Script Command Examples

Commands that have no arguments are not listed.

Part 1 – Module Motion

`conveyor_pulse_decode(type, A, B)`

Example command:

`conveyor_pulse_decode(1, 2, 3)`

Parameters in example

- `type = 1` - is quadrature encoder, input A and B must be square waves with 90 degree offset. Direction of the conveyor can be determined.

- `A = 2` – Encoder output A is connected to digital input 2

- `B = 3` – Encoder output B is connected to digital input 3

`force_mode(task frame, selection vector, wrench, type, limits)`

Example command:

`force_mode(p[0.1,0,0,0,0.785],[1,0,0,0,0,0],[20,0,40,0,0,0],2,[.2,.1,.1,.785,.785,1.57])`

Parameters in example

- `Task frame = p[0.1,0,0,0,0.785]` – This frame is offset from the base frame 100 mm in the x direction and rotated 45 degrees in the rz direction

- `Selection Vector = [1,0,0,0,0,0]` – The robot is compliant in the x direction of the Task frame above.

- `Wrench = [20,0,40,0,0,0]` – The robot applies 20N in the x direction. It also accounts for a 40N external force in the z direction.

- `Type = 2` – The force frame is not transformed.

- `Limits = [.1,.1,1,785,785,1.57]` – max x velocity is 100 mm/s, max y deviation is 100 mm, max z deviation is 100 mm, max rx deviation is 45 deg, max ry deviation is 45 deg, max rz deviation is 90 deg.
\(\text{movec}(\text{pose}_\text{via}, \text{pose}_\text{to}, a=1.2, v=0.25, r=0) \)

Example command

\(\text{movec}(p[x,y,z,0,0,0], \text{pose}_\text{to}, a=1.2, v=0.25, r=0.05) \)

Parameters in example

Note: first position on circle is previous waypoint.

\(\text{pose}_\text{via} = p[x,y,z,0,0,0] \) – second position on circle.
Note rotations are not used so they can be left as zeros.
Note: This position can also be represented as joint angles \([j0,j1,j2,j3,j4,j5]\) then forward kinematics is used to calculate the corresponding pose

\(\text{pose}_\text{to} = p[x,y,z,rx,ry,rz] \) – third position on circle.
Note: This position can also be represented as joint angles \([j0,j1,j2,j3,j4,j5]\) then forward kinematics is used to calculate the corresponding pose

\(a = 1.2 \) – acceleration is 1.2 m/s/s
\(v = 0.25 \) – velocity is 250 mm/s
\(r = 0 \) – blend radius (at pose_to) is 50 mm.

\(\text{movej}(q, a=1.4, v=1.05, t=0, r=0) \)

Example command

\(\text{movej}([0,1.57,-1.57,3.14,-1.57,1.57], a=1.4, v=1.05, t=0, r=0) \)

Parameters in example

\(q = [0,1.57,-1.57,3.14,0,1.57] \) – base is at 0 deg rotation, shoulder is at 90 deg rotation, elbow is at -90 deg rotation, wrist 1 is at 180 deg rotation, wrist 2 is at -90 deg rotation, wrist 3 is at 90 deg rotation. Note: joint positions (q can also be specified as a pose, then inverse kinematics is used to calculate the corresponding joint positions)

\(a = 1.4 \) – acceleration is 1.4 rad/s/s
\(v = 1.05 \) – velocity is 1.05 rad/s
\(t = 0 \) – the time (seconds) to make move is not specified. If it were specified the command would ignore the a and v values.
\(r = 0 \) – the blend radius is zero meters.
movel(\texttt{pose, a=1.2, v=0.25, t=0, r=0})

Example Command

movel(\texttt{pose, a=1.2, v=0.25, t=0, r=0})

