

Universal Robots e-Series Benutzerhandbuch

UR10e

Übersetzung der originalen Anleitungen (de)

Universal Robots e-Series Benutzerhandbuch

UR10e

Version 5.8

Übersetzung der originalen Anleitungen (de)

Die hier enthaltenen Informationen sind Eigentum von Universal Robots A/S und dürfen nur im Ganzen oder teilweise vervielfältigt werden, wenn eine vorherige schriftliche Genehmigung von Universal Robots A/S vorliegt. Diese Informationen können jederzeit und ohne vorherige Ankündigung geändert werden und sind nicht als Verbindlichkeit von Universal Robots A/S auszulegen. Dieses Handbuch wird regelmäßig geprüft und überarbeitet.

Universal Robots A/S übernimmt keinerlei Verantwortung für jedwede Fehler oder Auslassungen in diesem Dokument.

Copyright © 2009-2020 by Universal Robots A/S

Das Logo von Universal Robots ist eine eingetragene Handelsmarke von Universal Robots A/S.

Inhaltsverzeichnis

Vo	orwort		ix
	Verp	ackungsinhalt	ix
	Wich	itiger Sicherheitshinweis	х
	Lese	n dieses Handbuchs	x
	Wos	Ne weitere Informationen finden	Y
			vi
		0	
I	Har	dware-Installationshandbuch	I-1
1	Sich	erheit	I-3
	1.1	Einleitung	I-3
	1.2	Gültigkeit und Verantwortung	I-3
	1.3	Haftungsbeschränkung	I-4
	1.4	Warnsymbole in diesem Handbuch	I-4
	1.5	Allgemeine Warnungen und Sicherheitshinweise	I-5
	1.6	Verwendungszweck	I-8
	1.7	Risikobewertung	I-9
	1.8	Lagebewertung vor der ersten Verwendung	I-11
	1.9	Notabschaltung	I-11
	1.10	Bewegung ohne Antriebskraft	I-11
2	Sich	erheitsrelevante Funktionen und Schnittstellen	I-13
	2.1	Einleitung	I-13
	2.2	Stoppkategorien	I-14
	2.3	Konfigurierbare Sicherheitsfunktionen	I-14
	2.4	Sicherheitsfunktion	I-18
	2.5	Betriebsarten	I-18
3	Tran	sport	I-21
4	Maa	haniacha Cabuittatalla	1 22
4			1-23
	4.1		1-20
	4.Z		1-20
	4.5		1-23
	4.4		1-20
5	Elek	trische Schnittstelle	I-29
	5.1	Einleitung	I-29
		5.1.1 Halterung für Control-Box	I-29
	5.2	Ethernet	I-29
	5.3	Elektrische Warn- und Sicherheitshinweise	I-30
	5.4	Controller-E/A	I-32

		5.4.1 Gemeinsame Spezifikationen für alle Digital-E/A	I-33
		5.4.2 Sicherheits-E/A	I-34
		5.4.3 Digital-E/A für allgemeine Zwecke	I-39
		5.4.4 Digitaleingang von einer Taste	I-39
		5.4.5 Kommunikation mit anderen Maschinen oder einer SPS	I-39
		5.4.6 Analog-E/A für allgemeine Zwecke	I-40
		5.4.7 EIN-/AUS-Fernsteuerung	I-41
	5.5	Netzanschluss	I-42
	5.6	Roboterverbindung	I-43
	5.7	Werkzeug-E/A	I-44
		5.7.1 Werkzeugstromversorgung	I-45
		5.7.2 Digitalausgänge des Werkzeugs	I-46
		5.7.3 Digitaleingänge des Werkzeugs	I-47
		5.7.4 Analogeingänge des Werkzeugs	I-48
		5.7.5 Werkzeugkommunikation-E/A	I-49
6	Wart	tung und Reparatur	I-51
	6.1	Sicherheitsanweisungen	I-51
7	Ents	orgung und Umwelt	I-53
8	7erti	ifizierungen	1-55
Ŭ	81	Zertifizierungen von Drittparteien	1-55
	82	Zertifizierungen von Drittanbietern	I-56
	8.3	Hersteller-Prüfzeugnis	I-57
	8.4	Frklärungen im Finklang mit FII-Richtlinien	I-57
	0.1		107
9	Gewä	ährleistung	I-59
	9.1	Produkt-Gewährleistung	I-59
	9.2	Haftungsausschluss	I-60
A	Nach	hlaufzeit und -weg	I-61
В	Erklä	ärungen und Zertifikate	I-65
	B.1	EU Declaration of Incorporation in accordance with ISO/IEC 17050-1:2010	I-65
	B.2	CE/EU-Einbauerklärung (Übersetzung des Originals)	I-67
	B.3	Sicherheitszertifikat	I-69
	B.4	China RoHS	I-71
	B.5	KCC Sicherheit	I-72
	B.6	KC-Register	I-73
	B.7	Umweltverträglichkeitszertifikat	I-74
	B.8	EMV-Prüfung	I-75
С	Ange	ewandte Normen	I-77
D	Tech	nnische Spezifikationen	I-83

			OBOTS
E	Tabe	llen zu Sicherheitsfunktionen	I-85
	E.1	Tabelle 1	 . I-85
	E.2	Tabelle 2	 . I-90
11	Pol	lyScope-Handbuch	II-1
10	Einle	eitung	II-3
	10.1	PolyScope Grundlagen	 . II-3
		10.1.1 Symbole/Tabs in der Kopfzeile	 . II-3
		10.1.2 Schaltflächen in der Fußzeile	 . II-5
	10.2	Bildschirm Erste Schritte	 . II-6
	Cabo		
	5000	Pehotororm Crundlagon	II-7
	11.1	11.1.1 Installation von Pobotorarm und Control Pov	 . 11-7
		11.1.2 Control-Box oin- und ausschalten	 . II-7 II_0
		11.1.2 Control-box enr- und ausschalten	 . 11-0 11_0
		11.1.5 Roboterarme des Pabeterarme	 . 11-0 11_0
	11 0	Sobrollo Inbotriobrohmo dos Systems	 . 11-0 11_0
	11.2		 . 11-9
		11.2.1 Freedrive	 . 11-10
	11 2		 . IFIZ
	11.3 11 <i>I</i>		 . II-1Z
	11.4		 4
12	Betri	iebsmodus-Auswahl	II-17
	12.1	Betriebsmodi	 . II-17
	12.2	Dreistufiger Zustimmschalter	 . II-19
		12.2.1 Manuelle hohe Geschwindigkeit	 . II-19
13	Siche	erheitskonfiguration	II-21
	13.1	Grundlagen der Sicherheitseinstellungen	 . II-21
		13.1.1 Sicherheitskonfiguration aufrufen	 . II-21
		13.1.2 Sicherheitspasswort festlegen	 . II-22
		13.1.3 Änderung der Sicherheitskonfiguration	 . II-23
		13.1.4 Neue Sicherheitskonfiguration anwenden	 . II-23
		13.1.5 Sicherheitsprüfsumme	 . II-23
	13.2	Einstellungen im Menü Sicherheit	 . II-24
		13.2.1 Robotergrenzen	 . II-24
		13.2.2 Sicherheitsmodi	 . II-25
		13.2.3 Toleranzen	 . II-26
		13.2.4 Gelenkgrenzen	 . II-26
		13.2.5 Ebenen	 . II-27
		13.2.6 Werkzeugposition	 . II-30
		13.2.7 Werkzeugrichtung	 . II-31
		13.2.8 E/A	 . II-33
		13.2.9 Hardware	 . II-35
		13.2.10 Safe Home-Position	 . II-36

14	Der T	ab "Betrieb"		II-39
	14.1	Programm		. II-39
	14.2	Variablen		. II-39
	14.3	Roboteralter		. II-40
	14.4	Roboter in Position fahren		. II-40
	-			
15	Prog	ramm - Tab		11-43
	15.1			. 11-43
		15.1.1 Programmausführungsanzeige	••••	. 11-44
		15.1.2 Schaltflache "Suchen"		. 11-44
		15.1.3 Programmstruktur Werkzeugleiste	••••	. 11-44
		15.1.4 Ausdruck-Editor	••••	. 11-45
		15.1.5 Programm von ausgewähltem Knoten starten	••••	. II-46
		15.1.6 Verwendung von Haltepunkten in einem Programm	••••	. II-46
		15.1.7 Einzelschritte in einem Programm		. II-48
	15.2	Tab "Befehl"		. II-48
	15.3	Grafik-Tab	••••	. II-49
	15.4	Der "Variablen"-Tab	••••	. II-50
	15.5	Basisprogrammknoten	••••	. II-50
		15.5.1 Move	••••	. II-50
		15.5.2 Richtung	••••	. II-60
		15.5.3 Warten		. II-63
		15.5.4 Einstellen		. II-64
		15.5.5 Pop-up		. II-65
		15.5.6 Halt		. II-65
		15.5.7 Kommentar		. II-66
		15.5.8 Ordner		. II-66
	15.6	Erweiterte Programmknoten		. II-67
		15.6.1 Schleife		. II-67
		15.6.2 If		. II-67
		15.6.3 Unterprogramm		. II-69
		15.6.4 Zuordnung		. II-70
		15.6.5 Script		. II-70
		15.6.6 Ereignis		. II-71
		15.6.7 Thread		. II-71
		15.6.8 Schrauben		. II-72
		15.6.9 Switch		. II-75
		15.6.10 Timer		. II-75
		15.6.11 Home		. II-76
	15.7	Templates		. II-76
		15.7.1 Palettierung		. II-76
		15.7.2 Palettierungssequenz		. II-81
		15.7.3 Suchen		. II-83
		15.7.4 Kraft		. II-85
		15.7.5 Fließband-Tracking		. II-88
	15.8	URCaps		. II-89
		15.8.1 Remote-TCP und Werkzeugpfad URCap		. II-89

				R	UN	IVERS	λL	RO	BOTS
		15.8.2	Bewegungsarten für Remote-TCP						II-90
		15.8.3	RTCP-Wegpunkt						II-90
		15.8.4	Remote-TCP-Werkzeugpfad						II-91
		15.8.5	Remote-TCP						II-93
		15.8.6	Remote-TCP-PCS						II-93
		15.8.7	Gleichmäßige TCP-Werkzeugpfad-Bewegungen	•••					II-96
16	Regis	ster Inst	allation						II-99
	16.1	Allgem	eine						II-99
		16.1.1	TCP-Konfiguration						II-99
		16.1.2	Nutzlast und Schwerpunkt						II-101
		16.1.3	Montage						II-103
		16.1.4	E/A-Einstellung						II-104
		16.1.5	Variablen						II-106
		16.1.6	Anlauf						II-107
		16.1.7	Werkzeug-E/A						II-108
		16.1.8	Sanfter Übergang zwischen Sicherheitsmodi						II-109
		16.1.9	Home						II-110
		16.1.10	Einstellungen für Fließband-Tracking						II-111
		16.1.11	Einrichtung Schrauben						II-112
	16.2	Sicherh	neit						II-114
	16.3	Funktio	nen						II-114
		16.3.1	Verwenden einer Funktion						II-116
		16.3.2	Neuen Punkt hinzufügen						II-116
		16.3.3	Hinzufügen einer Linie						II-117
		16.3.4	Funktion Ebene						II-118
		16.3.5	Beispiel: Manuelle Anpassung einer Funktion zur Anpassu	ng	eine	s Progr	amr	ns	II-118
		16.3.6	Beispiel: Dynamisches Aktualisieren einer Funktion						II-119
	16.4	Feldbu	S						II-120
		16.4.1	MODBUS Client E/A-Einstellung						II-120
		16.4.2	Ethernet/IP						II-123
17	Der N	/love-Ta	b					ſ	I-125
••	17.1	Move T							II-125
	17.2	Robote	r						II-125
	17.3	Werkze	nanosition	•••				•••	II-126
	17.0	1731	Bearbeitungsanzeige "Pose"	•••				•••	II-126
	17.4	Gelenk	position				•••		II-128
18	E/A-	Tab						I	I-131
	18.1	Robote	r						II-131
	18.2	MODBL	JS						II-132
19	Der 1	ab "Pro	tokoll"					ļ	I-135
	19.1	Messw	erte und gemeinsame Last						II-135
	19.2	Datums	sprotokoll						II-135
	19.3	Fehlerb	erichte speichern						II-135
	19.4	Datei fi	ir technische Unterstützung (Support-Datei)						II-136

20 Prog	ramm- und Installations-Manager	I-137
20.1	Öffnen	II-137
20.2	Neu	II-138
20.3	Speichern	II-139
20.4	Datei-Manager	II-140
21 Ham	burger-Menü	I-141
21.1	Hilfe	II-141
21.2	Über	II-141
21.3	Einstellungen	II-141
	21.3.1 Voreinstellungen	II-141
	21.3.2 Passwort	II-142
21.4	System	II-142
	21.4.1 Sicherung und Wiederherstellung	II-142
	21.4.2 Aktualisierung	II-143
	21.4.3 Netzwerk	II-143
	21.4.4 Verwaltung von URCaps	II-143
	21.4.5 Fernsteuerung	II-144
21.5	Roboter abschalten	II-145

Glossar

Index

II-147

II-149

UR10e

Vorwort

Herzlichen Glückwunsch zum Erwerb Ihres neuen Universal Robots e-Series-RobotersUR10e.

