable
All Final Award titles: Not applicable
FHEQ level of award: 3
UCAS code(s): H100

Language of Delivery: English

A. Programme Rationale

The Extended Engineering and Technology Degree Programme (Initial Year) aims to prepare students, who would not normally be considered qualified, to an appropriate standard for entry into the first year of BEng (Honours) Engineering or BSc (Honours) Technology Degree programmes. Examples might include students with 'A' Levels or equivalent, Scottish or Irish Highers but with an insufficient background in Mathematics, Physics or other Technology-related subjects; students with overseas qualifications and mature students without the formal qualifications for entry to a University degree programme.

The degree programmes onto which the Initial Year provides entry have been developed to satisfy the QAA Engineering Benchmarks as well as the stringent requirements of a number of Professional Engineering Institutions. Thus the Initial year has been developed taking these benchmark statements into account.

The programme aims to develop in students, knowledge and understanding of and competence in, mathematics, science and the application of information technology, suitable to support their progression into the first year of an Engineering or Technology degree programme. Mathematics is a fundamental and important element of Engineering, allowing a description and analysis of physical systems and their behaviour. The programme requires a student to become competent in the fundamental mathematics common and essential to further study of all the various engineering disciplines. Mathematics is studied throughout the Initial Year in the Mathematics 1 and Mathematics 2 modules.

Students need to develop their knowledge of the Sciences relevant to Engineering and Technology. This is achieved through three modules on the programme. The Engineering Science module studied in Semester A provides a basis for all the Engineering disciplines. It covers the chemistry, properties and behaviour of engineering materials and their selection to serve particular purposes, introductory mechanics and fundamentals of electricity and magnetism. The latter subjects are developed further in the Mechanical Science and Electrical Science & Digital Technology modules in Semester B.
The computer is essential to the work of an engineer or technologist, whether it be design and analysis, or reporting and documenting their work. The Digital and Software Applications in Engineering module provides an opportunity for students to acquire competence in using appropriate computer software to, for example, solve problems, prepare reports and presentations and gather, analyse and present experimental data.

In the Initial Year Project module, students, working in small teams, undertake an extended study of a specialist nature, researching and reporting on an engineering/technological problem.

Students are not always sure of their intended discipline, or aware of the variety and range of engineering opportunities potentially available to them. The Engineering Studies and Skills module provides students with an exposure to various engineering disciplines through guided laboratory experiments in the School of Engineering and Technology at the University. This is reinforced by presentations by guest speakers and/or industrial visits. The module also aims to enable effective learning and so includes instruction on study skills, such as taking notes, writing and presenting reports, revising and taking examinations.

B. Educational Aims of the Programme
The programme has been devised in accordance with the University's graduate attributes of programmes of study as set out in UPR TL03.

Additionally this programme aims to:
- prepare students, who would not normally be considered qualified, to an appropriate standard for entry into the first year of BEng (Honours) Engineering or BSc (Honours) Technology Degree Programme;
- develop in students knowledge and understanding of and competence in, mathematics, science and the application of information technology, suitable to support their progression into the first year of an Engineering or Technology degree programme;
- develop in students an appreciation of the engineering industry and its place and purpose in society, in order that they may make an informed choice of Engineering or Technology discipline

C. Intended Learning Outcomes
The programme provides opportunities for students to develop and demonstrate knowledge and understanding, skills and other attributes in the following areas. The programme outcomes are referenced to the QAA benchmark statements for Engineering and the Frameworks for Higher Education Qualifications of UK Degree-Awarding Bodies (2014) and relate to the typical student. Additionally, the SEEC Credit Level Descriptors for Further and Higher Education (2016) have been used as a guiding framework for curriculum design.

<table>
<thead>
<tr>
<th>Knowledge and Understanding</th>
<th>Teaching and learning methods</th>
<th>Assessment strategy</th>
</tr>
</thead>
<tbody>
<tr>
<td>A1 - The mathematics required by students entering Undergraduate Engineering and Technology programmes.</td>
<td>Acquisition of knowledge and understanding is through a combination of lectures, (A1-A3) small group tutorials, (A1-A3) coursework (A1-A3) and laboratory work. (A1-A3) Additional support is provided the Mathematics Drop-In Centre. Feedback is given to all students on all summative coursework produced. Throughout, the learner is encouraged to undertake independent study both to supplement and consolidate what is being taught/learnt and to</td>
<td>Knowledge and understanding are assessed through a combination of unseen examinations (A1, A2), assignment reports (A1-A3), laboratory reports (A2), phase tests (A1, A2) and project reports/presentations (A3).</td>
</tr>
<tr>
<td>A2 - The fundamental engineering sciences required by students entering Undergraduate Engineering and</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Bachelor’s Programme Specification / December 2018 / AS Review Date June 2018

University of Hertfordshire
broaden their individual knowledge and understanding of the subject.