Example Parameters

\begin{align*}
\text{pose} &= \text{p}[0.2,0.3,0.5,0,0,3.14] \quad \text{– \ position \ in \ base \ frame \ of \ x = 200 \ mm, \ y = 300 \ mm, \ z = } \\
& \quad \text{500 mm, \ rx = 0, \ ry = 0, \ rz = 180 \ deg.} \\
\text{a} &= 1.2 \quad \text{– \ acceleration \ of \ 1.2 \ m/s^2} \\
\text{v} &= 0.25 \quad \text{– \ velocity \ of \ 250 \ mm/s} \\
\text{t} &= 0 \quad \text{– \ the \ time \ (seconds) \ to \ make \ the \ move \ is \ not \ specified. \ If \ it \ were \ specified \ the} \\
& \quad \text{command \ would \ ignore \ the \ a \ and \ v \ values.} \\
\text{r} &= 0 \quad \text{– \ the \ blend \ radius \ is \ zero \ meters.}
\end{align*}

movep(\texttt{pose, a=1.2, v=0.25, t=0, r=0})

Example Command

movep(\texttt{pose, a=1.2, v=0.25, t=0, r=0})

Example Parameters

\begin{align*}
\text{pose} &= \text{p}[0.2,0.3,0.5,0,0,3.14] \quad \text{– \ position \ in \ base \ frame \ of \ x = 200 \ mm, \ y = 300 \ mm, \ z = } \\
& \quad \text{500 mm, \ rx = 0, \ ry = 0, \ rz = 180 \ deg.} \\
\text{a} &= 1.2 \quad \text{– \ acceleration \ of \ 1.2 \ m/s^2} \\
\text{v} &= 0.25 \quad \text{– \ velocity \ of \ 250 \ mm/s} \\
\text{r} &= 0 \quad \text{– \ the \ blend \ radius \ is \ zero \ meters.}
\end{align*}

\texttt{position_deviation_warning(\texttt{enabled, threshold})}

Example Command

\texttt{Position_deviation_warning(True,0.8)}

Example Parameters

\begin{align*}
\text{Enabled} &= \text{True} \quad \text{– \ Logging \ of \ warning \ is \ turned \ on}
\end{align*}
Threshold = 0.8 – 80% of deviation that causes a protective stop causes a warning to be logged in the log history file.

reset_revolution_counter(qNear=[0.0, 0.0, 0.0, 0.0, 0.0, 0.0])

Example Command
reset_revolution_counter(qNear=[0.0, 0.0, 0.0, 0.0, 0.0, 0.0])

Example Parameters

qNear = [0.0, 0.0, 0.0, 0.0, 0.0, 0.0] – Optional parameter, resets the revolution counter of wrist 3 to zero on UR3 robots to the nearest zero location to joint rotations represented by qNear.

dservoc(pose, a=1.2, v=0.25, r=0)

Example Command
Servoc(p[0.2,0.3,0.5,0,0,3.14],a=1.2,v=0.25,r=0)

pose = p[0.2,0.3,0.5,0,0,3.14] – position in base frame of x = 200 mm, y = 300 mm, z = 500 mm, rx = 0, ry = 0, rz = 180 deg.

a = 1.2 – acceleration of 1.2 m/s^2

v = 0.25 – velocity of 250 mm/s

r = 0 – the blend radius at the target position is zero meters.

servoj(q, a, v, t=.008, lookahead_time=0.1, gain=300)

Example Commands

servoj([0.0,1.57,-1.57,0,0,3.14], t=0.1, lookahead_time=0.1, gain=300)

or

servoj([0.0,1.57,-1.57,0,0,3.14], 0, 0, 0.1, 0.1, 300)

q = [0.0,1.57,-1.57,0,0,3.14] – joint angles in radians representing rotations of base=0°, shoulder=90°, elbow=-90°, wrist1=0°, wrist2=0°, wrist3= 180°

a = 0 not used in current version

v = 0 not used in current version

t=.1 time where the command is controlling the robot. The function is blocking for time t [S]
lookahead time=.1

lookahead time [s], range [0.03, 0.2] smoothen the trajectory with this lookahead time

gain=300

proportional gain for following target position, range [100, 2000]

set conveyor tick count(tick count, absolute encoder resolution=0)

Example Command

Set_conveyor_tick_count(24543,0)

Tick count = 24543 which is a value read from a MODBUS register being updated by the absolute encoder.