Der Roboter kann zur Bewegung eines Werkzeugs programmiert werden und mit anderen Maschinen über elektrische Signale kommunizieren. Sein Arm besteht aus stranggepressten Aluminiumrohren und Gelenken.

Über unsere patentierte Programmieroberfläche PolyScope ist die Programmierung des Roboters zur Bewegung eines Werkzeugs entlang eines gewünschten Weges einfach.

Mit sechs Gelenken und einem hohen Grad an Flexibilität sind die kooperativen Roboterarme der e-Series von Universal Robots wie dafür geschaffen, die Bewegungsabläufe eines menschlichen Arms nachzuempfinden. Über unsere patentierte Programmieroberfläche PolyScope ist die Programmierung des Roboters zur Bewegung eines Werkzeugs und zur Kommunikation mit anderen Maschinen anhand elektrischer Signale einfach. In Abbildung 1 sind die Hauptkomponenten des Roboterarms zu sehen. Die Abbildung kann zum Nachschlagen in diesem Handbuch herangezogen werden.

Verpackungsinhalt

Wenn Sie einen Roboter bestellen, erhalten Sie zwei Pakete. Eines beinhaltet den Roboterarm, das andere enthält die folgenden Komponenten:

- Control-Box mit Teach Pendant
- Montagevorrichtung für die Kontrolleinheit

Abbildung 1: Die Gelenke, die Basis und der Werkzeugflansch am Roboterarm.

- Montagevorrichtung f
 ür das Teach Pendant
- · Schlüssel zum Öffnen der Control-Box
- · Kabel zum Anschluss des Roboterarms und der Control-Box
- · Strom- bzw. Netzkabel für die jeweilige Region
- Dieses Handbuch

Wichtiger Sicherheitshinweis

Der Roboter ist eine **unvollständige Maschine** (siehe 8.4) und daher ist eine Risikobewertung für jede Installation des Roboters erforderlich. Alle Sicherheitshinweise in Kapitel 1sind unbedingt zu befolgen.

Lesen dieses Handbuchs

Dieses Handbuch enthält Anweisungen für die Installation und Programmierung des Roboters. Das Handbuch gliedert sich in zwei Teile:

Hardware-Installationshandbuch: Mechanische und elektrische Installation des Roboters.

PolyScope-Handbuch: Programmierung des Roboters.

Dieses Handbuch richtet sich an Roboter-Integratoren, die einfache mechanische und elektrische Schulungskenntnisse besitzen und die außerdem mit elementaren Programmierkonzepten vertraut sind.

Wo Sie weitere Informationen finden

Die Support-Webseite (http://www.universal-robots.com/support) enthält:

- · Andere Sprachversionen dieses Handbuchs:
- PolyScope-Handbuch

- Das Service-Handbuch mit Anleitungen zur Fehlerbehebung, Instandhaltung und Instandsetzung des Roboters.
- Das Script-Handbuch für erfahrene Benutzer

UR+

Die UR+-Seite (http://www.universal-robots.com/plus/) ist ein Online-Showroom für innovative Produkte, um Ihre UR-Roboter-Anwendung Ihren Bedürfnissen anzupassen. Sie finden alles Notwendige an einem Ort – von Anbaugeräten und Zubehör bis Vision-Kameras und Software. Alle Produkte sind für die Integration mit UR-Robotern getestet und genehmigt und garantieren einfache Inbetriebnahme, zuverlässigen Betrieb, ein tolles Bedienerlebnis und einfache Programmierung. Sie können die Webseite auch dazu nutzen, um dem UR + Entwicklerprogramm beizutreten und auf unsere neue Software-Plattform zuzugreifen, die es Ihnen ermöglicht, weitere benutzerfreundliche Produkte für UR-Roboter zu entwickeln.

xi

Teil I

Hardware-Installationshandbuch

1 Sicherheit

1.1 Einleitung

Dieses Kapitel enthält wichtige Sicherheitsinformationen, die vom Integrator von e-Series-Robotern von Universal Robots gelesen und verstanden werden müssen, **bevor** der Roboter zum ersten Mal eingeschaltet wird.

In diesem Kapitel sind die ersten Teilabschnitte allgemein. In den sich anschließenden Teilabschnitten werden gezielt technische Angaben behandelt, die sich auf das Einstellen und Programmieren des Roboters beziehen. Kapitel 2 beschreibt und definiert sicherheitsrelevante Funktionen, die insbesondere für kollaborative Anwendungen relevant sind.

Die Anweisungen und Hinweise in Kapitel 2 sowie in Abschnitt 1.7 sind von besonderer Bedeutung.

Es ist von großer Wichtigkeit, dass alle Montageanweisungen und Anleitungen der übrigen Kapitel und Handbuchteile beachtet und befolgt werden.

Insbesondere zu beachten sind Texte im Zusammenhang mit Warnsymbolen.

HINWEIS:

Universal Robots schließt jedwede Haftung aus, wenn der Roboter (Arm-Kontrolleinheit und/oder Teach Pendant) beschädigt, verändert oder auf bestimmte Weise manipuliert wird. Universal Robots kann nicht für Schäden am Roboter oder anderen Geräten haftbar gemacht werden, wenn diese durch Programmierfehler oder eine Fehlfunktion des Roboters verursacht wurden.

1.2 Gültigkeit und Verantwortung

Die Informationen in diesem Handbuch decken jedoch nicht ab, wie eine vollständige Roboteranwendung konzipiert, installiert oder betrieben wird und darüber hinaus auch nicht alle peripheren Geräte, die die Sicherheit des kompletten Systems beeinflussen können. Das komplette System muss gemäß den Sicherheitsanforderungen aus den Normen und Vorschriften des Landes konzipiert und installiert werden, in dem der Roboter installiert wird.

Die Integratoren von Universal Robots-Robotern der e-Serie sind verantwortlich dafür, sicherzustellen, dass die geltenden Sicherheitsbestimmungen und -vorschriften ihres Landes beachtet werden und dass hohe Gefährdungsrisiken in der kompletten Roboteranwendung vermieden werden. Dies beinhaltet, beschränkt sich jedoch nicht auf:

- Durchführung einer Risikobewertung für das komplette Robotersystem
- Kopplung von anderen Maschinen und zusätzlichen Sicherheitsbauteilen, wenn durch Risikobewertung definiert
- Einrichtung der angemessenen Sicherheitseinstellungen in der Software
- · Sicherstellung, dass der Benutzer keine Sicherheitsmaßnahmen verändert

- · Validierung, dass das gesamte Robotersystem korrekt konzipiert und installiert ist
- Spezifizierung der Nutzungsanweisungen
- Kennzeichnung der Roboterinstallation mit relevanten Schildern und Angaben von Kontaktinformationen des Integrators
- Sammlung aller Unterlagen in einer technischen Dokumentation, einschließlich der Risikobewertung und dieses Handbuchs

1.3 Haftungsbeschränkung

Die Sicherheitsangaben in diesem Handbuch sind nicht als Zusicherung durch UR zu betrachten, dass der industrielle Manipulator keine Verletzungen oder Schäden verursachen wird, selbst wenn alle Sicherheitsanweisungen eingehalten werden.

1.4 Warnsymbole in diesem Handbuch

Die nachstehenden Symbole stehen für die Benennungen der unterschiedlichen Gefahrenebenen, die in diesem Handbuch vorkommen. Die gleichen Warnsignale werden auch am Produkt verwendet.

GEFAHR:

Dies weist auf eine unmittelbare Gefährdungssituation durch Elektrizität hin, die, wenn nicht vermieden, zum Tod oder schweren Verletzungen führen kann.

GEFAHR:

Dies weist auf eine unmittelbare Gefährdungssituation hin, die, wenn nicht vermieden, zum Tod oder schweren Verletzungen führen kann.

WARNUNG:

Dies weist auf eine potentielle Gefährdungssituation durch Elektrizität hin, die, wenn nicht vermieden, zu Verletzungen oder größeren Geräteschäden führen kann.

WARNUNG:

Dies weist auf eine potentielle Gefährdungssituation hin, die, wenn nicht vermieden, zu Verletzungen oder großen Geräteschäden führen kann.

WARNUNG:

Dies weist auf eine potentiell gefährdende, heiße Oberfläche hin, die bei Berührung Verletzungen verursachen kann.

VORSICHT:

Dies weist auf eine Gefährdungssituation hin, die, wenn nicht vermieden, zu Geräteschäden führen kann.

1.5 Allgemeine Warnungen und Sicherheitshinweise

Dieser Abschnitt enthält allgemeine Warnhinweise und Vorsichtsmaßnahmen, die in verschiedenen Teilen des Handbuchs erneut vorkommen und erklärt werden können. Wiederum andere Warnungen und Sicherheitshinweise finden sich im gesamten Handbuch wieder.

GEFAHR:

Stellen Sie sicher, dass der Roboter und alle elektrischen Geräte den Spezifikationen und Warnungen entsprechend installiert werden, die in den Kapiteln 4 und 5 stehen.

WARNUNG:

- 1. Vergewissern Sie sich, dass der Roboterarm und das Werkzeug/Anbauteil ordnungsgemäß und fest angeschraubt sind.
- 2. Gewährleisten Sie, dass ausreichend Platz vorhanden ist, damit sich der Roboterarm frei bewegen kann.
- 3. Stellen Sie sicher, dass die Sicherheitsmaßnahmen und / oder Roboter-Sicherheitskonfigurationsparameter, wie in der Risikobewertung festgelegt, eingestellt wurden, um die Programmierer, Anwender und umstehende Personen zu schützen.
- Tragen Sie bei der Arbeit mit dem Roboter keine weite Kleidung oder Schmuck. Langes Haar muss bei der Arbeit mit dem Roboter zurückgebunden sein.
- Verwenden Sie den Roboter nicht, falls er Schäden aufweist (z. B. gelöste, defekte oder entfernte Gelenkkappen).
- Falls die Software einen Fehler meldet, drücken Sie sofort den Not-Aus-Schalter, notieren Sie die Umstände, die zu dem Fehler geführt haben, stellen Sie die zugehörigen Fehlercodes im Protokollbildschirm fest und wenden Sie sich an Ihre Lieferfirma.
- Schließen Sie keine Sicherheitsgeräte an Standard-E/A an. Verwenden Sie nur sicherheitsbezogene E/A.
- Stellen Sie sicher, dass Sie die richtigen Installationseinstellungen verwenden (z. B. Roboterwinkel, Masse in TCP, TCP-Offset und Sicherheitskonfiguration). Speichern und laden Sie die Installationsdatei zusammen mit dem Programm.
- 9. Die Freedrive-Funktion sollte nur bei Installationen verwendet werden, in denen die Risikobewertung dies zulässt.
- 10. Werkzeuge/Anbauteile und Hindernisse dürfen keine scharfen Kanten oder Klemmpunkte haben.
- 11. Ermahnen Sie alle Personen, nicht mit den Händen und dem Gesicht in Reichweite eines in Betrieb befindlichen oder in Betrieb gesetzten Roboters zu gelangen.
- 12. Achten Sie auf Roboterbewegung, wenn Sie das Teach-Pendant verwenden.
- Sofern durch die Risikobewertung entsprechend festgestellt, darf der Sicherheitsbereich des Roboters nicht betreten und der Roboter nicht berührt werden, wenn das System in Betrieb ist.

- 13. Das Kombinieren verschiedener Maschinen kann Gefahren erhöhen oder neue Gefahren schaffen. Führen Sie stets eine Gesamtrisikobewertung für die komplette Installation durch. Abhängig vom bewerteten Risiko können verschiedene Grade der funktionellen Sicherheit angesetzt werden; wenn in diesem Sinne unterschiedliche Sicherheits- und Not-Aus-Funktionsgrade notwendig sind, entscheiden Sie sich stets für den höchsten Funktionsgrad. Es ist stets erforderlich, die Handbücher für alle in der Installation verwendeten Geräte gelesen und verstanden zu haben.
- 14. Nehmen Sie am Roboter keine Veränderungen vor. Eine Veränderung kann Gefahren schaffen, die für den Integrator unkalkulierbar sind. Jeder autorisierte Wiederzusammenbau hat unter Einhaltung der neuesten Version aller relevanten Service-Handbücher zu erfolgen.
- Wurde der Roboter mit einem zusätzlichen Modul (z. B. Euromap67-Schnittstelle) erworben, lesen Sie zunächst das jeweilige Handbuch zu dem Modul.
- Stellen Sie sicher, dass alle Personen, die den Roboter bedienen, die Lage der Not-Aus-Schalter kennen und eingewiesen sind, diese im Notfall oder in Ausnahmesituationen zu betätigen.

WARNUNG:

- Der Roboter und die Kontrolleinheit erzeugen während des Betriebs Wärme. Bedienen und berühren Sie den Roboter nicht, während er sich in Betrieb befindet oder unmittelbar nach dem Betrieb, da ein längerer Kontakt Unwohlsein hervorrufen kann. Sie können die Temperatur auf dem Protokollbildschirm vor dem Umgang oder Berühren des Roboters kontrollieren oder den Roboter ausschalten und eine Stunde abkühlen lassen.
- 2. Stecken Sie niemals einen Finger hinter die innere Abdeckung der Control-Box.