<table>
<thead>
<tr>
<th>Intellectual skills</th>
<th>Teaching and learning methods</th>
<th>Assessment strategy</th>
</tr>
</thead>
<tbody>
<tr>
<td>B1 - Analyse engineering problems using appropriate mathematical techniques.</td>
<td>Intellectual skills are developed through a combination of lectures (B1, B2), small group tutorials (B1, B2), individual assignments (B1, B2), and laboratory work (B2). Feedback is given to all students on all summative coursework produced. Throughout, the learner is encouraged to develop intellectual skills further by independent study.</td>
<td>Intellectual skills are assessed through unseen examination papers, (B1, B2) phase tests, (B1, B2) laboratory reports (B2) and assignment reports. (B1, B2)</td>
</tr>
<tr>
<td>B2 - Analyse engineering systems using appropriate scientific principles.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Practical skills</th>
<th>Teaching and learning methods</th>
<th>Assessment strategy</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 - Perform experimental work and draw conclusions.</td>
<td>Practical skills are developed through a combination of lectures, (C1-C3), laboratory work (C1-C3), assignments (C2, C3) and projects (C1, C2, C3). Feedback is given to students on all summative coursework produced.</td>
<td>Practical skills are assessed through laboratory reports, (C1, C3) assignment reports, (C2, C3) presentations (C2) and project reports. (C2, C3)</td>
</tr>
<tr>
<td>C2 - Use computer-based engineering tools.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C3 - Prepare technical documentation.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Transferable skills</th>
<th>Teaching and learning methods</th>
<th>Assessment strategy</th>
</tr>
</thead>
<tbody>
<tr>
<td>D1 - Communicate effectively, both orally and in writing.</td>
<td>Transferable skills are developed through a combination of lectures, (D1-D4) tutorials, (D2-D4) individual and group assignments. (D1-D4) Throughout, the learner is encouraged to develop transferable skills by maintaining a record of evidence and completing a personal development plan</td>
<td>Transferable skills are assessed through assignment reports, (D1–D3) oral presentations, (D1-D2) project reports (D1-D4) and examinations. (D4)</td>
</tr>
<tr>
<td>D2 - Use commonly available IT tools.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>D3 - Manipulate, sort and present data.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>D4 - Solve problems in a logical manner.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

D. Programme Structures, Features, Levels, Modules, and Credits
The programme is offered as full-time only. Two of the modules, Engineering Studies and Skills and Engineering Initial Year Project, are University based; the remaining six modules are College based with module codes dependent on the college at which the student enrolls. Successful students progress onto the degree programme of their choice, depending on their performance in the specific modules according to the grade ‘tariffs’ given in Table 1b. Intake is normally in semester A.

Professional and Statutory Regulatory Bodies
The Initial Year is intended to prepare students for entry to the first year of an accredited degree. The Engineering Accreditation Board, acting on behalf of the Institution of Engineering and Technology, the
Institution of Mechanical Engineers and the Royal Aeronautical Society, scrutinised the Initial Year in the course of their visit to the University in 2011. They commended the School for the strong support given to Initial Year students to help them acclimatise to the University.

Work-Based Learning, including Sandwich Programmes
N/A

Erasmus Exchange programme
N/A

Programme Structure
The programme structure and progression information below (Table 1a and 1b) is provided for the Honours award. Any interim awards are identified in Table 1b. The Programme Learning Outcomes detailed above are developed and assessed through the constituent modules. Table 2 identifies where each learning outcome is assessed.
Table 1a Outline Programme Structure