Absolute encoder resolution = 0. 0 is a 32 bit signed encoder, range [-2147483648 ; 2147483647] (default)

Set_pos(q)

Example Command

set_pos([0.0, 1.57, -1.57, 0, 0, 3.14])

q = [0.0, 1.57, -1.57, 0, 0, 3.14] –the position of the simulated robot with joint angles in radians representing rotations of base=0°, shoulder=90°, elbow=-90°, wrist1=0°, wrist2=0°, wrist3= 180°

speedj(qd, a, t)

This is the equivalent of a joint jog command. Robot moves as directed for time t.

Example Command

speedj([0.2, 0.3, 0.1, 0.05, 0, 0], 0.5, 0.5)

qd - Joint speeds of – base = 0.2 rad/s, shoulder = 0.3 rad/s, elbow=0.1 rad/s, wrist1=0.05 rad/s, wrist2 and wrist 3 = 0 rad/s

a – acceleration of 0.5 rad/s² of the leading axis (shoulder is this case)

t – time of 0.5 s – time before the function returns

speedl(xd, a, t, aRot='a')

This is the equivalent of a linear jog command. Robot moves as directed for time t.

Example Command
speedl([0.5,0.4,0.0,0.,1.57,0,0], 0.5, 0.5)

qd - Tool speeds of \(x = 500 \text{ mm/s}, y = 400 \text{ mm/s}, r_x=90 \text{ deg/s}, r_y \text{ and } r_z=0 \text{ mm/s} \)

a acceleration of 0.5 m/s\(^2\) of the leading axis (shoulder is this case)

t time of 0.5 s – time before the function returns

stop conveyor tracking(a=15, aRot=’a’)

Example Command

stop conveyor tracking(a=15)

a tool acceleration of 15 m/s\(^2\)

stopj(a)

Example Command

Stopj(2)

\(a = 2 \text{ rad/s}^2 \) rate of deceleration of the leading axis.

stop(a, aRot=’a’)

Example Command

Stopj(20)

\(a = 20 \text{ m/s}^2 \) - rate of deceleration of the tool

aRot: tool deceleration [rad/s\(^2\)] (optional), if not defined a, position acceleration, is used. i.e. it supersedes the “a” deceleration.

track conveyor circular(center, ticks per revolution, rotate tool)

Example Command

track conveyor circular(p[0.5,0.5,0,0,0,0],500.0, false)

center = p[0.5,0.5,0,0,0,0] – location of the center of the conveyor

ticks per revolution = 500.0 – the number of ticks the encoder sees when the conveyor moves one revolution.

rotate tool = false - the tool should not rotate with the conveyor, but stay in the orientation specified by the trajectory (movel() etc.).
```
track conveyor linear(direction, ticks per meter)
```

Example Command

```
track conveyor linear(p[1,0,0,0,0,0],1000.0)
```

direction = p[1,0,0,0,0,0] - Pose vector that determines the direction of the conveyor in the base coordinate system of the robot

ticks per meter = 1000. - How many ticks the encoder sees when the conveyor moves one meter.
Part 2 – Module Internals

get_inverse_kin(x, qnear, maxPositionError=1e-10, maxOrientationError=1e-10)

Example Command

```
get_inverse_kin(p[.1,.2,.2,0,3.14,0], [0.,3.14,1.57,.785,0,0])
```

- `x` pose with position of x=100mm, y=200mm, z=200mm and rotation vector of
 `rx=0 deg., ry=360 deg, rz=0 deg.`
- `qnear` solution should be near to joint angles of `j0=0 deg, j1=360 deg, j2=180 deg, j3=90 deg, j4=0 deg, j5=90 deg.`
- `maxPositionError` is 1e-10 m
- `maxOrientationError` is 1e-10 rad

is_within_safety_limits(pose)

