University of UH Hertfordshire

School of Physics, Engineering & Computer Science

Title of Programme: MSc Theoretical Physics Programme Code: PETPM

Programme Specification

This programme specification is relevant to students entering: 01 September 2021

Associate Dean of School (Academic Quality Assurance): Dr Mariana Lilley

Signature

MLilley

A programme specification is a collection of key information about a programme of study (or course). It identifies the aims and learning outcomes of the programme, lists the modules that make up each stage (or year) of the programme, and the teaching, learning and assessment methods used by teaching staff. It also describes the structure of the programme, its progression requirements and any programme-specific regulations. This information is therefore useful to potential students to help them choose the right programme of study, to current students on the programme, and to staff teaching and administering the programme.

Summary of	Summary of amendments to the programme									
Date	Section	Amendment								
23.03.21	D	7PAM1027 adjusted from 80% exam/ 20% coursework to 100% coursework*								
23.03.21	D	6PAM2002 adjusted from 50% exam/ 50% coursework to 100% coursework*								
		in the academic year 021/22, due to the covid pandemic.								
23.03.21	D	7PAM1034 adjusted from 60% exam/ 40% coursework to 100% coursework*								
		in the academic year 021/22, due to the covid pandemic.								

23.03.21	D	7PAM1033 adjusted from 50% exam/ 50% coursework to 100% coursework*
		in the academic year 021/22, due to the covid pandemic.
23.03.21	D	7PAM1035 adjusted from 50% exam/ 50% coursework to 100% coursework*
		in the academic year 021/22, due to the covid pandemic.
23.03.21	D	6PAM1061 adjusted from 80% exam/ 20% coursework to 100% coursework*
		in the academic year 021/22, due to the covid pandemic.
23.03.21	D	7PAM1020 adjusted from 50% exam/ 50% coursework to 100% coursework*
		in the academic year 021/22, due to the covid pandemic.

* Learning outcomes for this module will be assessed via coursework using alternative modes of assessment. Alternative modes of assessment include, but are not limited to, take home coursework and online timed assessments.

If you have any queries regarding the changes please email AQO@herts.ac.uk

Programme Specification MSc Theoretical Physics

This programme specification (PS) is designed for prospective students, enrolled students, academic staff and potential employers. It provides a concise summary of the main features of the programme and the intended learning outcomes that a typical student might reasonably be expected to achieve and demonstrate if he/she takes full advantage of the learning opportunities that are provided. More detailed information on the teaching, learning and assessment methods, learning outcomes and content for each module can be found in Definitive Module Documents (DMDs) and Module Guides.

Section 1

Awarding Institution/Body Teaching Institution University/partner campuses Programme accredited by Final Award (Qualification)	University of Hertfordshire University of Hertfordshire College Lane N/A MSc
(Qualification and Subject)	MSc Theoretical Physics with Advanced Research
FHEQ level of award	7
UCAS code(s) Language of Delivery	English

A. Programme Rationale

This programme introduces the fundamental physical theories that govern the behaviour of space, time and matter, from scales ranging from the very smallest (in particle accelerators at e.g. CERN) to the very largest (gravity, black holes and the history of the cosmos). It provides a solid grounding in foundational topics including General Relativity and Quantum Field Theory, and in mathematical tools including Representation Theory. Beyond that core, it features a series of lectures on Recent Advances in Theoretical Physics, designed to survey areas directly relevant to contemporary research and delivered by specialists.

The Mathematical Physics Group within the Department of Physics, Astronomy and Mathematics at UH have internationally recognized research profiles across a range of topics in theoretical physics.

A theoretical physics curriculum combines advanced reasoning skills with applications to complex physical phenomena, placing the graduates in a strong position of possible diverse future specializations. The programme has a focus on key skills in academia and in industry: working collaboratively, and presenting ideas in person and in writing. Graduates are equipped both for careers in STEM areas, and for further study at PhD level leading potentially to a theoretical physics research career.

In addition to the standard 180 credit (1 year full-time, 2-year part time) masters degree, the programme provides the option of a 240 credit (2 year full-time) masters degree "with Advanced Research".