Mode of study Full Time
Entry point Semester A
Level 0

<table>
<thead>
<tr>
<th>Compulsory Modules</th>
<th>Module Code</th>
<th>Credit Points</th>
<th>Language of Delivery</th>
<th>% Examination</th>
<th>% Coursework</th>
<th>% Practical</th>
<th>Semesters</th>
</tr>
</thead>
<tbody>
<tr>
<td>Engineering Studies and Skills (Hatfield)</td>
<td>0AAD0001</td>
<td>15</td>
<td>English</td>
<td>0</td>
<td>100</td>
<td>-</td>
<td>A</td>
</tr>
<tr>
<td>Engineering Initial Year Mathematics 1 (BAR)</td>
<td>0FEN0099</td>
<td>15</td>
<td>English</td>
<td>60</td>
<td>40</td>
<td>-</td>
<td>A</td>
</tr>
<tr>
<td>Engineering and Materials Science (OAK)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Engineering Initial Year Mathematics 1 (OAK)</td>
<td>0FEN0111</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Engineering and Materials Science (BAR)</td>
<td>0FTC1021</td>
<td>15</td>
<td>English</td>
<td>60</td>
<td>40</td>
<td>-</td>
<td>A</td>
</tr>
<tr>
<td>Engineering and Materials Science (OAK)</td>
<td>0FTC1024</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Digital and Software Applications in Engineering (BAR)</td>
<td>0FTC1009</td>
<td>15</td>
<td>English</td>
<td>0</td>
<td>100</td>
<td>-</td>
<td>A</td>
</tr>
<tr>
<td>Digital and Software Applications in Engineering (OAK)</td>
<td>0FTC1011</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Engineering Initial Year Mathematics 2 (BAR)</td>
<td>0FEN0100</td>
<td>15</td>
<td>English</td>
<td>60</td>
<td>40</td>
<td>-</td>
<td>B</td>
</tr>
<tr>
<td>Engineering and Materials Science (OAK)</td>
<td>0FTC1025</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Engineering Initial Year Mathematics 2 (OAK)</td>
<td>0FEN0112</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mechanical Science and Structures (BAR)</td>
<td>0FTC1025</td>
<td>15</td>
<td>English</td>
<td>60</td>
<td>40</td>
<td>-</td>
<td>B</td>
</tr>
<tr>
<td>Mechanical Science and Structures (OAK)</td>
<td>0FTC1028</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Electrical Science and Digital Technology (BAR)</td>
<td>0FTC1012</td>
<td>15</td>
<td>English</td>
<td>60</td>
<td>40</td>
<td>-</td>
<td>B</td>
</tr>
<tr>
<td>Electrical Science and Digital Technology (OAK)</td>
<td>0FTC1014</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Engineering Project (Hatfield)</td>
<td>0AAD0003</td>
<td>15</td>
<td>English</td>
<td>0</td>
<td>100</td>
<td>-</td>
<td>B</td>
</tr>
</tbody>
</table>

Progression to level 4 requires 120 credits and attainment of certain tariff grades, dependent on the programme onto which a student wishes to progress (see Table 1b). The module grading system is defined in UPR AS14 section D1.1. There is no direct progression possible to level 4 of MEng programmes offered within the School. Where a student has achieved 105 credits, the Board of Examiners may, at its discretion, allow the student to progress, provided that:

- all minimum tariffs as shown in Table 1b for the relevant degree programme have been achieved
- the minimum overall average grade shown in Table 1b, calculated as the average of all 120 credits taken, has been achieved

Fail grades in more than 30 credits of Semester A modules will normally preclude students from continuing on the programme.

Award classification
N/A
Table 1b Module Grade Tariffs

<table>
<thead>
<tr>
<th>Programme</th>
<th>Initial Year Module and Tariff Grade</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Engineering Initial Year Mathematics1</td>
</tr>
<tr>
<td>BEng Aerospace Engineering</td>
<td>50</td>
</tr>
<tr>
<td>BEng Aerospace Engineering with Space Technology</td>
<td>50</td>
</tr>
<tr>
<td>BEng Mechanical Engineering</td>
<td>50</td>
</tr>
<tr>
<td>BEng Mechanical Engineering and Mechatronics</td>
<td>50</td>
</tr>
<tr>
<td>BEng Automotive Engineering</td>
<td>50</td>
</tr>
<tr>
<td>BEng Automotive Engineering with Motorsport</td>
<td>50</td>
</tr>
<tr>
<td>BEng Electrical & Electronic Engineering</td>
<td>50</td>
</tr>
<tr>
<td>BSc Computer Technology & Networks</td>
<td>45</td>
</tr>
</tbody>
</table>

Programme-specific assessment regulations

The programme complies with the University's academic regulations (in particular, UPR AS11, UPR AS12/UPR AS13 and UPR AS14) with the exception of those listed below, which have been approved by the University:

- None

Further programme-specific regulations (requiring School-level approval) are given below:

- Progression to level 4 of an Engineering or Technology degree depends on meeting the pre-requisite requirements of specific chosen modules. These are defined in Section 1 Table 1b.
• Fail grades in more than 2 Semester A modules will normally preclude students from continuing on the programme.