VORSICHT:

- Wenn der Roboter mit Maschinen kombiniert wird oder mit Maschinen arbeitet, die den Roboter beschädigen könnten, wird ausdrücklich empfohlen, alle Funktionen und das Roboterprogramm separat zu prüfen.
- Setzen Sie den Roboter keinen permanenten Magnetfeldern aus. Sehr starke Magnetfelder können den Roboter beschädigen.

1.6 Verwendungszweck

Universal Robots-Roboter der e-Serie sind für die industrielle Handhabung von Werkzeugen/Anbaugeräten oder für die Verarbeitung oder Übergabe von Komponenten oder Produkten vorgesehen. Für Details zu den Umgebungsbedingungen, in denen der Roboter eingesetzt werden sollte, siehe Anhänge B und D.

Universal Robots-Roboter der e-Serie sind mit speziellen sicherheitsrelevanten Funktionen ausgestattet, die für den kollaborativen Betrieb, also für den Betrieb des Roboters ohne Zäune und/oder zusammen mit einem Menschen konzipiert sind.

Der kollaborative Betrieb ist nur für ungefährliche Anwendungen vorgesehen, bei denen die komplette Anwendung einschließlich des Werkzeugs/Anbaugeräts, Werkstücks, der Hindernisse und anderer Maschinen laut Risikobewertung der jeweiligen Anwendung frei von erheblichen Gefahrenquellen ist.

Jede Nutzung oder Anwendung, die von dem vorgesehenen Verwendungszweck abweicht, wird als unzulässige Zweckentfremdung erachtet. Dies beinhaltet, beschränkt sich jedoch nicht auf:

- Nutzung in potentiell explosionsgefährdeten Umgebungen
- Nutzung in medizinischen und lebenswichtigen Anwendungen
- · Nutzung vor der Durchführung einer Risikobewertung
- Nutzung außerhalb der technischen Spezifikationen
- Nutzung als Steighilfe
- · Betrieb außerhalb der zulässigen Betriebsparameter

WARNUNG:

- Verwenden Sie diesen Industrieroboter nur in Übereinstimmung mit dem im Benutzerhandbuch angegebenen Verwendungszweck und gemäß der angegebenen Daten.
- Das Produkt ist nicht für den Einsatz in explosionsgefährdeten Bereichen oder Umgebungen ausgelegt oder vorgesehen.
- Das Produkt ist nicht für medizinische Anwendungen mit Kontakt oder Nähe zu Patienten ausgelegt oder vorgesehen.
- Jede Nutzung oder Anwendung, die vom Verwendungszweck, den Daten oder Zertifizierungen abweicht, ist untersagt, da dies zum Tod, zu Verletzungen und/oder zu Sachschäden führen kann.

UNIVERSAL ROBOTS LEHNT AUSDRÜCKLICH JEGLICHE AUS-DRÜCKLICHE ODER STILLSCHWEIGENDE GARANTIE DER EIG-NUNG FÜR JEGLICHE MISSBRÄUCHLICHE VERWENDUNG AB.

1.7 Risikobewertung

Zu den wichtigsten Aufgaben eines Integrators gehört die Risikobewertung . In vielen Ländern ist dies gesetzlich vorgeschrieben. Der Roboter selbst ist eine unvollständige Maschine, da die Sicherheit der Roboterinstallation davon abhängt, wie der Roboter integriert wird (z. B. Werkzeug/Anbaugerät, Hindernisse und andere Maschinen). Es wird empfohlen, dass der Integrator für die Durchführung der Risikobewertung ISO 12100 und ISO 10218-2 nutzt. Im Übrigen kann die technische Spezifikation ISO/TS 15066 als zusätzliche Orientierung verwendet werden. Die Risikobewertung durch den Integrator hat alle Arbeitsabläufe über die gesamte Lebensdauer der Roboteranwendung hinweg zu berücksichtigen, einschließlich, aber nicht beschränkt auf:

- Anlernen (Teaching) des Roboters während der Einrichtung und Entwicklung der Roboterinstallation
- Fehlersuche und Wartung
- Normalbetrieb der Roboterinstallation

Eine Risikobewertung muss durchgeführt werden, **bevor** der Roboterarm zum ersten Mal eingeschaltet wird. Ein Teil der durch den Integrator durchzuführenden Risikobewertung ist, die richtigen Sicherheitskonfigurationseinstellungen sowie die Notwendigkeit zusätzlicher Not-Aus-Schalter und/oder andere für die spezifische Roboteranwendung erforderlichen Schutzmaßnahmen zu identifizieren.

Die Festlegung der richtigen Sicherheitskonfigurationseinstellungen ist ein zentraler Inhalt bei der Entwicklung kollaborierender Roboteranwendungen. Ausführliche Informationen, siehe Kapitel 2 und Teil II.

Einige sicherheitsrelevante Funktionen sind speziell für kollaborative Roboteranwendungen ausgelegt. Diese Funktionen sind über die Sicherheitskonfigurationseinstellungen konfigurierbar und besonders relevant, wenn es um spezifische Risiken in der Risikobewertung durch den Integrator geht:

- **Kraft und Leistungsbegrenzung**: Diese werden verwendet, um Klemmkräfte und -spannungen in Bewegungsrichtung für den Fall einer Kollision zwischen dem Roboter und dem Bediener zu reduzieren.
- **Drehmomentbegrenzung**: Diese wird verwendet, um hohe Übergangsenergien und Stoßkräfte bei Kollisionen zwischen Roboter und Bediener durch Verringern der Robotergeschwindigkeit zu reduzieren.
- Begrenzung von Gelenk, Ellbogen und der Werkzeug-/Anbaugeräteposition: Wird insbesondere dazu verwendet, um die Risiken für bestimmte Körperteile zu reduzieren. z. B. um Bewegungen in Richtung Kopf und Hals zu vermeiden.
- Begrenzung der Werkzeug-/Anbaugeräteausrichtung: Wird insbesondere dazu verwendet, um Risiken im Zusammenhang mit bestimmten Bereichen und Funktionen des Werkzeugs/Anbaugeräts oder Werkstücks zu verringern. z. B. um zu vermeiden, dass scharfkantige Gegenstände den Bediener gefährden.
- **Geschwindigkeitsbegrenzung**: Wird insbesondere dazu verwendet, eine niedrigere Geschwindigkeit des Roboterarms zu gewährleisten.

Der Integrator ist gehalten, den unbefugten Zugang zu der Sicherheitskonfiguration durch einen Passwortschutz zu verhindern.

Eine Risikobewertung kollaborierender Roboteranwendungen ist für Kontaktpunkte erforderlich, die beabsichtigt sind und/oder bei denen die Gefahr einer relativ vorhersehbaren Zweckentfremdung besteht. In dieser Bewertung müssen folgende Punkte berücksichtigt werden:

- Schweregrad der einzelnen, möglichen Kollisionen
- Wahrscheinlichkeit des Auftretens einzelner, möglicher Kollisionen
- Möglichkeiten zur Vermeidung einzelner, möglicher Kollisionen

Ist der Roboter in einer nichtkollaborierenden Roboteranwendung installiert, bei der die Gefahrenquellen oder Risiken anhand der integrierten sicherheitsbezogenen Funktionen (z.B. bei Verwendung eines gefährlichen Werkzeugs/Anbaugeräts) nicht hinreichend beseitigt bzw. verringert werden können, so muss die Risikobewertung des Integrators auf die Notwendigkeit zusätzlicher Schutzmaßnahmen hinauslaufen (z.B. eine Sicherungsvorrichtung zum Schutz des Bedieners während der Einrichtung und Programmierung).

Universal Robots hat untenstehende, potentiell bedeutende Gefährdungen als Gefahren erkannt, die vom Integrator zu beachten sind.

Hinweis: Bei einer speziellen Roboterinstallation können andere erhebliche Risiken vorhanden sein.

- 1. Risiko von offenen Wunden durch scharfe Kanten oder Ecken am Werkzeug/Anbaugerät oder an der Werkzeug-/Anbaugeräteverbindung.
- 2. Risiko von offenen Wunden durch scharfe Kanten oder Ecken an Hindernissen in der Nähe des Roboters.
- 3. Risiko von Blutergüssen durch Kontakt mit dem Roboter.
- 4. Risiko von Verstauchungen oder Knochenbrüchen zwischen einer schweren Nutzlast und einer harten Oberfläche.
- 5. Auswirkungen als Folge lockerer Schrauben, die den Roboterarm oder das Werkzeug/Anbauteil halten.

- 6. Risiko durch Teile, die aus dem Werkzeug/Anbaugerät fallen, beispielsweise aufgrund einer unzureichenden Klemmung oder Stromunterbrechung.
- 7. Fehler durch unterschiedliche Not-Aus-Schalter für unterschiedliche Maschinen.
- 8. Fehler durch nicht autorisierte Änderungen an den Sicherheitskonfigurationsparametern.

Informationen über Nachlaufzeiten und Nachlaufwege finden Sie in Kapitel 2 und in Anhang A.

1.8 Lagebewertung vor der ersten Verwendung

Folgende Tests müssen durchgeführt werden, bevor Sie den Roboter zum ersten Mal benutzen bzw. jedes Mal, nachdem Änderungen vorgenommen wurden. Stellen Sie sicher, dass alle Sicherheitseingänge und -ausgänge ordnungsgemäß und korrekt verbunden sind. Testen Sie, ob alle angeschlossenen Sicherheitseingänge und -ausgänge funktionieren, einschließlich aller zusammen mit Maschinen oder Robotern verwendeten Geräte. Dies beinhaltet folgende Maßnahmen:

- Prüfung der Not-Aus-Schalter und Auslösung des Roboterstopps bzw. der Bremswirkung.
- Schutzstopp-Eingangstest auf Einfrieren der Roboterbewegung. Wurde ein Schutzstopp-Reset konfiguriert, ist zu prüfen, ob er vor der erneuten Bewegungsaufnahme aktiviert werden muss.
- Prüfung des Initialisierungsbildschirms, um zu testen, ob "Reduzierter Modus" ein Umschalten vom Sicherheitsmodus auf den reduzierten Modus zulässt.
- Die Prüfung, ob der Betriebsmodus den Betriebsmodus umschaltet (siehe Symbol in der rechten, oberen Ecke der Benutzeroberfläche).
- Die Prüfung, ob der Dreistufige Zustimmschalter gedrückt werden muss, um Bewegungen im manuellen Modus zu ermöglichen und ob der Roboter mit reduzierter Drehzahlsteuerung arbeitet.
- Die Prüfung, ob der Ausgang Notabschaltung des Systems in der Lage ist, das System in einen sicheren Status zu versetzen.
- Die Prüfung, ob das System die Ausgänge für Roboterbewegung, Roboter stoppt nicht, Reduzierter Modus und Nicht-reduzierter Modus tatsächlich erkennt.

1.9 Notabschaltung

Betätigen Sie den Not-Aus-Schalter, um alle Roboterbewegungen unverzüglich zu stoppen.

Hinweis: Nach IEC 60204-1 und ISO 13850 gelten Not-Aus-Vorrichtungen nicht als Schutzausstattung. Sie sind vielmehr ergänzende Schutzmaßnahmen und nicht dafür gedacht, Verletzungen zu verhindern.

Aus der Risikobewertung der Roboter-Anwendung sollte hervorgehen, ob weitere Not-Aus-Schalter benötigt werden. Not-Aus-Schalter müssen den Anforderungen der IEC 60947-5-5-(siehe Abschnitt 5.4.2) entsprechen.

1.10 Bewegung ohne Antriebskraft

In dem unwahrscheinlichen Fall eines Notfalls, bei dem ein Robotergelenk bewegt werden muss, aber die Stromversorgung des Roboters entweder unmöglich oder unerwünscht ist, wenden Sie sich an Ihren Universal Robots-Händler. Copyright @2009-2020 by Universal Robots A/S. Alle Rechte vorbehalten.

2.1 Einleitung

Universal Robots e-Series-Roboter sind mit einer Reihe von eingebauten Sicherheitsfunktionen sowie Sicherheits-E/As und digitalen/analogen Steuersignalen von oder zu elektrischen Schnittstellengruppen ausgestattet, die dem Anschluss an andere Geräte und an zusätzliche Schutzgeräte dienen. Jede Sicherheitsfunktion und E/A ist nach EN ISO13849-1:2008 aufgebaut. (Siehe Kapitel 8 für Zertifizierungen) mit Performance-Level d (PLd) in einer Kategorie 3-Architektur.

Siehe Kapitel 13 in Abschnitt II für die Konfiguration der Sicherheitsfunktionen sowie Einund Ausgänge in der Benutzerschnittstelle. Siehe Kapitel 5 für eine Anleitung, wie Sie Sicherheitsgeräte an Ein- und Ausgänge anschließen.

HINWEIS:

- Die Verwendung und Konfiguration von Sicherheitsfunktionen und Schnittstellen müssen die Verfahren zur Risikobewertung für jede Roboteranwendung berücksichtigen. (siehe Kapitel 1 Abschnitt 1.7)
- Erkennt der Roboter einen Fehler im Sicherheitssystem (z. B. ein durchtrenntes Kabel im Notabschaltung-Stromkreis oder eine überschrittene Sicherheitsgrenze), so wird ein Stopp der Kategorie 0 eingeleitet.
- 3. Die Nachlaufzeit muss bei der Risikobewertung für Anwendungen berücksichtigt werden.