Example Command

```
is_within_safety_limits(p[.1,.2,.2,0,3.14,0])
```

- `pose` target pose with position of x=100mm, y=200mm, z=200mm and rotation vector of `rx=0 deg., ry=360 deg, rz=0 deg.`

popup(s, title='Popup', warning=False, error=False, blocking=False)

Example Command

```
popup("here I am", title="Popup #1", blocking=True)
```

- `s` popup text is “here I am”
- `title` popup title is “Popup #1”
- `blocking` is True so the popup must be cleared before other actions will be performed.

set_gravity(d)

Example Command

```
```
set_gravity(0,9.82,0)

d is vector with a direction of y (direction of the robot cable) and a magnitude of 9.82 m/s^2 (1g).

set_payload(m,CoG)

Example Command

```
set_payload(3., [0,0,.3])
```

- **m** mass is set to 3 kg payload
- **CoG** Center of Gravity is set to x=0 mm, y=0 mm, z=300mm from the center of the tool mount in tool coordinates

set_payload_cog(CoG)

Example Command

```
set_payload([0,0,.3])
```

- **CoG** is set to x=0 mm, y=0 mm, z=300mm from the center of the tool mount in tool coordinates

set_payload_mass(m)

Example Command

```
set_payload(3.)
```

- **m** mass is set to 3 kg payload

set_tcp(pose)

Example Command

```
set_tcp([0.,2,.3,0.,3.14,0.])
```

- **pose** tool center point is set to x=0 mm, y=200mm, z=300mm, rotation vector is rx=0 deg, ry=180 deg, rz=0 deg. In tool coordinates

sleep(t)

Example Command

```
sleep(3.)
```

textmsg(s1, s2=’ ’)
Example Command

textmsg("value = ", 3)

s1 set first part of message to "value =

s2 set second part of message to 3

message in the log is "value = 3"
Part 3 – Module urmath

acos(f)

Example Command

acos(0.707)

f is the cos of 45 deg. (.785 rad)

Returns .785

asin(f)

Example Command

asin(0.707)

f is the sin of 45 deg. (.785 rad)

Returns .785

atan(f)

Example Command

atan(1.)

f is the tan of 45 deg. (.785 rad)

Returns .785

atan2(x,y)

Example Command

atan2(.5,.5)

x is the one side of the triangle
y is the second side of a triangle

Returns atan(.5/.5) = .785

binary_list_to_integer(l)

Example Command

binary_list_to_integer([True,False,False,True])
l represents the binary values 1001

Returns 9

ceil(f)

Example Command
ceil(1.43)

Returns 2

cos(f)

Example Command

\[
\cos(1.57)
\]

f is angle 1.57 rad (90 deg)

Returns 0.0

d2r(d)

Example Command

d2r(90)

d angle in degrees
returns 1.57 angle in radians

floor(f)

Example Command

floor(1.53)

returns 1

get_list_length(v)

Example Command

g_list_length([1,3,3,6,2])

v is the list 1,3,3,6,2
returns 5

integer_to_binary_list(i)

Example Command

integer_to_binary_list(57)

I integer 57

Returns binary list

interpolate_pose(p_from,p_to, alpha)

Example Command

interpolate_pose(p[.2,.2,.4,0,0,0],p[.2,.2,.6,0,0,0],.5)

p_from p[.2,.2,.3,0,0,0]
p_to p[.2,.2,.5,0,0,0]
alpha .5 is 50% of the way in between p_from and p_to

Returns p[.2,.2,.4,0,0,0]

length(v)

Example Command

length("here I am")

v equals string “here I am”

Returns 9

log(b,f)

Example Command

log(10,.4.)

b base 10
f log of 4

Returns 0.60206

norm(a)

Examples of Command
norm(-5.3) Returns 5.3

norm(-8) Returns 8

norm(p[-2,2,-2,-1.57,0,3.14]) Returns 3.52768

point_dist(p_from,p_to)