B. Educational Aims of the Programme

The programme has been devised in accordance with the University's graduate attributes of programmes of study as set out in <u>UPR TL03</u>.

Additionally this programme aims to:

• provide students with a systematic knowledge of the central topics of contemporary theoretical physics, informed by new insights and work at the cutting edge of the field;

- provide students a conceptual understanding that enables them to evaluate critically current research in theoretical physics;
- offer students a platform which will enable them to embark on further study in theoretical physics and adjacent disciplines in academia;
- develop the qualities and transferable skills necessary for employment requiring complex decision-making, originality and self-direction.

C. Intended Learning Outcomes

The programme provides opportunities for students to develop and demonstrate knowledge and understanding, skills and other attributes in the following areas. The programme outcomes are referenced the Frameworks for Higher Education Qualifications of UK Degree-Awarding Bodies (2014), and relate to the typical student. Additionally, the SEEC Credit Level Descriptors for Further and Higher Education (2016) have been used as a guiding framework for curriculum design.

Knowledge and Understanding:	Teaching/learning methods & strategies	Assessment
 A1- The concepts, ideas and theories of theoretical physics at a deep and systematic level A2- The mathematical theory, formalisms and techniques arising in the theoretical physics context, to an advanced level 	Acquisition of knowledge and understanding is through a combination of lectures, participation in seminars, small group tutorials, and coursework. Throughout, the learner is encouraged to undertake independent study both to supplement and consolidate what is being taught/learnt and to broaden their individual knowledge and understanding of the subject.	Knowledge and understanding are assessed through a combination of unseen examinations (A1, A2) and in-course assessments (A1-A2).
Intellectual skills:	Teaching/learning methods & strategies	Assessment
 B1- Formulate and tackle problems in theoretical physics using advanced approaches. B2-Work with highly abstract and mathematical ideas relevant to physics. B3-Design, execute and report on a substantial investigation on an area of recent research. B4 (with Advanced Research Pathway only) Carry out scientific peer-review of others' written work 	Intellectual skills are developed through the methods and strategies outlined in section A, above. Learning outcomes B1-B4 are developed through tutorial exercises, coursework, seminars, project work, study of the literature, and project work. Throughout, the learner is encouraged to develop intellectual skills further by independent study	Intellectual skills are assessed through a combination of unseen examinations (B1-B2) assessed individual assignments (B1-B2, B4) and the project report (B3).
Practical skills:	Teaching/learning methods & strategies	Assessment
C1- Perform advanced calculations in the settings of various physical theories	Practical skills are developed through active participation in seminars and tutorials, through aroun and through project work	Practical skills are assessed through coursework and written assignments (C1-C3) and the project report (C1
C2-Flexibly apply	group and through project work.	C3).
appropriate analytical and problem-solving techniques to problems in mathematical and	Throughout, the learner is expected to consolidate their development of practical computing skills by use of	,

University of Hertfordshire

theoretical physics C3- Synthesise complex material from multiple sources in the scientific literature, and present findings in cogent form	computers available in the Learning Resources Centre.	
Transferable skills:	Teaching/learning methods & strategies	Assessment
 D1- Communicate subtle and complex ideas, both in clear written prose and real-time spoken presentations. D2-Work effectively in a team on intellectually demanding tasks. D3-Demonstrate time-management and IT skills. D4 (with Advanced Research Pathway only) Give constructive feedback on others' technical work 	Transferable skills are developed through coursework reports (D1- D3), oral presentations (D1), project reports (D1) and collaborative work in seminars and tutorial (D2,D4) Throughout, the learner is encouraged to develop transferable skills by maintaining a record of evidence and completing a personal development plan.	Transferable skills are assessed through a range of assignments built into the curriculum - coursework reports (D1,D4), oral presentations (D2,D4), project reports (D1, D2), project management work (D3).

D. Programme Structures, Features, Levels, Modules, and Credits

The programme is offered in the following modes

- Full-time (1 year), leading to the award of MSc Theoretical Physics
- Part-time (2 years), leading to the award of MSc Theoretical Physics
- Full-time (2 years), leading to the award of MSc Theoretical Physics with Advanced Research

Entry is at Level 7. Intake is in semester A (September).