GEFAHR:

- 1. Die Verwendung von Sicherheitskonfigurationsparametern, die von denen in der Risikobewertung des Integrators abweichen, können in Gefährdungen und Risiken resultieren, die sich nicht angemessen und hinreichend beseitigen bzw. verringern lassen.
- 2. Stellen Sie sicher, dass Werkzeuge und Greifer entsprechend verbunden sind, so dass bei einer Unterbrechung der Stromversorgung keine Gefährdungen auftreten können.
- 3. Verwenden Sie die Spannung 12V vorsichtig, da ein Programmierfehler zu einem Spannungswechsel auf 24V und zur Beschädigung der Geräte bzw. einem Brand führen könnte.
- Anbaugeräte sind durch das UR-Sicherheitssystem nicht geschützt. Die Wirkungsweise eines Anbaugerätes und/oder dessen Verbindungskabel wird nicht überwacht.

2.2 Stoppkategorien

Je nach den Umständen kann der Roboter drei Arten von Stopp-Kategorien (gemäß IEC 60204-1 ausführen). Diese Kategorien sind in der folgenden Tabelle beschrieben:

Stoppkategorie	Beschreibung
0	Roboter durch die sofortige Trennung der Stromversor-
	gung anhalten
1	Roboter auf geordnete und kontrollierte Weise anhalten
	Stromversorgung wird getrennt, sobald der Roboter anhält.
2	*Roboter mit Energie für Antriebe anhalten; Bahnverlauf
	wird beibehalten. Antriebsenergie wird beibehalten, auch
	nachdem der Roboter anhält.

Hinweis: *Universal Robots-Stopps der Kategorie 1 und 2 sind im Verlauf als SS1- oder SS2-Stopps nach IEC 61800-5-2 beschrieben.

2.3 Konfigurierbare Sicherheitsfunktionen

Die Sicherheitsfunktionen in Robotern von Universal Robots (wie unten aufgeführt) sind dafür zuständig, das Robotersystem zu steuern, d. h. den Roboter inkl. des Werkzeugs/Anbaugeräts. Die Roboter-Sicherheitsfunktionen dienen dazu, Risiken durch das Robotersystem anhand der Risikobewertung zu verringern. Positionen und Geschwindigkeiten sind gegenüber der Roboterbasis relativ.

Beschreibung
Bestimmt den oberen und unteren Grenzwert für die zuläs-
Bestimmt einen oberen Grenzwert für die Gelenkbeschleu-
nigung. Definiert Ebenen im Raum, die die Roboterposition begren- zen. Sicherheitsebenen begrenzen entweder nur das Werk- zeug/Anbaugerät oder das Werkzeug/Anbaugerät mit dem
Ellbogen. Definiert zulässige Ausrichtungsgrenzen für das Werk- zeug.
Begrenzt die Höchstgeschwindigkeit des Roboters. Die Geschwindigkeit wird am Ellbogen, am Werk- zeug/Anbaugeräteflansch und in der Mitte der benut- zerdefinierten Werkzeug/Anbaugeräteposition begrenzt.
Begrenzt das maximale Moment, das vom Roboterwerk- zeug/Anbaugerät und Ellbogen in Klemmsituationen auf- gebracht wird. Die Kraft ist am Werkzeug/Anbaugerät, Ellbogenflansch und in der Mitte der benutzerdefinierten Werkzeug/Anbaugeräteposition begrenzt.
Begrenzt das maximale Drehmoment des Roboters.
Begrenzt die mechanische Leistungskraft des Roboters.
Begrenzt die maximale Zeitdauer, die der Roboter nach ei- nem Schutzstopp pausiert.
Begrenzt den maximalen Nachlaufweg des Roboters nach einem Schutzstopp.

Bei der Risikobewertung für Anwendungen ist es erforderlich, den Nachlaufweg des Roboters nach einem Stopp, d. h. die Zeit bis zum Stillstand, einzubeziehen. Um diesen Prozess abzuschwächen, können die Sicherheitsfunktionen *Nachlaufzeitbegrenzung* und *Nachlaufwegbegrenzung* verwendet werden. Diese Sicherheitsfunktionen verringern die Geschwindigkeit der Roboterbewegung dynamisch auf eine Weise, dass er stets innerhalb der Grenzwerte zum Stillstand kommt. Es ist zu berücksichtigen, dass die Grenzen für die Gelenkpositionen, für die Sicherheitsebenen und für die Werkzeug-/Anbaugeräteausrichtung den erwarteten Nachlaufweg einbeziehen, d. h. die Roboterbewegung verlangsamt sich, bevor der Grenzwert erreicht ist.

Die Funktionssicherheit kann wie folgt zusammengefasst werden:

Sicherheitsfunktion	Toleranz	Performance Level (PL)	Kategorie
Notabschaltung	-	d	3
Schutzstopp	-	d	3
Gelenkpositionsbegrenzung	5 °	d	3
Gelenkgeschwindigkeitsbegrenzung	1.15°/s	d	3
Sicherheitsebenen	40 mm	d	3
Werkzeugausrichtung	3 °	d	3
Geschwindigkeitsbegrenzung	50 mm/s	d	3
Kraftbegrenzung	25 N	d	3
Drehmomentbegrenzung	3 kg m/s	d	3
Energiebegrenzung	10 W	d	3
Nachlaufzeitbegrenzung	50 ms	d	3
Nachlaufwegbegrenzung	40 mm	d	3
Safe Home	1.7 °	d	3

WARNUNG:

Bei der Kraftbegrenzungsfunktion gibt es zwei Ausnahmen, die beim Einrichten einer Roboteranwendung zu beachten sind (Abb. 2.1). Wenn sich der Roboter streckt, kann der Kniegelenk-Effekt bei niedrigen Geschwindigkeiten zu hohen Kräften in radialer Richtung vom Basisflansch führen. Auch wenn sich das Werkzeug-/Anbaugerät in der Nähe der Basis um den Basisflansch herum bewegt, können bei niedrigen Geschwindigkeiten hohe Hebelkräfte wirken. Die Quetschgefahr kann dadurch verringert werden, dass Hindernisse in diesen Bereichen entfernt werden, der Roboter anders platziert wird oder eine Kombination von Sicherheitsebenen und Gelenkgrenzen festgelegt wird, die eine Bewegung des Roboters in diesem Teil seines Wirkungsbereichs verhindern.

WARNUNG:

Wird der Roboter in Applikationen mit handgeführten Linearbewegungen verwendet, muss das Tempolimit auf maximal 250 mm/s für das Werkzeug-/Anbaugerät und den Ellbogen festgeschrieben werden, es sei denn, die Risikobewertung zeigt, dass höhere Geschwindigkeiten akzeptabel sind. Dies verhindert schnelle Bewegungen des Roboter-Ellbogens in der Nähe von Singularitäten.

Der Roboter verfügt auch über folgende Sicherheitseingänge:

Abbildung 2.1: Aufgrund der physikalischen Eigenschaften des Roboterarms erfordern bestimmte Arbeitsbereiche besondere Aufmerksamkeit wegen Quetschgefahr. Dazu gehört ein Bereich (links) bei radialen Bewegungen, wenn das Handgelenk 1 mindestens 1300 mm von der Basis des Roboters entfernt ist. Der andere Bereich (rechts) befindet sich bei Tangentialbewegung innerhalb von 300 mm vom Basisflansch des Roboters.

-	Sicherheitseingang	Beschreibung
-	Not-Aus-Schalter	Führt einen Stopp der Kategorie 1 aus und informiert andere Ma-
		schinen über den System-Notabschaltungausgang, falls dieser de-
		finiert ist.
	Roboter-	Führt einen Stopp der Kategorie 1 über den Control-Box-Eingang
	Notabschaltung	aus und informiert andere Maschinen über den System-
		Notabschaltungausgang, falls dieser definiert ist.
	System-	Führt einen Stopp der Kategorie 1 nur für den Roboter aus.
	Notabschaltung	
	Schutzstopp	Führt einen Stopp der Kategorie 2 in jedem Modus aus.
	Automatikmodus-	Führt einen Stopp der Kategorie 2 NUR im Automatikmodus aus.
	Schutzabschaltung	Die Schutzabschaltung im Automatikmodus kann nur gewählt wer-
		den, wenn ein Dreistufiger Zustimmschalter konfiguriert und instal-
		liert ist.
	Schutz-Reset	Kehrt aus dem Schutzstopp-Status zurück, wenn eine steigende
		Flanke im Schutz-Reset-Eingang auftritt.
	Reduzierter Modus	Leitet das Sicherheitssystem zur Übernahme der Begrenzungswer-
		te des Reduzierten Modus.
	Dreistufiger	Löst einen Stopp der Kategorie 2 aus, wenn der Zustimmschalter
	Zustimmschalter	vollständig gedrückt oder vollständig losgelassen wird (nur im ma-
		nuellen Modus). Der Dreistufige Zustimmschalter löst einen Stopp
		aus, wenn ein Eingang LOW geschaltet wird. Dieser bleibt von ei-
		nem Schutz-Reset unberührt.
	Betriebsart	Umschalten der Betriebsmodi. Der Roboter befindet sich im Auto-
		matikmodus, wenn der Eingang LOW ist und im Manuellen Modus,
		wenn der Eingang HIGH ist.
	Automatikmodus-	Kehrt aus dem Automatikmodus-Schutzstopp-Status zurück, wenn
Version 5.8	8 Schutz-Reset	Im Automatikmodus eine steigende Flanke im Schutz-Reset- UR10e
		Eingang auftritt.

Für Schnittstellen mit anderen Maschinen verfügt der Roboter über die folgenden Sicherheitsausgänge:

Sicherheitsausgang	Beschreibung
System-	Ist dieser Logikpegel LOW, so ist der Notabschaltung-
Notabschaltung	Eingang LOW oder der Not-Aus-Schalter ist gedrückt.
Roboter in	Ist dieser Logikpegel HIGH, bewegt sich kein Gelenk des
Bewegung	Roboterarms um mehr als 0,1 rad/s.
Roboter stoppt	Logikpegel HIGH, wenn der Roboter aufgrund einer Not-
nicht	abschaltung oder eines Schutzstopps angehalten wurde
	oder im Begriff ist anzuhalten. Ansonsten ist der Logikpe-
	gel LOW
Reduzierter Modus	Logikpegel LOW, wenn sich das Sicherheitssystem im
	Reduzierten-Modus befindet.
Nicht-Reduzierter	Logikpegel LOW, wenn sich das System NICHT im
Modus	Reduzierten-Modus befindet.
Safe Home	Logikpegel HIGH, wenn sich der Roboter in der konfigurier-
	ten Safe Home-Position befindet.

Alle Sicherheits-E/A sind zweikanalig, d. h. sie sind sicher, wenn der Logikpegel LOW ist (z. B. der Not-Aus-Stopp ist bei Logikpegel LOW aktiv).

2.4 Sicherheitsfunktion

Das Sicherheitssystem agiert, indem es alle Sicherheitsgrenzen auf Überschreitungen prüft bzw. ob eine Notabschaltung oder ein Schutzstopp ausgelöst ist. Reaktionen des Sicherheitssystems sind

Auslösung	Reaktion
Notabschaltung	Stoppkategorie 1.
Schutzstopp	Stoppkategorie 2.
Grenzwertverletzung	Stoppkategorie 0.
Fehlererkennung	Stoppkategorie 0.

HINWEIS:

Wenn das Sicherheitssystem einen Fehler oder eine Verletzung erkennt, werden alle Sicherheitsausgänge auf LOW zurückgesetzt.

2.5 Betriebsarten

Normalmodus und Reduzierter Modus Das Sicherheitssystem verfügt über zwei konfigurierbare Modi : **Normal** und **Reduziert**. Für jeden dieser zwei Modi können Sicherheitsgrenzen konfiguriert werden. Der reduzierte Modus ist aktiv, wenn sich das Roboterwerkzeug/Anbaugerät auf der reduzierten Modusseite einer **Reduzierten Modus auslösen**-Ebene befindet oder durch einen Sicherheitseingang ausgelöst wird. Verwendung einer Ebene zum Auslösen des reduzierten Modus: Bewegt sich der Roboter von der Seite des reduzierten Modus der Auslöserebene zurück zur Normalmodusseite, gibt es eine 20-mm-Zone um die Auslöserebene, in der die Grenzwerte des normalen und des reduzierten Modus erlaubt sind. Dies verhindert ein Flackern im Sicherheitsmodus, wenn sich der Roboter direkt am Grenzwert befindet.

Verwendung eines Eingangs zum Auslösen des reduzierten Modus: Wird ein Eingang verwendet (um den reduzierten Modus beispielsweise zu starten oder anzuhalten), können bis zu 500 ms verstreichen, bis die Grenzwerte des neuen Modus übernommen werden. Dies kann beim Wechsel vom reduzierten Modus zum Normalmodus oder beim Wechsel vom Normalmodus zum Reduzierten Modus passieren. Dadurch kann der Roboter beispielsweise die Geschwindigkeit der neuen Sicherheitsgrenzen übernehmen.