Example Command

point_dist(p[2,5,1,1.57,0,3.14], p[2,5,6,0,1.57,3.14])

p_from is first point p[2,5,1,1.57,0,3.14]
p_to is second point p[2,5,6,0,1.57,3.14]

Returns distance between the points regardless of rotation or 500 mm

pose_add(p_1,p_2)

Example Command

pose_add(p[2,5,1,1.57,0,0], p[2,5,6,1.57,0,0])

p_1 is first point p[2,5,1,1.57,0,0]
p_2 is second point p[2,5,6,1.57,0,0]

Returns p[0.4,1.0,0.7,3.14,0,0]

pose_dist(p_from,p_to)

Example Command

pose_dist(p[2,5,1,1.57,0,3.14], p[2,5,6,0,1.57,3.14])

p_from is first point p[2,5,1,1.57,0,3.14]
p_to is second point p[2,5,6,0,1.57,3.14]

Returns distance between the points regardless of rotation or 500 mm

pose_inv(p_from)

Example Command

pose_inv(p[2,5,1,1.57,0,3.14])

p_from is point p[2,5,1,1.57,0,3.14]

Returns p[0.19324,0.41794,-0.29662,1.23993,0.0,2.47985]
pose_sub(p_1,p_2)

Example Command

\[
\text{pose} _\text{sub}(p\{.2,.5,.1,1.57,0,0\}, p\{.2,.5,.6,1.57,0,0\})
\]

- \(p_1\) is first point \(p\{.2,.5,.1,1.57,0,0\}\)
- \(p_2\) is second point \(p\{.2,.5,.6,1.57,0,0\}\)

Returns \(p\{0.0,0.0,-0.5,0.0,0.0,0.0\}\)

pose_trans(p_1,p_2)

Example Command

\[
\text{pose} _\text{trans}(p\{.2,.5,.1,1.57,0,0\}, p\{.2,.5,.6,1.57,0,0\})
\]

- \(p_1\) is first point \(p\{.2,.5,.1,1.57,0,0\}\)
- \(p_2\) is second point \(p\{.2,.5,.6,1.57,0,0\}\)

Returns \(p\{0.4,-0.0996,0.60048,3.14,0.0,0.0\}\)

pow(base,exponent)

Example Command

\[
\text{pow}(5.0,3)
\]

- base 5
- exponent 3

Returns 125.

r2d(r)

Example Command

\[
r2d(1.57)
\]

- \(r\) 1.5707 rad

Returns 90 deg

rotvec2rpy(rotation_vector)

Example Command

\[
\text{rotvec}2\text{rpy}([3.14,1.57,0])
\]
rotation_vector [3.14,1.57,0] \(rx=3.14, ry=1.57, rz=0\)

Returns [2.80856, .16202, 0.9] \(\text{roll}=2.80856, \text{pitch}=.16202, \text{yaw}=0.9\)

\(\text{rpy2rotvec}(\text{rpy_vector})\)

Example Command
\[
\text{rpy2rotvec}([3.14,1.57,0])
\]

\(\text{rpy_vector} [3.14,1.57,0]\) \(\text{roll}=3.14, \text{pitch}=1.57, \text{yaw}=0\)

Returns [2.22153, 0.00177, -2.21976] \(\text{rx}=2.22153, \text{ry}=0.00177, \text{rz}=-2.21976\)

\(\sin(f)\)

Example Command
\[
\sin(1.57)
\]

\(f\) \(\text{angle of 1.57 radians (90 deg)}\)

Returns 1.0

\(\sqrt{f}\)

Example Command
\[
\sqrt{9}
\]

\(f\) \(9\)

Returns 3

\(\tan(f)\)

Example Command
\[
\tan(0.7854)
\]

\(f\) \(\text{angle of 0.7854 radians (45 deg)}\)