To progress into year 2 of the Advanced Research route students must pass 90 credits in year 1. If they pass 90 credits or less in year 1, they must repeat their failed modules before progressing onto year 2 modules.

UKVI requirements for over-seas students

The University welcomes international applicants on the programme. The University of Hertfordshire does not typically sponsor students on a student route visa for part-time study. For additional information, please see https://www.herts.ac.uk/international/new-international-students/coming-to-the-uk

Professional and Statutory Regulatory Bodies N/A

Work-Based Learning, including Sandwich Programmes N/A

Programme Structure

The programme structure and progression information below (Table 1a and 1b) is provided for the award. Any interim awards are identified in Table 1b. The Programme Learning Outcomes detailed above are developed and assessed through the constituent modules. Table 2 identifies where each learning outcome is assessed.

Table 1a Outline Programme Structure

Compulsory Modules <u>Module Title</u> Relativity and Field Theory Group and Representation Theory (level 6) Quantum Field Theory General Relativity Recent Advances in Theoretical Physics I	7PAM1027 6PAM2002 7PAM1034 7PAM1033 7PAM2006	Credit Points 20	Delivery English English English Error! Bookm ark not defined	0 0 0 0 % Examination	% Contreework 100 100 100	0 0 0 % Practical	A A AB AB
Theoretical Physics Research Project	7PAM2009	60	Error! Bookm ark not defined .English	0	100	0	C/AB
Optional Modules	Module Code	Credit Points	Language of Delivery	% examination	% coursework	% Practical	Semesters
Statistics and Analysis Lagrangian Dynamics (level 6) High Energy Astrophysics Physics of Elementary Particles (level 6)	7PAM1035 6PAM1061 7PAM1020 6PAM1051	15 15 15 15	English English English English	0 0 0	100 100 100 100	0 0 0 0	A A B B
Additional Modules on the "with Advanced Research" Degree Module Titles	Module Code	Credit Points	Language of Delivery	% examination	% coursework	% Practical	Semesters
Research Seminar Recent Advances in Theoretical Physics II	7PAM2008 7PAM2007	30 30	English English	0 0	100 100	0 0	AB AB

The award of an MSc degree requires 180 credit points including at least 150 credit points from level 7 modules which must include the Theoretical Physics Research Project, together with up to 30 credit points from level 6 modules.

The award of an MSc with Advanced Research degree requires 240 credit points including at least 180 credits from level 7 modules which must include the modules Theoretical Physics Research Project and Research

Seminar, together with up to 60 credits from level 6 modules.

Study Patterns:

			Year 1			
	Se	mester A	Semester B		Semester C	
	Relativity a (15	and Field Theory Credits)	Quantum Field Th (15 Credits)	neory		
MSc Theoretic: Physics 180 Credits	al Groups and (15	Representations Credits)	General Relativ (15 Credits)	vity		
Mode of Study One Year Full Time Time	r: Ri	ecent Advances in Th (30 Crec	neoretical Physics lits)	The Re	eoretical Physics esearch Project (60 Credits)	
	Statistic: (15 Lagrang (15	s and Analysis Credits) Or ian Dynamics Credits)	High Energy Astrop (15 Credits) Or Physics of Eleme Particles (15 Credits)	ntary		
		Year 1			Year 2	
	Semester A	Year 1 Semester B	Semester C	Semester A	Year 2 Semester B	Semester C
MSc Theoretical Physics 180 Credits	Semester A Relativity and Field Theory (15 Credits) Groups and Representation s (15 Credits)	Year 1 Semester B Quantum Field Theory (15 Credits) General Relativity (15 Credits)	Semester C	Semester A Recent Advance Physics I (Year 2 Semester B es in Theoretical 30 Credits)	Semester C