• There is a requirement by some Engineering Professional Bodies (notably the IMechE) that the Individual Major Project must be passed at the first attempt to gain an accredited award.

• Attendance at both College and University based classes is mandatory. Attendance will be monitored and students who have a prolonged absence (more than one week) without valid extenuating circumstance, as defined in UPR SA06, will be warned that if they continue to have periods of prolonged absence they will be withdrawn from the programme.

• Students are expected to attend the University for one day per week when they will study Engineering Studies and Skills and the Engineering Project modules. The remainder of the week students will be based at partner Associate or Franchised Colleges who will deliver the remaining six modules.

E. Management of Programme & Support for student learning.

Management
The programme is managed and administered through:

• Dean of School;
• Associate Dean of School (AQA) who has overall responsibility for Quality Assurance;
• Associate Dean of School (L&T) who has overall responsibility for Learning & Teaching;
• the Programme Leader who is responsible for chairing the programme committee and advising students on the programme as a whole;
• the Student Administrator responsible for the administration associated with the programme;
• Programme Leaders who are responsible for the day to day management;
• an Admissions Tutor, with specific responsibility for selection;
• a programme committee that includes the above plus student representation;
• module leaders who are responsible for individual modules.
Support

Students are supported by:

- an induction week at the beginning of each new academic session;
- an extensive Learning Resources Centre, incorporating a library and computer centre;
- guided student-centred learning through the use of StudyNet;
- a student handbook that is specific to the programme;
- a Programme Leader who can advise on programme issues;
- a Student Administrator and admin assistants in the school office;
- Module teaching teams who provide academic support;
- Computer and technical laboratories facilities and technical support staff;
- a project supervisor;
- student representatives on the programme committee;
- the Mathematics Drop-in Centre;
- the Careers, Employment and Enterprise Service that support students looking for either graduate employment or an industrial placement.
- a substantial Student Centre that provides advice on issues such as finance, University regulations, legal matters etc;
- the Medical Centre;
- the Accommodation Office;
- the International Students Centre who organise an Overseas Student Orientation induction programme;
- printing, photocopying, laminating and document binding facilities;
- Nightline – a confidential student listening and information service in the evening when other services are not available;
- a confidential counselling service;
- University Disability Advisors;
- an Equal Opportunities Officer;
- the Students’ Union.

F. Other sources of information

In addition to this Programme Specification, the University publishes guidance to registered students on the programme and its constituent modules:

- A Programme (or Student) Handbook;
- A Definitive Module Document (DMD) for each constituent module;
- A Module Guide for each constituent module.

The Ask Herts website provides information on a wide range of resources and services available at the University of Hertfordshire including academic support, accommodation, fees, funding, visas, wellbeing services and student societies.

As a condition of registration, all students of the University of Hertfordshire are required to comply with the University’s rules, regulations and procedures. These are published in a series of documents called ‘University Policies and Regulations’ (UPRs). The University requires that all students consult these documents which are available on-line, on the UPR web site, at: http://www.herts.ac.uk/secreg/upr/. In particular, UPR SA07 ‘Regulations and Advice for Students’ Particular Attention - Index’ provides information on the UPRs that contain the academic regulations of particular relevance for undergraduate and taught postgraduate students.

In accordance with section 4(5) of the Higher Education and Research Act 2017 (HERA), the UK Office for Students (OfS) has registered the University of Hertfordshire in the register of English higher education providers. The Register can be viewed at: https://www.officeforstudents.org.uk/advice-and-guidance/the-register/the-ofs-register/. Furthermore, the OfS has judged that the University of Hertfordshire delivers consistently outstanding teaching, learning and outcomes for its students. It is of the highest quality found in the UK. Consequently, the University received a Gold award in the 2018 Teaching Excellence and Student Outcomes (TEF) exercise. This award was made in June 2018 and is valid for up to 3 years. The TEF
G. Entry requirements

The normal entry requirements for the programme are:

- UCAS tariff points: 48 points from one A Level (A2) in any subject;
- BTEC National Award or equivalent in any subject.
- IB of 48 points with a minimum of one (1) HL subject at grade 4 or above with the remaining points to come from a combination of HL, SL and Core
- Plus
- GCSE Mathematics, Science and English Language at grade 4 or above.