Returns 1.0
Part 4 – Module interfaces

get_analog_in(n) (obsolete but operational function)

Example Command

get_analog_in(1)

n analog input 1

Returns value of analog input #1

get_analog_out(n) (obsolete but operational function)

Example Command

get_analog_out(1)

n analog output 1

Returns value of analog output #1

get_configurable_digital_in(n)

Example Command

get_configurable_digital_in(1)

n configurable digital input 1

Returns True or False

get_configurable_digital_out(n)

Example Command

get_configurable_digital_out(1)

n configurable digital output 1

Returns True or False

get_digital_in(n)

Example Command
get_digital_in(1)

n digital input 1

Returns True or False

code: get_digital_out(n)

Example Command

get_digital_out(1)

n digital output 1

Returns True or False

code: get_euromap_input(port_number)

Example Command

get_euromap_input(1)

port_number euromap digital input on port 1

Returns True or False

code: get_euromap_output(n)

Example Command

get_euromap_output(1)

port_number euromap digital output on port 1

Returns True or False

code: get_configurable_digital_in(n)

Example Command

get_configurable_digital_in(1)

n configurable digital input 1

Returns True or False

code: get_flag(n)

Example Command
get_flag(1)

n value of flag 1

Returns True or False

get_standard_analog_in(n)

Example Command

get_standard_analog_in(1)

n standard analog input 1

Returns value of standard analog input #1

get_standard_analog_out(n)

Example Command

get_standard_analog_out(1)

n standard analog output 1

Returns value of standard analog output #1

get_standard_digital_in(n)

Example Command

get_standard_digital_in(1)

n standard digital input 1

Returns True or False

get_standard_digital_out(n)

Example Command

get_standard_digital_out(1)

n standard digital output 1

Returns True or False

get_tool_analog_in(n)
Example Command

`get_tool_analog_in(1)`

n tool analog input 1

Returns value of tool analog input #1

`get_tool_digital_in(n)`

Example Command

`get_tool_digital_in(1)`

n tool digital input 1

Returns True or False

`get_tool_digital_out(n)`

Example Command

`get_tool_digital_out(1)`

n tool digital output 1

Returns True or False

`modbus_add_signal(IP, slave number, signal address, signal type, signal name)`

Example Command

`modbus_add_signal("172.140.17.11", 255,5,1, "output1")`

<table>
<thead>
<tr>
<th>IP</th>
<th>IP address 172.140.17.11</th>
</tr>
</thead>
<tbody>
<tr>
<td>Slave number</td>
<td>255</td>
</tr>
<tr>
<td>Signal address</td>
<td>5</td>
</tr>
<tr>
<td>Signal type</td>
<td>1 digital output</td>
</tr>
<tr>
<td>Signal name</td>
<td>output1</td>
</tr>
</tbody>
</table>

`modbus_delete_signal(signal name)`

Example Command

`modbus_delete_signal("output1")`

| Signal name | output1 |
modbus_get_signal_status(signal name, is_secondary_program)

Example Command

```python
modbus_get_signal_status("output1", False)
```

Signal name: `output1`
Is_secondary_program: `False` (NOTE: must be set to False)

modbus_send_custom_command(IP, slave_number, function_code, data)

Example Command

```python
modbus_send_custom_command("172.140.17.11", 103, 6, [17, 32, 2, 88])
```

IP: IP address 172.140.17.11
Slave number: 103
Function code: 6
Data: `[17, 32, 2, 88]`

Function code and data are specified by the manufacturer of the slave Modbus device connected to the UR controller.

modbus_set_output_register(signal name, register_value, is_secondary_program)

Example Command

```python
modbus_set_output_register("output1", 300, False)
```

Signal name: `output1`
Register value: 300
Is_secondary_program: `False` (NOTE: must be set to False)

modbus_set_output_signal(signal name, digital_value, is_secondary_program)