		Year 1				
	Semester A	Semester B	Semester C	Semester A	Semester B	Semester C
MSc Theoretical	Relativity and Field Theory (15 Credits)	Quantum Field Theory (15 Credits)		Recent Advanc Phys (30 C	es in Theoretical sics II redits)	
Physics with Advanced Research 240 Credits	Groups and Representations (15 Credits)	General Relativity (15 Credits)		Research (30 c	n Seminar redits)	
Mode of Study Two Years	Recent Advance Phys (30 Cr	es in Theoretical ics I edits)	Vacation Period			Vacation Period
Full Time	Statistics and Analysis (15 Credits) Or Lagrangian Dynamics (15 Credits)	High Energy Astrophysics (15 Credits) Or Physics of Elementary Particles (15 credits)		Theoretical Ph Prc (60 C	ysics Research oject redits)	

Table 1b Final and interim awards available

The programme provides the following final and interim awards:

-		Minimum	Available at end of	Programme Learning Outcomes developed
Final Award Masters with Advanced Research	Award Title Theoretical Physics	requirements 240 credit points with at most 60 at level 6 and the remainder at level 7. In addition, students must pass the	(normally): 4 Semesters	(see above) All programme learning outcomes (see Table 2)
		modules Theoretical Physics Research Project and Research Seminar.		
Masters	Theoretical Physics	180 credit points with at most 30 at level 6 and the remainder at level 7. In addition students must	3 Semesters	All programme learning outcomes other than B4 and D4 (see Table 2)
		Theoretical Physics		
		Research Project		

			Available at	
		Minimum	end of	Programme Learning Outcomes developed
Interim Award	Award Title	requirements	Level	(see above)
Postgraduate	Theoretical	120 credit points,	2, 3	A1, A2, B1, B2, C1
Diploma	Physics	including at least	Semesters	
	-	90 at level 7		
Postgraduate	Theoretical	60 credit points,	1-2	A1, A2, B1, C1
Certificate	Physics	including at least	Semesters	
	-	45 at level 7		

Masters and Diploma awards can be made "with Distinction" or "with Commendation" where criteria as described in <u>UPR AS14</u>, Section D and the students' handbook are met.

Programme-specific assessment regulations

The programme is compliant with the University's academic regulations (in particular, <u>UPR AS11</u>, <u>UPR AS12</u> and <u>UPR AS14</u>) with the exception of those listed below, which have been specifically approved by the University:

The award of the MSc Theoretical Physics with Advanced Research degree requires 240 credit points, as detailed in Table 1b above.

Further points of clarification and interpretation relevant to this specific programme are given below:

- A pass grade in the Theoretical Physics Research Project is required for the award of the MSc Theoretical Physics degree.
- A pass grade in both the Theoretical Physics Research Project and Research Seminar is required for the award to the MSc Theoretical Physics with Advanced Research degree.

E. Management of Programme & Support for student learning

Management

The programme is managed and administered through:

- A Programme Leader, who has overall responsibility for the effective operationalization of the programme, and ensuring that academic standards are maintained and an effective student learning experience is provided. The Programme Leader also has overall responsibility for the quality assurance and enhancement of the programme providing advice and guidance to programme staff as appropriate. In addition the Programme Leader advises students about programme structure and regulations.
- Module Leaders to advise students about module-specific issues.
- An Admissions Tutor with specific responsibility for open days and selection.
- Student representatives and advocates who are members of a Programme Committee.
- A Student Handbook and Programme Canvas site, to explain the programme, the student support services that are available, and to provide a calendar describing the time-line of the programme within the academic year.
- Head of Department.
- Associate Dean (AQA).
- Associate Dean (L&T).
- Dean of School

Support

Students are supported by:

- A personal tutor, allocated to the student on entry.
- An induction week at the beginning of each new academic session.
- An Overseas Orientation Programme at the beginning of each new academic session, including English language support.
- The Physics, Astronomy & Mathematics (PAM) Industrial Training Placements Officer.
- The School of Physics, Engineering and Computer Science (SPECS) computing laboratories.
- StudyNet, a versatile on-line virtual learning environment.
- Guided student-centred learning on StudyNet module sites.
- Access to extensive digital and print collections of information resources.
- Attractive modern study environments in Learning Resources Centres.
- Help Desks in both the Learning Resources Centres.
- A Mathematics Support Service.
- A Department Equality Committee.
- A Careers and Employment Service for all current students and graduates to advise on opportunities for industrial placement, further study and employment.
- A substantial Student Centre that provides advice on issues such as finance, University regulations, legal matters, accommodation, international student support, etc.
- A Student Counseling Service that offers counseling and advice, runs workshops to help with examination worries and other concerns, and sets up Study Needs Agreements to help students with special-needs related study issues.
- Office of Dean of Students, incorporating Chaplaincy, Counseling and Nursery.
- The University Medical Centre.
- The University Disability Advisors.
- The Students' Union.

F. Other sources of information

In addition to this Programme Specification, the University publishes guidance to registered students on the programme and its constituent modules:

- A Programme (or Student) Handbook;
- A Definitive Module Document (DMD) for each constituent module;
- A Module Guide for each constituent module.

The <u>Ask Herts</u> website provides information on a wide range of resources and services available at the University of Hertfordshire including academic support, accommodation, fees, funding, visas, wellbeing services and student societies.

As a condition of registration, all students of the University of Hertfordshire are required to comply with the University's rules, regulations and procedures. These are published in a series of documents called 'University Policies and Regulations' (UPRs). The University requires that all students consult these documents which are available on-line, on the UPR web site, at: <u>http://www.herts.ac.uk/secreg/upr/</u>. In particular, <u>UPR SA07</u> 'Regulations and Advice for Students' Particular Attention - Index' provides information on the UPRs that contain the academic regulations of particular relevance for undergraduate and taught postgraduate students.

In accordance with section 4(5) of the Higher Education and Research Act 2017 (HERA), the UK Office for Students (OfS) has registered the University of Hertfordshire in the register of English higher education providers. The Register can be viewed at: <u>https://www.officeforstudents.org.uk/advice-and-guidance/the-register/the-ofs-register/</u>. Furthermore, the OfS has judged that the University of Hertfordshire delivers consistently outstanding teaching, learning and outcomes for its students. It is of the highest quality found in the UK. Consequently, the University received a Gold award in the 2018 Teaching Excellence and Student

Outcomes (TEF) exercise. This award was made in June 2018 and is valid for up to 3 years. The TEF panel's report and conclusions can be accessed at: <u>https://www.officeforstudents.org.uk/advice-and-guidance/teaching/tef-outcomes/#/provider/10007147</u>

G. Entry requirements

The normal entry requirements for the programme are a 2.1 or above Honours degree (or equivalent) in physics, mathematics or a closely related subject, where the degree is accredited by a Professional Statutory Regulatory Body such as the IoP (or a body of equivalent standing in a related subject or overseas).

Students who wish to join the course with a 2.2 may be considered on a case-by-case basis, where entry may be possible based on additional information and/or an interview.

It is not possible for students who have already obtained the MPhys (Physics) degree (PMMPHY) or MPhys (Astrophysics) degree (PMMPHYAP) to register on the Theoretical Physics MSc.

The programme is subject to the University's Principles, Policies and Regulations for the Admission of Students to Undergraduate and Taught Postgraduate Programmes (in <u>UPR SA03</u>), along with associated procedures. These will take account of University policy and guidelines for assessing accredited prior certificated learning (APCL) and accredited prior experiential learning (APEL).

If you would like this information in an alternative format please contact: Hutton Hub Administration Student Administration: <u>hhaq@herts.ac.uk</u>

If you wish to receive a copy of the latest Programme Annual Monitoring and Evaluation Report (AMER) and/or the External Examiner's Report for the programme, please email a request to <u>aqo@herts.ac.uk</u>

Table 2: Development of Intended Programme Learning Outcomes in the Constituent Modules

This map identifies where the programme learning outcomes are assessed in the constituent modules. It provides (i) an aid to academic staff in understanding how individual modules contribute to the programme aims (ii) a checklist for quality control purposes and (iii) a means to help students monitor their own learning, personal and professional development as the programme progresses.