Wiederherstellungsmodus Wird ein Sicherheitsgrenzwert überschritten, muss das Sicherheitssystem neu gestartet werden. Befindet sich das System beim Start jenseits einer Sicherheitsgrenze (z. B. jenseits der Positionsgrenze eines Gelenks), wird der Wiederherstellungsmodus aktiviert. Im Wiederherstellungsmodus ist es nicht möglich, Programme für den Roboter auszuführen. Der Roboterarm kann jedoch mit dem Freedrive -Modus oder über den Move-Tab in PolyScope (siehe Teil IIPolyScope-Handbuch) von Hand wieder zurück in seinen zulässigen Wirkungsbereich bewegt werden. Die Sicherheitsgrenzwerte des Wiederherstellungsmodus sind:

Sicherheitsfunktion	Grenzwert
Gelenkgeschwindigkeitsbegrenzung	30 °/s
Geschwindigkeitsbegrenzung	250 mm/s
Kraftbegrenzung	100 N
Drehmomentbegrenzung	10 kg m/s
Energiebegrenzung	80 W

Das Sicherheitssystem veranlasst einen Stopp der Kategorie 0, falls einer dieser Grenzwerte überschritten wird.

WARNUNG:

Die Grenzwerte der Gelenkposition, der Sicherheitsebenen und der Werkzeug-/Anbaugeräteausrichtung sind im Wiederherstellungsmodus deaktiviert. Lassen Sie beim Zurückbewegen des Roboterarms in seinen zulässigen Wirkungsbereich äußerste Vorsicht walten.

3 Transport

Der Roboter und die Control-Box werden als kalibrierte Einheit ausgeliefert. Eine Trennung der beiden Komponenten würde eine Neukalibrierung erforderlich machen.

Transportieren Sie den Roboter nur in seiner Originalverpackung. Bewahren Sie das Verpackungsmaterial an einem trockenen Ort auf, für den Fall, dass Sie den Roboter später noch einmal umziehen möchten.

Beim Transport des Roboters von der Verpackung zur Aufstellfläche, heben Sie beide Rohre des Roboterarms gleichzeitig an. Halten Sie den Roboter in Stellung, bis alle Montageschrauben am Fußflansch des Roboters sicher festgezogen sind.

Heben Sie die Control-Box am Griff an.

WARNUNG:

- Achten Sie darauf, dass Sie Ihren Rücken etc. beim Heben der Geräte nicht überlasten. Verwenden Sie geeignete Hebegeräte. Alle regionalen und nationalen Richtlinien der Lastenhandhabung sind zu befolgen. Universal Robots kann nicht für Schäden haftbar gemacht werden, die durch den Transport der Geräte verursacht wurden.
- 2. Stellen Sie sicher, dass der Roboter gemäß der Montageanleitung in Kapitel 4 montiert wird.

4.1 Einleitung

Dieser Abschnitt beschreibt die Montage-Grundlagen der Teile des Robotersystems. Die Anweisungen für die elektrische Installation in Kapitel 5 sind zwingend zu beachten.

4.2 Wirkungsbereich des Roboters

Der Arbeitsbereich des UR10e Roboters erstreckt sich 1300 mm vom Basisgelenk. Bitte beachten Sie unbedingt das zylindrische Volumen direkt über und unter der Roboterbasis bei der Wahl eines Aufstellungsortes für den Roboter. Eine Bewegung des Werkzeugs in der Nähe des zylindrischen Volumens sollte vermieden werden, da sich die Robotergelenke schnell bewegen müssten, obwohl sich das Werkzeug nur langsam bewegt. Dadurch arbeitet der Roboter ineffizient und eine Durchführung der Risikobewertung ist schwieriger.

4.3 Montage

Roboterarm Der Roboterarm wird mithilfe von vier M8 Schrauben (Festigkeitsklasse 8.8) und vier 8.5 mmÖffnungen im Basisflansch des Roboters montiert. Die Schrauben müssen mit 20 N m Drehmoment

angezogen werden. Verwenden Sie die beiden Ø8 vorgesehenen Löcher (mit Stift), um den Roboterarm ordnungsgemäß neu zu positionieren. Hinweis: Ein genaues Basisgegenstück ist optional als Zubehör erhältlich. Abbildung 4.1 zeigt die Stelle, an der die Löcher zu bohren und die Schrauben zu montieren sind.

Montieren Sie den Roboter auf einer stabilen, vibrationsfreien Oberfläche, die mindestens dem Zehnfachen des normalen Drehmoments des Basisflanschgelenks und mindestens dem Fünffachen des Gewichts des Roboterarms standhält. Wird der Roboter auf einer linearen Achse oder einer sich bewegenden Plattform montiert, dann ist die Beschleunigung der sich bewegenden

Montagebasis sehr niedrig. Eine hohe Beschleunigung kann einen Sicherheitsstopp des Roboters auslösen.

GEFAHR:

Vergewissern Sie sich, dass der Roboterarm ordnungsgemäß und sicher verankert ist. Eine instabile Montage kann zu Unfällen führen.

VORSICHT:

Montieren Sie den Roboter in einer Umgebung, die der IP-Schutzart entspricht. Der Roboter darf nicht in einer Umgebung betrieben werden, die die IP-Schutzart für Roboter (IP54), Teach Pendant (IP54) oder Control-Box (IP44) überschreitet.

Werkzeug Der Werkzeugflansch des Roboters verfügt über vier Löcher mit M6-Gewinde zur Befestigung des Werkzeugs am Roboter. Die M6-Schrauben mit Festigkeitsklasse 8.8 müssen mit Drehmoment 8 N m angezogen werden. Für eine akkurate Werkzeugpositionierung verwenden Sie einen Stift in den Ø6 vorgesehenen Löchern. Abb. 4.2 zeigt die Abmessungen und ein Lochbild des Werkzeugflanschs. Empfohlen wird die Verwendung eines radialen Langlochs für den Stift, um eine übermäßige Krafteinwirkung zu vermeiden und dennoch eine genaue Positionierung einzuhalten. Verwenden Sie zur Montage des Werkzeugs keine Schrauben, die länger als 8 mm sind. Sehr lange M6-Schrauben können Druck auf den Boden des Werkzeugflanschs ausüben und einen Kurzschluss im Roboter verursachen.

GEFAHR:

- 1. Vergewissern Sie sich, dass das Werkzeug ordnungsgemäß und sicher festgeschraubt ist.
- Stellen Sie sicher, dass das Werkzeug so konstruiert ist, dass es keine Gefährdung darstellt, indem sich beispielsweise unerwartet ein Teil lösen kann.
- Die Montage des Werkzeugs mit M6-Schrauben, die länger als 8 mm sind, kann Abdrücke im Werkzeugflansch hinterlassen und zu irreparablen Schäden bis hin zum Austausch des Gelenks führen.

Control-Box Die Control-Box kann an der Wand oder auf dem Boden angebracht werden. Ein Abstand von 50 mm zu beiden Seiten der Control-Box wird für einen ausreichenden Luftstrom benötigt.

Teach Pendant Das Teach Pendant kann an eine Wand oder an die Control-Box angehängt werden. Stellen Sie sicher, dass das Kabel keine Stolpergefahr darstellt.

Abbildung 4.1: Löcher zur Montage des Roboters. Verwenden Sie vier M8 Schrauben. Alle Maßangaben sind in mm.

Abbildung 4.2: Der Werkzeugausgangsflansch (ISO 9409-1-50-4-M6) befindet an der Stelle, an der das Werkzeug an der Spitze des Roboters montiert wird. Alle Maßangaben sind in mm.

Hinweis: Zusätzliche Halterungen für Control-Box und Teach Pendant sind optional erhältlich.

GEFAHR:

- Stellen Sie sicher, dass die Control-Box, das Teach Pendant und die Kabel nicht in direkten Kontakt mit Flüssigkeit kommen. Eine feuchte Control-Box kann tödliche Verletzungen zur Folge haben.
- 2. Stellen Sie Teach Pendant (IP54) und Control-Box (IP44) in einer Umgebung auf, die der IP-Schutzart entspricht.

4.4 Maximale Nutzlast

Die maximal zulässige Nutzlast des Roboterarms hängt von der *Schwerpunktverschiebung* ab (siehe Abb 4.3). Die Abweichung des Schwerpunktes ist definiert als der Abstand zwischen der Mitte des Werkzeugflanschs und dem Schwerpunkt der angehängten Nutzlast.

Abbildung 4.3: Beziehung zwischen der maximal zulässigen Nutzlast und der Schwerpunktverschiebung.

5.1 Einleitung

Dieses Kapitel beschreibt alle elektrischen Schnittstellengruppen des Roboterarms in der Kontrolleinheit . Für den Großteil der **E/A** sind Beispiele angegeben. Der Begriff **E/A** bezieht sich sowohl auf digitale als auch analoge Steuersignale von oder zu einer der u.g. elektrischen Schnittstellengruppen.

- Netzanschluss
- Roboterverbindung
- Controller-E/A
- Werkzeug-E/A
- Ethernet

5.1.1 Halterung für Control-Box

Auf der Unterseite der E/A-Schnittstellengruppen existiert eine Konsole mit Ports, die zusätzliche Verbindungen (s. Abb. unten) ermöglicht. Die Unterseite der Control-Box enthält dafür eine mit einer Kappe versehenen Öffnung für müheloses Anschließen (siehe 5.2).

Der Mini-Display-Port unterstützt Monitore mit Display-Port und erfordert ein aktives Mini-Display zu einem DVI- oder HDMI-Konverter für den Anschluss von Monitoren mit DVI/HDMI-Schnittstelle. Passive Konverter arbeiten nicht mit DVI/HDMI-Anschlüssen zusammen.

Hinweis: Sicherungsanforderung ist eine Mini-Flachsicherung mit UL-Kennzeichnung und folg. maximaler Strombelastbarkeit: 10 A und Mindestspannung: 32 V

5.2 Ethernet

Die Ethernet -Schnittstelle kann für folgende Zwecke verwendet werden:

- MODBUS, EtherNet/IP und PROFINET (siehe Abschnitt II).
- Fernzugriff und Fernsteuerung.

Um das Ethernet-Kabel zu verbinden, wird es durch die Öffnung an der Unterseite der Control-Box geführt und in den Ethernet-Anschluss an der Unterseite der Konsole eingesteckt. Ersetzen Sie die Öffnung an der Unterseite der Control-Box mit einer entsprechenden Kabelverschraubung, wenn Sie das Kabel mit dem Ethernet-Anschluss verbinden.

Die elektrischen Spezifikationen finden Sie in der untenstehenden Tabelle.

Parameter	Min	Тур	Max	Einheit
Kommunikationsgeschwindigkeit	10	-	1000	MB/s

5.3 Elektrische Warn- und Sicherheitshinweise

Beachten Sie die folgenden Warnhinweise für alle oben genannten Schnittstellengruppen, zusätzlich zu denen für die Erstellung und Installation einer Roboteranwendung.

GEFAHR:

- Schließen Sie Sicherheitssignale niemals an eine SPS an, bei der es sich nicht um eine Sicherheits-SPS mit entsprechendem Sicherheitslevel handelt. Eine Nichtbeachtung dieser Warnung kann schwere Verletzungen oder den Tod zur Folge haben, da die Sicherheitsfunktionen umgangen werden können. Sicherheitsschnittstellensignale sind von den normalen E/A-Schnittstellensignalen getrennt zu verlegen.
- 2. Alle sicherheitsrelevanten Signale sind redundant aufgebaut (zwei unabhängige Kanäle). Halten Sie die beiden Kanäle getrennt, damit eine einzelne Störung nicht zum Verlust der Sicherheitsfunktion führen kann.
- Einige E/A in der Control-Box können als normal oder als sicherheitsrelevant konfiguriert werden. Machen Sie sich bitte mit Abschnitt 5.4 vertraut.

GEFAHR:

- Stellen Sie sicher, dass alle nicht wassergeschützten Geräte trocken bleiben. Sollte Wasser in das Produkt gelangt sein, trennen Sie alle Stromversorgungen bzw. schalten Sie diese ab und kontaktieren Sie Ihren Universal Robots-Serviceanbieter.
- 2. Verwenden Sie ausschließlich die mit dem Roboter bereitgestellten Originalkabel. Setzen Sie den Roboter nicht für Anwendungen ein, bei denen die Kabel Biegungen ausgesetzt sind.
- 3. Nullanschlüsse sind mit GND (Erdung) bezeichnet und werden an die Schirmung des Roboters und an die Control-Box angeklemmt. Alle markierten Erdungsanschlüsse (GND) sind nur für die Stromversorgung und Signalgebung konzipiert. Verwenden Sie die mit Erdungssymbolen gekennzeichneten M6-Schraubverbindungen als PE (Schutzerde) im Inneren der Control-Box. Die Nennstromstärke des Masseverbinders sollte nicht unter der höchsten Stromstärke des Systems liegen.
- 4. Bei der Installation der Schnittstellenkabel an den Roboter-E/A ist äußerste Sorgfalt geboten. Die Metallplatte am unteren Teil ist für Schnittstellenkabel und Anschlüsse bestimmt. Entfernen Sie die Platte, bevor Sie die Löcher bohren. Stellen Sie sicher, dass vor der erneuten Montage der Platte alle Späne entfernt worden sind. Denken Sie daran, die korrekten Verschraubungsgrößen zu verwenden.