Example Command

```python
modbus_set_output_signal("output1", True, False)
```

Signal name: `output1`
Digital value: `True`
Is_secondary_program: `False` (NOTE: must be set to False)

modbus_set_runstate_dependnet_choice(signal name, runstate_choice)

Example Command

```python
modbus_set_runstate_dependnet_choice("output2", 1)
```
Signal name: output2
Runstate dependent choice: 1
set low when a program is not running

modbus_set_signal_update_frequency(signal name, update_frequency)

Example Command
modbus_set_signal_update_frequency("output2", 20)

Signal name: output2
Signal update frequency: 20 Hz

read_input_boolean_register(address)

Example Command
read_input_boolean_register(3)
address: input boolean register 3

read_input_float_register(address)

Example Command
read_input_float_register(3)
address: input float register 3

read_input_integer_register(address)

Example Command
read_input_integer_register(3)
address: output integer register 3

read_output_boolean_register(address)

Example Command
read_output_boolean_register(3)
address: output boolean register 3

read_output_float_register(address)

Example Command
read output float register(3)
address output float register 3

read_output_integer_register(address)

Example Command

read output integer register(3)
address output integer register 3

read_port_bit(address)

Example Command

read port bit(3)
address port bit 3

read_port_register(address)

Example Command

read port register(3)
address port register 3

rpc_factory(type,url)

Example Command

rpc factory("xmlrpc", "http://127.0.0.1:8080/RPC2")
type xmlrpc
url http://127.0.0.1:8080/RPC2

rtde_set_watchdog(variable_name, min_frequency, action='pause')

Example Command

rtde set watchdog("input int register 0", 10, "stop")
variable name input int register 0
min frequency 10 Hz
action stop the program

set_analog_inputrange(port,range) (obsolete but operational function)
Example Command

 set_analog_inputrange(1,0)
 port analog input port 1 (on controller)
 range 0 0-5V

set_analog_out(n,f) (obsolete but operational function)

Example Command

 set_analog_out(1,2)
 n analog output port 1 (on controller)
 f 2 volts

set_analog_output_domain(port,domain)

Example Command

 set_analog_output_domain(1,1)
 port analog output port 1 (on controller)
 domain 1 (0-10 volts)

set_configurable_digital_out(n,b)

Example Command

 set_configurable_digital_out(1,True)
 n configurable digital output 1
 b True

set_digital_out(n,b)

Example Command

 set_digital_out(1,True)
 n digital output 1
 b True

set_euromap_output(port_number, signal_value)

Example Command

 set_euromap_output(1,True)
set_euromap_runstate_dependent_choice(port_number, runstate_choice)

Example Command

set_euromap_runstate_dependent_choice(1, 1)

port_number euromap digital output on port 1
runstate choice 0 = set low when a program is not running

set_flag(n, b)

Example Command

set_flag(1, True)

n value of flag 1

set_runstate_configurable_digital_output_to_value(outputid, state)

Example Command

Set_runstate_configurable_digital_output_to_value(5, 2)

outputid configurable digital output on port 5
runstate choice 2 = High when program is not running

set_runstate_gp_boolean_output_to_value(outputid, state)

Example Command

set_runstate_gp_boolean_output_to_value(5, 2)

outputid configurable digital output on port 5
runstate choice 2 = High when program is not running

set_runstate_standard_analog_output_to_value(outputid, state)

Example Command

set_runstate_standard_analog_output_to_value(1, 2)

outputid configurable digital output on port 1
runstate choice 2 = Max when program is not running
set_runstate_standard_digital_output_to_value(outputid, state)

Example Command

Set_runstate_standard_digital_output_to_value(5, 2)

outputid standard digital output on port 5
runstate choice 2 = High when program is not running

set_runstate_tool_digital_output_to_value(outputid, state)

Example Command

Set_runstate_tool_digital_output_to_value(1, 2)

outputid tool digital output on port 1
runstate choice 2 = High when program is not running

set_standard_analog_input_domain(port, domain)