Applications are welcomed from those holding other qualifications including Scottish Higher or Irish Higher Certificates, Access Certificate, International Baccalaureate or other equivalent international qualifications.

Applications are also welcomed from mature applicants who are considered on the basis of employment experience in addition to formal qualifications.

Overseas students would be expected to have attained a minimum IELTS of 6.0 or equivalent before commencement of their studies. Students without IELTS of 6.0 or equivalent, depending on the Country of Origin, may be expected to complete a suitable programme of study prior to the commencement of the programme, such as pre-sessional English Classes, Foundation Certificate English for Academic Purposes (FCEAP), International Bridging Programme or any other suitable programme deemed appropriate by the University.

The programme is subject to the University's Principles, Policies and Regulations for the Admission of Students to Undergraduate and Taught Postgraduate Programmes (in UPR SA03), along with associated procedures. These will take account of University policy and guidelines for assessing accredited prior certificated learning (APCL) and accredited prior experiential learning (APEL).

If you would like this information in an alternative format please contact: the School Administration Manager

If you wish to receive a copy of the latest Programme Annual Monitoring and Evaluation Report (AMER) and/or the External Examiner's Report for the programme, please email a request to ago@herts.ac.uk
Table 2: Development of Programme Learning Outcomes in the Constituent Modules

This map identifies where the programme learning outcomes are assessed in the constituent modules. It provides (i) an aid to academic staff in understanding how individual modules contribute to the programme aims (ii) a checklist for quality control purposes and (iii) a means to help students monitor their own learning, personal and professional development as the programme progresses.

<table>
<thead>
<tr>
<th>Level 0</th>
<th>Module Title</th>
<th>Module Code</th>
<th>Knowledge & Understanding</th>
<th>Intellectual Skills</th>
<th>Practical Skills</th>
<th>Transferable Skills</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Engineering Initial Year Mathematics 1</td>
<td>0FEN0099; 0FEN0111</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Engineering and Materials Science</td>
<td>0FTC1021; 0FTC1024</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td></td>
<td>Digital and Software Applications in Engineering</td>
<td>0FTC1009; 0FTC1011</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Engineering Studies and Skills</td>
<td>0AAD0001</td>
<td>x</td>
<td></td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td></td>
<td>Engineering Initial Year Mathematics 2</td>
<td>0FEN0100; 0FEN0112</td>
<td>x</td>
<td></td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td></td>
<td>Mechanical Science and Structures</td>
<td>0FTC1025; 0FTC1028</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Electrical Science and Digital Technology</td>
<td>0FTC1012; 0FTC1014</td>
<td>x</td>
<td></td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td></td>
<td>Engineering Project</td>
<td>0AAD0003</td>
<td>x</td>
<td></td>
<td>x</td>
<td>x</td>
</tr>
</tbody>
</table>

Key: Learning Outcome which is assessed as part of the module ⬤

Key to Programme Learning Outcomes

Knowledge and Understanding

A1. The mathematics required by students entering Undergraduate Engineering and Technology programmes.
A2. The fundamental engineering sciences required by students entering Undergraduate Engineering and Technology programmes.
A3. Principles of IT and Communications relevant to Engineering and Technology disciplines.

Intellectual Skills

B1. Analyse engineering problems using appropriate mathematical techniques.
B2. Analyse engineering systems using appropriate scientific principles.

Practical Skills

C1. Perform experimental work and draw conclusions.
C2. Use computer-based engineering tools.
C3. Prepare technical documentation.

Transferable Skills

D1. Communicate effectively, both orally and in writing
D2. Use commonly available IT tools
D3. Manipulate, sort and present data
D4. Solve problems in a logical manner.
Section 2
Programme management

Relevant QAA subject benchmarking statements
Type of programme
Date of validation/last periodic review
Date of production/last revision of PS
Relevant to level/cohort
Administrative School

Engineering
Initial Year
January 15
March 2019
Level 3 entering September 2019
School of Engineering and Technology

Table 3 Course structure

<table>
<thead>
<tr>
<th>Course code</th>
<th>Course description</th>
<th>JACS/HECOS</th>
</tr>
</thead>
<tbody>
<tr>
<td>EIEF</td>
<td>Initial Year for Extended Degrees in Engineering</td>
<td>H100/100184</td>
</tr>
</tbody>
</table>