MSc Theoretical Physics

			Programme Learning Outcomes (as identified in section 1 and the following part									
		Knowledge &	Understanding	Intellectual Skills			Practical Skills			Transferable Skills		
Module Title	Module Code	A1	A2	B1	B2	B3	C1	C2	C3	D1	D2	D3
Relativity and Field Theory	7PAM1027	×	×	×	×		×	×				
Groups and Representations	6PAM2002		×		×		×					
General Relativity	7PAM1033	×	×	×	×		×	×				
Quantum Field Theory	7PAM1034	×	×	×	×		×	×				
Statistics and Analysis	7PAM1035		×					×				
Theoretical Physics Research Project	7PAM2009	×	×	×	×	×	×	×	×	×		×
Lagrangian Dynamics	6PAM1061	×	×	×	×		×	×				
The Physics of Elementary Particles	6PAM1051	×	×	×	×		×	×				
High Energy Astrophysics	7PAM1020	×		×			×	×				
Recent Advances in Theoretical Physics I	7PAM2006	×	×	×	×		×	×	×	×	×	×

MSc Theoretical Physics with Advanced Research

			Programme	Learning	Outcomes (as identifi	ed in sect	ion 1 and t	he followi	ng page)				
		Knowl Unders	edge & standing		Intellectual Skills Practical Skills					s	Transferable Skills			
	Module													
Module Title	Code	A1	A2	B1	B2	B3	B4	C1	C2	C3	D1	D2	D3	D4
Relativity and Field Theory	7PAM1027	×	×	×	×			×	×					
Groups and Representations	6PAM2002		×		×			×						
General Relativity	7PAM1033	×	×	×	×			×	×					
Quantum Field Theory	7PAM1034	×	×	×	×			×	×					
Statistics and Analysis	7PAM1035		×						×					
Research Seminar	7PAM2008	×	×	×	×		×	×	×	×	×	×	×	×
Theoretical Physics Research Project	7PAM2009	×	×	×	×	×		×	×	×	×		×	
Lagrangian Dynamics	6PAM1061	×	×	×	×			×	×					
The Physics of Elementary Particles	6PAM1051	×	×	×	×			×	×					
High Energy Astrophysics	7PAM1020	×		×				×	×					
Recent Advances in Theoretical Physics I	7PAM2006	×	×	×	×			×	×	×	×	×	×	
Recent Advances in Theoretical Physics II	7PAM2007	×	×	×	×		×	×	×	×	×	×	×	×

KEY TO PROGRAMME LEARNING OUTCOMES

Knowledge and Understanding	Practical Skills
A1 The concepts, ideas and theories of theoretical physics at a deep and	C1 Perform advanced calculations in the settings of various physical
systematic level	theories
A2 The mathematical theory, formalisms and techniques arising in the	C2 Flexibly apply appropriate analytical and problem-solving techniques to
theoretical physics context, to an advanced level	problems in mathematical and theoretical physics
	C3 Synthesise complex material from multiple sources in the scientific
	literature, and present findings in cogent form
Intellectual Skills	Transferable Skills
B1 Formulate and tackle problems in theoretical physics using advanced approaches	D1 Communicate subtle and complex ideas, both in clear written prose and real-time spoken presentations.
B2 Work with highly abstract and mathematical ideas relevant to physics	D2 Work effectively in a team on intellectually demanding tasks
B3 Design, execute and report on a substantial investigation on an area of	D3 Demonstrate time-management and IT skills.
recent research	
B4 (with Advanced Research Pathway only) Carry out scientific peer-review	D4 (with Advanced Research Pathway only) Give constructive
of others' written work	feedback on others' technical work

Section 2

Programme management

Relevant QAA subject benchmarking statements Type of programme Date of validation/last periodic review Date of production/ last revision of PS Relevant to level/cohort Administrative School Physics, Mathematics

Taught postgraduate February 2021 February 2021 Level 7 entering September 2021 School of Physics, Engineering & Computer Science

Table 3 Course structure

Course details		
Course code	Course description	HECOS
РЕТРМ	MSc Theoretical Physics	100426
PETARM	MSc Theoretical Physics with Advanced Research	100426