VORSICHT:

- Der Roboter wurde gemäß internationaler IEC-Standards auf EMV (elektromagnetische Verträglichkeit) getestet. Störsignale mit höheren Pegeln als denen, die in den spezifischen IEC-Normen angegeben sind, können unerwartete Auswirkungen im Roboterverhalten zur Folge haben. Sehr hohe Signalpegel oder übermäßige Aussetzung können den Roboter dauerhaft beschädigen. EMV-Probleme treten häufig bei Schweißvorgängen auf und werden in der Regel im Protokoll erfasst. Universal Robots kann nicht für Schäden haftbar gemacht werden, die im Zusammenhang mit EMV-Problemen verursacht wurden.
- E/A-Kabel zwischen der Control-Box und anderen Maschinen/Geräten dürfen nicht länger als 30 m sein, es sei denn, es wurden zusätzliche Prüfungen durchgeführt.

HINWEIS:

Alle Spannungen und Ströme sind DC (Gleichstrom), sofern nicht anders angegeben.

5.4 Controller-E/A

Der **E/A** in der Kontrolleinheit lässt sich für eine breite Palette an Geräten verwenden, einschl. von pneumatischen Relais, SPS und Not-Aus-Schaltern.

Die folgende Abbildung zeigt die Anordnung der elektrischen Schnittstellengruppen in der Control-Box.

	Safe	ty	R	emo	te	P	owe	er	Con	igura	ble Inp	outs	Confi	gural	le Out	outs	Digita	l Input	5	Dig	ital	Output	ts		Anal	og
stop	24V	–	1	2V		ΡV	VR		24	/	24V		0V		0V		24V 🔳	24V		0V		0V		uts	AG	
ncy 9	EI0		G	ND		G١	ID		CIC		CI4		COC		CO4		D10 🔳	DI4		DO0		DO4		dul	A10	
ergei	24V	–	C	N		24	١V	•)	24	/	24V		0V		0V		24V 🔳	24V		0V		0V		alog	AG	
Eme	EI1		0	FF		0	v		CI1		CI5		C01		C05		DI1 🔳	DI5		D01		D05		An	AI1	
top	24V	2							24	/	24V		0V		0V		24V 🔳	24V		0V		0V		outs	AG	
rd S	SI0		-	0	6	œ	>		CI2		CI6		CO2		<mark>C06</mark>		D12 🔳	D16		DO2		D06		Outp	A00	
edua	24V		E	E	ā	ā	24	6	24	/	24V		0V		0V		24V 🔳	24V		0V		0V		log	AG	
Safi	SI1								CIE		CI7		COB		C07		D13 🔳	DI7		DO3		D07		Ana	A01	

Hinweis: Ebenso können Sie den horizontalen Digitaleingangsblock DI8-DI11 (siehe Abbildung unten) als Quadratur-Encoder für Fließband-Tracking (siehe 5.4.1) für diese Art des Eingangs verwenden.

Die Bedeutung der unten aufgeführten Farbschemata sind zu beachten und einzuhalten.

Gelb mit roter Schrift	Vorgesehen für Sicherheitssignale
Gelb mit schwarzer Schrift	Für die Sicherheit konfigurierbar
Grau mit schwarzer Schrift	Digital-E/A für allgemeine Zwecke
Grün mit schwarzer Schrift	Analog-E/A für allgemeine Zwecke

In der grafischen Benutzeroberfläche (GUI) können Sie **konfigurierbare E/A** als **sicherheitsrelevanten E/A** oder **allgemeinen E/A** einrichten (siehe Abschnitt II).

5.4.1 Gemeinsame Spezifikationen für alle Digital-E/A

Dieser Abschnitt definiert die elektrischen Spezifikationen für den folgenden 24V Digital-E/A der Control-Box.

- Sicherheits-E/A.
- Konfigurierbarer E/A.
- Universal-I/O.

Installieren Sie den Roboter mit der für alle drei Eingangsarten gleichen elektrischen Spezifikation.

Es ist möglich, den digitalen E/A mit einer internen 24-V-Spannungsversorgung oder mit einer externen Stromversorgung zu betreiben, indem der Klemmenblock **Spannung** entsprechend konfiguriert wird. Dieser Block besteht aus vier Klemmen. Die oberen beiden (PWR und GND) sind der 24-V- und Erdungsanschluss der internen 24-V-Stromversorgung. Die unteren beiden Klemmen (24V und 0V) des Blocks umfassen den 24V-Eingang der E/A-Versorgung. Die Standardkonfiguration verwendet die interne Spannungsversorgung (siehe unten).

Hinweis: Falls die Stromstärke nicht ausreicht, kann eine externe Spannungsversorgung angeschlossen werden (siehe unten).

Die elektrischen Spezifikationen für die interne und externe Spannungsversorgung sind unten angegeben.

Klemmen	Parameter	Min	Тур	Max	Einheit
Interne 24-V-Spannungsversorgung					
[PWR - GND]	Spannung	23	24	25	V
[PWR - GND]	Strom	0	-	2*	А
Externe 24 V Eingangsanforderungen					
[24V - 0V]	Spannung	20	24	29	V
[24V - 0V]	Strom	0	-	6	А

*3,5A für 500ms oder 33% Einschaltdauer.

Klemmen	Parameter	Min	Тур	Max	Einheit
Digitalausgänge					
[COx / DOx]	Strom*	0	-	1	А
[COx / DOx]	Spannungsabfall	0	-	0,5	V
[COx / DOx]	Kriechstrom	0	-	0,1	mA
[COx / DOx]	Funktion	-	PNP	-	Тур
[COx / DOx]	IEC 61131-2	-	1A	-	Тур
Digitaleingänge					
[EIx/SIx/CIx/DIx]	Spannung	-3	-	30	V
[EIx/SIx/CIx/DIx]	AUS-Bereich	-3	-	5	V
[EIx/SIx/CIx/DIx]	EIN-Bereich	11	-	30	V
[EIx/SIx/CIx/DIx]	Strom (11 – 30 V)	2	-	15	mA
[EIx/SIx/CIx/DIx]	Funktion	-	PNP +	-	Тур
[EIx/SIx/CIx/DIx]	IEC 61131-2	-	3	-	Тур

Die digitalen E/A erfüllen IEC 61131-2. Die elektrischen Spezifikationen sind unten angegeben.

*Für ohmsche Lasten oder induktive Lasten von maximal 1 H.

HINWEIS:

Als **konfigurierbar** wird ein E/A bezeichnet, der entweder als sicherheitsrelevanter oder als allgemeiner E/A konfiguriert wird. Es handelt sich dabei um die gelben Klemmen mit schwarzer Schrift.

5.4.2 Sicherheits-E/A

Dieser Abschnitt beschreibt die speziellen Sicherheitseingänge (gelbe Klemme mit roter Schrift) und als Sicherheits-E/A konfigurierte, konfigurierbare E/A. Folgen Sie den gängigen Spezifikationen bei allen digitalen E/A in Abschnitt 5.4.1.

Sicherheitsausrüstung und -geräte sind unter Einhaltung der Sicherheitsanweisungen und der Risikobewertung gemäß Kapitel 1 zu installieren.

Alle Sicherheits-E/A sind paarweise (redundant) angeordnet und müssen als zwei getrennte Instanzen beibehalten werden. Eine einzelne Störung führt nicht zum Verlust der Sicherheitsfunktion.

Es existieren zwei Typen von permanenten Sicherheitseingängen:

- Roboter-Notabschaltung Nur für Notabschaltungsgeräte
- Schutzstopp Für Schutzvorrichtungen

Der funktionale Unterschied wird im Folgenden erklärt.

	Notabschaltung	Schutzabschaltung
Roboterbewegung stoppt	Ja	Ja
Programmausführung	Pausiert	Pausiert
Strom für Antrieb	Aus	Ein
Reset	Manuell	Automatisch oder manuell
Einsatzhäufigkeit	Nicht häufig	Jeder Durchlauf bis nicht häufig
Erfordert erneute Initialisierung	Nur Lösen der Bremse	Nein
Stoppkategorie (IEC 60204-1)	1	2
Performance Level der		
Überwachungsfunktion (ISO 13849-	PLd	PLd
1)		

Verwenden Sie den konfigurierbaren E/A dazu, um zusätzliche E/A-Sicherheitsfunktionen wie z. B. einen Notabschaltungsausgang einzurichten. Das Einrichten konfigurierbarer E/A für Sicherheitsfunktionen erfolgt über die GUI, siehe Abschnitt II).

GEFAHR:

- Schließen Sie Sicherheitssignale niemals an eine SPS an, bei der es sich nicht um eine Sicherheits-SPS mit entsprechendem Sicherheitsniveau handelt. Eine Nichtbeachtung dieser Warnung kann schwere Verletzungen oder den Tod zur Folge haben, da die Sicherheitsfunktionen umgangen werden können. Sicherheitsschnittstellensignale sind von den normalen E/A-Schnittstellensignalen getrennt zu verlegen.
- Alle sicherheitsrelevanten E/A sind redundant aufgebaut (zwei unabhängige Kanäle). Halten Sie die beiden Kanäle getrennt, damit eine einzelne Störung nicht zum Verlust der Sicherheitsfunktion führen kann.
- Sicherheitsfunktionen müssen vor der Inbetriebnahme des Roboters überprüft werden. Sicherheitsfunktionen sind regelmäßig zu überprüfen.
- Die Roboterinstallation muss diesen Spezifikationen entsprechen. Eine Nichtbeachtung dieser Warnung kann schwere Verletzungen oder den Tod zur Folge haben, da die Sicherheitsfunktionen umgangen werden können.

OSSD-Signale

Alle konfigurierten und permanenten Sicherheitseingänge werden gefiltert, um die Verwendung von OSSD-Sicherheitsgeräten mit Impulslängen unter 3 ms zu ermöglichen. Der Sicherheitseingang wird jede Millisekunde abgetastet und der Zustand des Eingangs wird durch das am häufigsten auftretende Eingangssignal innerhalb der letzten 7 Millisekunden bestimmt. OSSD-Pulse auf den Sicherheitsausgängen sind beschrieben in Teil II.

Standardmäßige Sicherheitskonfiguration

Der Roboter wird mit einer Standardkonfiguration für den Betrieb ohne zusätzliche Sicherheitsausstattung ausgeliefert (siehe Abbildung unten).

Not-Aus-Schalter anschließen

Die meisten Roboteranwendungen machen die Verwendung eines oder mehrerer, zusätzlicher Not-Aus-Schalter erforderlich. Die folgende Abbildung veranschaulicht die Verwendung mehrerer Not-Aus-Schalter.

Notabschaltung mit anderen Maschinen teilen

Eine gemeinsame Notabschaltungsfunktion zwischen dem Roboter und anderen Maschinen kann mittels Konfiguration der folgenden E/A -Funktionen in der GUI eingerichtet werden. Der Notabschaltungseingang des Roboters kann nicht für gemeinsame Verwendung eingesetzt werden. Sollen mehr als zwei UR Roboter oder andere Maschinen verbunden werden, ist eine Sicherheits-SPS erforderlich, um die Notabschaltungssignale zu steuern.

- Konfigurierbares Eingangspaar: Externe Notabschaltung.
- · Konfigurierbares Ausgangspaar: System-Notabschaltung.

Die folgende Abbildung zeigt zwei UR Roboter, die sich die Notabschaltungsfunktion teilen. In diesem Beispiel wurden CI0-CI1 und CO0-CO1 als konfigurierte E/A verwendet.

Schutzstopp mit automatischer Wiederaufnahme

Ein Beispiel für ein einfaches Schutzstopp-Gerät ist ein Türschalter, der den Roboter stoppt, wenn die Tür geöffnet wird (siehe Abbildung unten).

Diese Konfiguration trifft nur auf Anwendungen zu, bei denen der Betreiber die Tür nicht passieren und hinter sich schließen kann. Mit dem konfigurierbaren E/A wird eine Reset-Taste vor der Tür eingerichtet, um den Roboterbetrieb wiederaufzunehmen.

Ein weiteres Beispiel für eine automatische Fortsetzung ist die Verwendung einer Sicherheitsschaltmatte oder eines Sicherheits-Laser-Scanners (siehe unten).

GEFAHR:

1. Der Roboter setzt den Betrieb automatisch fort, sobald das Signal wiederhergestellt ist. Verwenden Sie diese Konfiguration nicht, wenn das Signal von der Sicherheitszone aus wiederhergestellt werden kann.

Schutzstopp mit Reset-Taste

Ist die Schutzstopp-Schnittstelle mit einem Lichtvorhang verbunden, so ist ein Reset von außerhalb der Sicherheitszone erforderlich. Die Reset-Taste benötigt zwei Kanäle. In diesem Beispiel ist der E/A CI0-CI1 für die Reset-Taste konfiguriert, siehe unten.

Dreistufiger Zustimmschalter

Die Abbildung unten zeigt den Anschluss eines Dreistufigen Zustimmschalters. Siehe Abschnitt 12.2 für weitere Informationen über Dreistufige Zustimmschalter.

HINWEIS:

Mehrere externe Dreistufige Zustimmschalter werden vom Sicherheitssystem von Universal Robots nicht unterstützt.

HINWEIS:

Die beiden Eingangskanäle für den Dreistufigen Zustimmschalter haben eine Abweichungstoleranz von 1 Sekunde.