Example Command

set_standard_analog_input_domain(1,0)

port analog input port 1
domain 1 (0-10 volts)

set_standard_analog_out(n,f)

Example Command

set_standard_analog_out(1,4)

n standard analog output 1
f 4 volts (or mA depending on domain setting)

set_standard_digital_out(n,f)

Example Command

set_standard_digital_out(1,True)

n standard digital output 1
f True

set_tool_analog_input_domain(port,domain)

Example Command
set_tool_analog_input_domain(1,1)

port tool analog input 1
domain 1 = 0-10 V

set_tool_digital_out(n,b)

Example Command

set_tool_digital_out(1,True)

n tool digital output 1
b True

set_tool_voltage(voltage)

Example Command

set_tool_voltage(24)

voltage 24 volts

socket_close(socket_name='socket_0')

Example Command

socket_close(socket_name="socket_0")

socket_name socket_0

socket_get_var(name, socket_name='socket_0')

Example Command

socket_get_var("POS.X", socket_name="socket_0")

socket_name socket_0

socket_open(address, port, socket_name='socket_0')

Example Command

socket_open("192.168.5.1", 50000, "socket_10")

address 192.168.5.1
socket 50000
socket_name socket_10

socket_read_ascii_float(number, socket_name='socket_0')
socket_read_ascii_float(4,"socket10")

Number 4 Number of floats to read
socket_name socket_10

socket_read_binary_integer(number, socket_name='socket_0')

Example Command

socket_read_ascii_float(4,"socket10")

Number 4 Number of integers to read
socket_name socket_10

socket_read_byte_list(number, socket_name='socket_0')

Example Command

socket_read_ascii_float(4,"socket10")

Number 4 Number of byte variables to read
socket_name socket_10

socket_read_line(socket_name='socket_0')

Example Command

socket_read_line("socket10")
socket_name socket_10

socket_read_string(socket_name='socket_0',prefix=' ', suffix=' ')

Example Command

socket_read_string("socket10",prefix="">",suffix="<")
socket_name socket_10

socket_send_byte(value,socket_name='socket_0')

Example Command

socket_send_byte(2,"socket10")
value 2
socket_name socket_10
Returns True or False (sent or not sent)

`socket_send_int(value, socket_name='socket_0')`

Example Command

```
socket_send_int(2, "socket10")
```

value 2
socket_name socket_10

Returns True or False (sent or not sent)

`socket_send_line(str, socket_name='socket_0')`

Example Command

```
socket_send_line("hello", "socket10")
```

str hello
socket_name socket_10

Returns True or False (sent or not sent)

`socket_send_string(str, socket_name='socket_0')`

Example Command

```
socket_send_string("hello", "socket10")
```

str hello
socket_name socket_10

Returns True or False (sent or not sent)

`socket_set_var_name(name, value, socket_name='socket_0')`

Example Command

```
socket_set_var_name("POS_Y", 2200, "socket10")
```

name POS_Y
value 2
socket_name socket_10

```
write_output_boolean_register(address, value)
```

Example Command
write_output_boolean_register(3,True)

<table>
<thead>
<tr>
<th>address</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>value</td>
<td>True</td>
</tr>
</tbody>
</table>

write_output_float_register(address, value)

Example Command

write_output_float_register(3,37.68)

<table>
<thead>
<tr>
<th>address</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>value</td>
<td>37.68</td>
</tr>
</tbody>
</table>

write_output_integer_register(address, value)

Example Command

write_output_integer_register(3,12)

<table>
<thead>
<tr>
<th>address</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>value</td>
<td>12</td>
</tr>
</tbody>
</table>

write_port_bit(address, value)

Example Command

write_port_bit(3,True)

<table>
<thead>
<tr>
<th>address</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>value</td>
<td>True</td>
</tr>
</tbody>
</table>

write_port_register(address, value)

Example Command

write_port_bit(3,100)

<table>
<thead>
<tr>
<th>address</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>value</td>
<td>100</td>
</tr>
</tbody>
</table>