Betriebsmodus-Schalter

Die Abbildung unten zeigt einen Betriebsmodus-Schalter. Siehe Abschnitt 12.1, um mehr über Betriebsmodus-Schalter zu erfahren.

5.4.3 Digital-E/A für allgemeine Zwecke

Dieser Abschnitt beschreibt die allgemeinen 24 V E/A (graue Klemmen) und die nicht fest als Sicherheits-E/A konfigurierten aber konfigurierbaren E/A (gelbe Klemmen mit schwarzer Schrift). Die gängigen Spezifikationen im Abschnitt 5.4.1 sind zu beachten.

Die allgemeinen E/A können für die direkte Steuerung von Geräten wie pneumatischen Relais oder für die Kommunikation mit einer SPS verwendet werden. Alle Digitalausgänge können automatisch deaktiviert werden, wenn die Programmausführung gestoppt wird. Mehr dazu im Abschnitt II. In diesem Modus ist der Ausgang immer LOW, wenn kein Programm läuft. Beispiele dafür finden Sie in den folgenden Unterabschnitten. In den Beispielen werden reguläre Digitalausgänge verwendet. Solange er nicht für eine Sicherheitsfunktion konfiguriert werden soll, kann jeder beliebige konfigurierbare Ausgang verwendet werden.

Last durch Digitalausgang gesteuert

Dieses Beispiel zeigt die Steuerung einer Last über einen Digitalausgang, wenn angeschlossen.

5.4.4 Digitaleingang von einer Taste

Dieses Beispiel zeigt den Anschluss einer einfachen Taste an einem Digitaleingang.

5.4.5 Kommunikation mit anderen Maschinen oder einer SPS

Der digitale E/A kann verwendet werden, um mit anderen Geräten zu kommunizieren, sofern ein gemeinsamer GND (0V) besteht und die Maschine PNP-Technologie verwendet (siehe unten).

5.4.6 Analog-E/A für allgemeine Zwecke

Die Analog-E/A-Schnittstelle ist die grüne Klemme. Sie wird verwendet, um die Spannung (0 – 10V) oder den Strom (4 – 20 mA) von und zu anderen Geräten auszugeben oder zu erfassen.

Um höchste Genauigkeit zu erreichen, wird folgende Handlungsanweisung empfohlen:

- Verwenden Sie die AG-Klemme, die dem E/A am nächsten liegt. Das Paar teilt sich einen gemeinsamen Modus-Filter.
- Verwenden Sie den gleichen GND (0V) für Geräte und die Control-Box. Der Analog E/A ist nicht galvanisch von der Control-Box getrennt.
- Verwenden Sie ein abgeschirmtes Kabel oder verdrillte Doppelkabel. Schließen Sie die Schirmung an den GND-Anschluss der **SPANNUNG**-Klemme an.
- Verwenden Sie Geräte im Strommodus. Stromsignale sind weniger anfällig für Störungen.

In der GUI können Sie den Eingangsmodus wählen (siehe Abschnitt II). Die elektrischen Spezifikationen sind unten angegeben.

Klemmen	Parameter	Min	Тур	Max	Einheit
Analogeingang im Strommodus					
[AIx - AG]	Strom	4	-	20	mA
[AIx - AG]	Widerstand	-	20	-	Ohm
[AIx - AG]	Auflösung	-	12	-	Bit
Analogeingang im Spannungsmodus					
[AIx - AG]	Spannung	0	-	10	V
[AIx - AG]	Widerstand	-	10	-	kOhm
[AIx - AG]	Auflösung	-	12	-	Bit
Analogausgang im Strommodus					
[AOx - AG]	Strom	4	-	20	mA
[AOx - AG]	Spannung	0	-	24	V
[AOx - AG]	Auflösung	-	12	-	Bit
Analogausgang im Spannungsmodus					
[AOx - AG]	Spannung	0	-	10	V
[AOx - AG]	Strom	-20	-	20	mA
[AOx - AG]	Widerstand	-	1	-	Ohm
[AOx - AG]	Auflösung	-	12	-	Bit

Verwendung eines Analogausgangs

Dieses Beispiel zeigt, wie ein Fließband mit einem analogen Drehzahl-Steuerungseingang gesteuert werden kann.

Verwenden eines Analogeingangs

Dieses Beispiel zeigt die Verbindung eines Analogsensors.

5.4.7 **EIN-/AUS-Fernsteuerung**

Verwenden Sie die EIN-/AUS-Fernsteuerung, um die Kontrolleinheit ein- und auszuschalten, ohne das Teach Pendant zu verwenden. Verwendet wird sie in der Regel dann, wenn

- · das Teach Pendant nicht verfügbar ist.
- · eine SPS-Anlage die volle Kontrolle benötigt
- mehrere Roboter gleichzeitig ein- oder ausgeschaltet werden müssen.

Die EIN-/AUS-Fernsteuerung bietet eine 12-V-Hilfsstromversorgung, die aktiv bleibt, wenn die Control-Box ausgeschaltet wird. Der EIN-Eingang ist nur für kurzzeitige Aktivierung gedacht und funktioniert in der gleichen Weise wie der SPANNUNG (Einschalt)-Knopf. Der AUS-Eingang kann nach Belieben gedrückt gehalten werden. Die elektrischen Spezifikationen sind unten angegeben. Hinweis: Verwenden Sie eine Software-Funktion, um Programme automatisch zu laden und zu starten (siehe Abschnitt II).

Klemmen	Parameter	Min	Тур	Max	Einheit
[12V - GND]	Spannung	10	12	13	V
[12V - GND]	Strom	-	-	100	mA
[EIN / AUS]	Inaktive Spannung	0	-	0,5	V
[EIN / AUS]	Aktive Spannung	5	-	12	V
[EIN / AUS]	Eingangsstrom	-	1	-	mA
[EIN]	Einschaltzeit	200	-	600	ms

Copyright @2009-2020 by Universal Robots A/S. Alle Rechte vorbehalten.

Remote-Taste "EIN"

Dieses Beispiel zeigt, wie eine Remote-EIN-Taste angeschlossen wird.

Remote-Taste "AUS"

Dieses Beispiel zeigt, wie eine Remote-**AUS**-Taste angeschlossen wird.

VORSICHT:

Halten Sie nicht den **EIN**-Eingang oder den **SPANNUNG**-Knopf gedrückt, da diese die Control-Box ohne Speicherung ausschalten. Verwenden Sie stets den **Aus**-Eingang zum Ausschalten mit der Fernsteuerung, da dieses Signal das Speichern von Dateien und das problemlose Herunterfahren der Control-Box ermöglicht.

5.5 Netzanschluss

Das Netzkabel an der Kontrolleinheit verfügt standardmäßig über einen IEC-Stecker. Verbinden Sie den IEC-Stecker mit einem länderspezifischen Netzstecker oder -kabel.

Um den Roboter zu aktivieren, muss die Control-Box mit einer Steckdose und dem IEC C20-Stecker an der Unterseite der Control-Box über ein entsprechendes IEC C19 Kabel verbunden werden (siehe Abbildung unten).

Die Spannungsversorgung weist folgende auf:

- Erdung
- Hauptsicherung
- Fehlerstromeinrichtung

Es wird empfohlen, einen Hauptschalter als einfaches Mittel zur Trennung/Abschaltung aller in der Roboterapplikation befindlichen Geräte zu installieren. Die elektrischen Spezifikationen finden Sie in der untenstehenden Tabelle.

Parameter	Min	Тур	Max	Einheit
Eingangsspannung	100	-	240	VAC
Externe Netzsicherung (@ 100-200 V)	15	-	16	А
Externe Netzsicherung (@ 200-265V)	8	-	16	А
Eingangsfrequenz	47	-	440	Hz
Stand-by-Leistung	-	-	<1,5	W
Nennbetriebsleistung	90	250	500	W

GEFAHR:

- Stellen Sie sicher, dass der Roboter korrekt geerdet ist (elektrische Verbindung zur Masse). Verwenden Sie die nicht genutzten Schauben, die zu den Erdungssymbolen in der Control-Box gehören, um eine gemeinsame Erdung aller Geräte im System zu schaffen. Die Nennstromstärke des Masseverbinders sollte nicht unter der höchsten Stromstärke des Systems liegen.
- Stellen Sie sicher, dass der Eingangsstrom in der Control-Box mit einem Fehlerstromschutzschalter (FI) und einer ordnungsgemäßen Sicherung abgesichert ist.
- Sorgen Sie für die Möglichkeit einer Trennung/Abschaltung aller Stromzufuhr für die gesamte Roboterinstallation während des Betriebs. Andere Geräte dürfen den Roboter-E/A nicht mit Strom versorgen, wenn das System abgeschaltet ist.
- Stellen Sie sicher, dass alle Kabel korrekt angeschlossen sind, bevor die Control-Box angeschlossen wird. Verwenden Sie stets das originale Stromkabel.

5.6 Roboterverbindung

Verbinden und sichern Sie das Kabel des Roboters am Anschluss an der Unterseite der Kontrolleinheit (siehe Abbildung unten). Drehen Sie den Stecker zweimal, um sicherzustellen, dass er fest verankert ist, bevor Sie den Roboterarm anstellen.

Drehen Sie den Anschluss nach rechts, um ihn einfacher zu arretieren, nachdem das Kabel angeschlossen wurde.

VORSICHT:

- 1. Trennen Sie die Kabelverbindung zum Roboter nicht, solange der Roboterarm eingeschaltet ist.
- 2. Das Originalkabel darf weder verlängert noch verändert werden.

5.7 Werkzeug-E/A

An den Werkzeugflansch an Gelenk #3 grenzt ein 8-poliger Stecker an, der Strom und Steuersignale für verschiedene Greifer und Sensoren bereitstellt, die an dem Roboter angebracht werden können. Ein geeignetes Industriekabel ist das Lumberg KKMV 8-354. Die acht Adern des Kabels haben unterschiedliche Farben, je nach Funktion.

Dieser Stecker liefert Leistungs- und Steuerungssignale für Greifer und Sensoren, die mit einem bestimmten Roboterwerkzeug verwendet werden. Ein geeignetes Industriekabel ist das hier genannte:

• Lumberg RKMV 8-354.

HINWEIS:

Der Werkzeuganschluss muss manuell bis auf ein Maximum von 0,4 Nm angezogen werden.

Die acht Adern des Kabels verfügen über unterschiedliche Farben, je nach Funktion. Siehe nachfolgende Tabelle:

Farbe	Signal	Beschreibung
Rot	GND	Erdung
Grau	SPANNUNG	0V/12V/24V
Blau	T00/PWR	Digitalausgänge 0 oder 0V/12V/24V
Pink	TO1/GND	Digitalausgänge 1 oder Erdung
Gelb	TI0	Digitaleingänge 0
Grün	TI1	Digitaleingänge 1
Weiß	AI2 / RS485+	Analog Ein 2 oder RS485+
Braun	AI3 / RS485-	Analog Ein 3 oder RS485-

Gehen Sie zum Tool-E/A im Installations-Tab (siehe Teil II), um die interne Spannungsversorgung auf 0V, 12V oder 24V einzustellen. Die elektrischen Spezifikationen sind unten angegeben:

Parameter	Min	Тур	Max	Einheit
Versorgungsspannung im 24-V-Modus	23,5	24	24,8	V
Versorgungsspannung im 12-V-Modus	11,5	12	12,5	V
Versorgungsstrom (Einzel-Pol)*	-	1000	2000**	mA
Versorgungsstrom (Zwei-Pol)*	-	2000	2000	mA
Kapazitive Versorgungslast	-	-	8000***	uF

* Es wird dringend empfohlen, eine Schutzdiode für induktive Lasten zu verwenden.

**Spitze für max. 1 Sekunde, Einschaltdauer max.: 10%. Durchschnittsstrom über 10 Sekunden hinaus darf typische Stromstärke nicht überschreiten.

***Wenn die Stromversorgung des Werkzeugs aktiviert wird, beginnt eine 400 ms Softstartzeit, die eine kapazitive Last von 8000 uF an die Werkzeugstromversorgung beim Start ermöglicht. Das Anbinden einer kapazitiven Last im laufenden Betrieb ist nicht erlaubt.

HINWEIS:

Der Werkzeugflansch wird an die Erdung (GND) angeschlossen (wie die rote Ader).

5.7.1 Werkzeugstromversorgung

Stromversorgung

Gehen Sie zum Tool -E/A im Installations-Tab (siehe Teil II), um die interne Spannungsversorgung auf 0 V, 12 V oder 24 V einzustellen.

Doppel-Pin Stromversorgung

Im Doppel-Pin-Modus kann der Ausgangsstrom wie in (5.7Tabelle 2) aufgeführt erhöht werden.

- 1. Klicken Sie in der Kopfzeile auf Installation.
- 2. In der Liste links tippen Sie auf **Allgemein**.
- 3. Tippen Sie auf Werkzeug E/A und wählen Sie die Option Doppel-Pin-Energie.
- 4. Schließen Sie die Kabel Energie (grau) an TOO (blau) und Erdung (rot) an TO1 (rosa) an.

HINWEIS:

Wenn der Roboter eine Notabschaltung ausführt, wird die Spannung für beide Spannungspole auf 0V gesetzt (Spannungsversorgung abgeschaltet).

5.7.2 Digitalausgänge des Werkzeugs

Digitalausgänge unterstützen drei verschiedene Modi:

Modus	Aktiv	Inaktiv
Sinking (NPN)	LOW	Offen
Sourcing (PNP)	HIGH	Offen
Drücken / Ziehen	HIGH	Niedrig

Gehen Sie zum Tool -E/A im Installations-Tab (siehe Teil II), um den Ausgangsmodus je Pol zu konfigurieren. Die elektrischen Spezifikationen sind unten angegeben:

Parameter	Min	Тур	Max	Einheit
Spannung, wenn offen	-0,5	-	26	V
Spannung beim Sinking 1A	-	0,08	0,09	V
Strom beim Sourcing/Sinking	0	1000	1000	mA
Strom durch GND	0	1000	3000*	mA

* Spitze für max. 1 Sekunde, Einschaltdauer max.: 10%. Durchschnittsstrom über 10 Sekunden hinaus darf typische Stromstärke nicht überschreiten.

HINWEIS:

Wenn der Roboter eine Notabschaltung ausführt, werden die Digitalausgänge DOO0 und DO1 deaktiviert (HIGH Z).

VORSICHT:

Die Digitalausgänge im Werkzeug haben keine Strombeschränkung. Das Überschreiten der vorgegebenen Daten kann zu dauerhafter Beschädigung führen.

Verwendung der Digitalausgänge des Werkzeugs

Dieses Beispiel zeigt die Aktivierung eines Verbrauchers mit Hilfe der internen 12-V- oder 24-V-Stromversorgung. Die Ausgangsspannung beim Tab "E/A" muss definiert werden. Zwischen dem Anschluss SPANNUNG und der Schirmung/Erdung liegt Spannung an, auch wenn der Verbraucher ausgeschaltet ist.

Es wird empfohlen, eine Schutzdiode für induktive Lasten zu verwenden (s. unten).

5.7.3 Digitaleingänge des Werkzeugs

Die Digitaleingänge werden als PNP mit schwachen Pulldown-Widerständen umgesetzt. Dies bedeutet, dass ein potentialfreier Eingang immer einen niedrigen Wert anzeigt. Die elektrischen Spezifikationen sind unten angegeben.

Parameter	Min	Тур	Max	Einheit
Eingangsspannung	-0,5	-	26	V
Logischer Pegel LOW	-	-	2,0	V
Logischer Pegel HIGH	5,5	-	-	V
Eingangswiderstand	-	47 k	-	Ω

Verwendung der Digitaleingänge des Werkzeugs

Dieses Beispiel zeigt den Anschluss einer einfachen Taste.

5.7.4 Analogeingänge des Werkzeugs

Die Werkzeug-Analogeingänge sind nicht differenziell und können zu Spannung (O bis 10V) oder Strom (4 bis 20 mA) auf dem Tab "E/A" eingestellt werden, (siehe Abschnitt II). Die elektrischen Spezifikationen sind unten angegeben.

Parameter	Min	Тур	Max	Einheit
Eingangsspannung im Spannungsmodus	-0,5	-	26	V
Eingangswiderstand im Bereich 0V bis 10V	-	10,7	-	kΩ
Auflösung	-	12	-	Bit
Eingangsspannung im Strommodus	-0,5	-	5,0	V
Eingangsstrom im Strommodus	-2,5	-	25	mA
Eingangswiderstand im Bereich 4 mA bis 20 mA	-	182	188	Ω
Auflösung	-	12	-	Bit

Zwei Beispiele für die Verwendung eines Analogeingangs finden Sie in den folgenden Unterabschnitten.

VORSICHT:

 Analogeingänge sind im Strommodus nicht gegen Überspannung geschützt. Ein Überschreiten des in den elektrischen Spezifikationen angegebenen Grenzwertes kann zu dauerhafter Beschädigung am Eingang führen.

Verwendung der Analogeingänge des Werkzeugs, nicht differenziell

Dieses Beispiel zeigt die Verbindung eines analogen Sensors mit einem nicht differenziellen Ausgang. Der Ausgang des Sensors kann entweder Strom oder Spannung sein, solange der Eingangsmodus dieses Analogeingangs im Tab E/A

entsprechend eingestellt ist. Hinweis: Prüfen Sie, ob der Sensor mit Spannungsausgang den internen Widerstand des Werkzeugs verfälschen kann. Andernfalls könnte die Messung ungültig sein.

Verwendung der Analogeingänge des Werkzeugs, differenziell

Dieses Beispiel zeigt die Verbindung eines analogen Sensors an einem differenziellen Ausgang. Verbinden Sie den negativen Ausgang mit der Erdung (0V); die Funktionsweise gleicht der eines nicht differenziellen Sensors.

5.7.5 Werkzeugkommunikation-E/A

- Signalanforderungen RS485-Signale verwenden eine interne, störsichere Bus-Vorspannung (fail-safe biasing). Unterstützt das angeschlossene Gerät diese Störsicherheit nicht, muss die Signalvorspannung im angehängten Werkzeug oder extern durch Hinzufügen von Pullup-Widerständen zu RS485+ und Pull-Down-Widerständen zu RS485- vorgenommen werden.
- Latenz Die Latenzzeit von gesendeten Meldungen über den Werkzeuganschluss dauert 2 ms bis 4 ms, gemessen vom Zeitpunkt, zu der die Nachricht auf dem PC geschrieben wird bis zum Startzeitpunkt der Meldung auf dem RS485. Ein Puffer speichert die zum Werkzeuganschluss gesendeten Daten bis zur Ruhemoduszeit. Sobald 1000 Byte empfangen wurden, wird die Mitteilung auf das Gerät geschrieben.

Baud-Raten	9,6k, 19,2k, 38,4k, 57,6k, 115,2k, 1M, 2M, 5M
Stoppbits	1, 2
Parität	Keine; Ungerade; Gerade

6 Wartung und Reparatur

Instandhaltungs- und Instandsetzungsarbeiten sind unter Beachtung der Sicherheitsanweisungen in diesem Handbuch durchzuführen.

Instandhaltungs- und Instandsetzungsarbeiten sowie Kalibrierungen sind unter Zuhilfenahme der neuesten Versionen der Service-Handbücher auf der Support-Website http://www.universal-robots.com/support durchzuführen.

Instandsetzungsarbeiten dürfen nur von autorisierten Systemintegratoren oder von Universal Robots durchgeführt werden.

Alle an Universal Robots zurückgesandten Teile sind gemäß Wartungshandbuch zurückzusenden.

6.1 Sicherheitsanweisungen

Im Anschluss an Instandhaltungs- und Instandsetzungsarbeiten sind Prüfungen durchzuführen, um den erforderlichen Sicherheitsstandard zu gewährleisten. Die gültigen nationalen oder regionalen Arbeitsschutzbestimmungen sind bei diesen Prüfungen zu beachten. Die korrekte Funktionsweise aller Sicherheitsfunktionen ist ebenfalls zu prüfen.

Der Zweck von Wartungs- und Reparaturarbeiten ist es, sicherzustellen, dass das System betriebsfähig bleibt oder, im Falle einer Störung, das System erneut in einen betriebsfähigen Status zu versetzen. Reparaturarbeiten umfassen die Fehlerbehebung und die eigentliche Reparatur selbst.

Bei Arbeiten am Roboterarm oder der Control-Box sind die folgenden Maßnahmen und Warnungen zu beachten.

GEFAHR:

- Nehmen Sie keine Änderungen an der Sicherheitskonfiguration der Software vor (z. B. die Kraftbegrenzung). Die Sicherheitskonfiguration wird im PolyScope-Handbuch beschrieben. Werden Sicherheitsparameter verändert, sollte das komplette Robotersystem neu betrachtet werden, d. h. der gesamte Sicherheitsgenehmigungsprozess, einschließlich Risikobewertung, sollte entsprechend aktualisiert werden.
- Tauschen Sie defekte Komponenten mit neuen Komponenten mit denselben Artikelnummern oder gleichwertigen Komponenten aus, die zu diesem Zweck von Universal Robots genehmigt wurden.
- 3. Reaktivieren Sie alle deaktivierten Sicherheitsmaßnahmen unverzüglich nach Abschluss der Arbeit.
- 4. Dokumentieren Sie alle Reparaturen und speichern Sie diese Dokumentation in der technischen Datei für das komplette Robotersystem.

GEFAHR:

- Trennen Sie das Netzkabel von der Unterseite der Control-Box, um sicherzustellen, dass sie vollständig ausgeschaltet ist. Schalten Sie jede andere Energiequelle ab, die an den Roboterarm oder die Control-Box angeschlossen ist. Ergreifen Sie die nötigen Vorkehrungen, um zu verhindern, dass andere Personen das System während der Reparaturphase einschalten.
- 2. Prüfen Sie den Erdungsanschluss bevor Sie das System wieder einschalten.
- 3. Beachten Sie ESD-Vorschriften, wenn Teile des Roboterarms oder der Control-Box demontiert werden.
- Vermeiden Sie die Demontage der Stromversorgungen in der Control-Box. In den Stromversorgungen können hohe Spannungen (bis zu 600V) noch mehrere Stunden nach dem Ausschalten der Control-Box vorliegen.
- 5. Vermeiden Sie das Eindringen von Wasser oder Verunreinigungen in den Roboterarm oder die Control-Box.

Universal Robots e-Series-Roboter sind in Einklang mit den geltenden nationalen Gesetzen, Bestimmungen und Normen zu entsorgen.

Universal Robots e-Series-Roboter werden zum Schutze der Umwelt unter beschränkter Verwendung gefährlicher Stoffe hergestellt, wie in der europäischen RoHS-Richtlinie 2011/65/EU beschrieben. Zu diesen Stoffen zählen Quecksilber, Cadmium, Blei, Chrom VI, polybromierte Biphenyle und polybromierte Diphenylether.

Gebühren für die Entsorgung von und den Umgang mit Elektroabfall aus Universal Robots e-Series-Robotern, die auf dem dänischen Markt verkauft werden, werden von Universal Robots A/S vorab an das DPA-System entrichtet. Importeure in Ländern, die der europäischen WEEE-Richtlinie 2012/19/EU unterliegen, sind selbst für ihre Registrierung im nationalen WEEE-Register ihres Landes verantwortlich. Die Gebühr beträgt hierfür in der Regel weniger als 1 €/Roboter. Eine Liste der nationalen Register finden Sie hier: https://www.ewrn.org/national-registers.

Die folgenden Symbole sind am Roboter angebracht, um die Konformität mit den obenstehenden Rechtsvorschriften anzuzeigen:

8 Zertifizierungen

In diesem Kapitel werden Zertifikate und Erklärungen für das Produkt bereitgestellt.

8.1 Zertifizierungen von Drittparteien

Zertifizierungen von Drittparteien sind freiwillig. Um jedoch Roboterintegratoren den besten Service zu bieten, hat sich UR dazu entschieden, seine Roboter durch die folgenden, anerkannten Prüfinstitute zertifizieren zu lassen.

TENADO TO COMPANY TRANSPORT	TÜV NORD	Universal Robots e-Series-Roboter sind durch den TÜV NORD, einer nach der Maschinenrichtlinie 2006/42/EG benannten Zertifizierungsstelle in der EU, sicherheitsgeprüft. Eine Kopie der Sicherheits- zulassung durch den TÜV NORD finden Sie im Anhang B.
DELTA	DELTA	Universal Robots e-Series-Roboter sind von DELTA leistungsgeprüft. Elektromagneti- sche Verträglichkeits- (EMV) und Umwelt- Prüfzeugnisse finden Sie in Anhang B.
	CHINA RoHS	e-Series-Roboter von Universal Robots erfüllen China RoHS-Managementtechniken zur Begren- zung von Umweltverschmutzung durch elektroni- sche Informationsprodukte. Eine Kopie der Pro- duktdeklarierungstabelle finden Sie im Anhang B
S	KCC Sicherheit	Die Universal Robots e-Serie-UR10eRoboter wur- den evaluiert und entsprechen den Sicherheits- standards des KCC-Zeichens. Eine Kopie des KC- Konformitätszertifikats finden Sie im Anhang B.
	KC-Register	Die Universal Robots e-Serie-Roboter UR10e wur- den auf ihren Sicherheitsstandard für den Einsatz in einer Arbeitsumgebung evaluiert. Beim Einsatz in häuslichen Umgebungen besteht daher die Ge- fahr von Funkstörungen. Eine Kopie der Beschei- nigung über die Registrierung von Rundfunk- und Kommunikationsgeräten finden Sie im Anhang B.

8.2 Zertifizierungen von Drittanbietern

Umwelt

Die von unseren Anbietern zur Verfügung gestellten Versandpaletten für Universal Robots e-Series-Roboter erfüllen die dänischen ISMPM-15 Anforderungen an Holzverpackungsmaterial und sind gemäß dieser Bestimmungen gekennzeichnet.

8.3 Hersteller-Prüfzeugnis

UR

Universal Robots e-Series-Roboter unterliegen kontinuierlichen, internen Prüfungen und End-of-Line-Testverfahren. UR-Testverfahren werden stetigen Überprüfungen und Weiterentwicklungen unterzogen.

8.4 Erklärungen im Einklang mit EU-Richtlinien

Obwohl in erster Linie für Europa von Bedeutung, erkennen auch einige Länder außerhalb Europas **EU-Erklärungen** an oder fordern diese ein. Europäische Richtlinien sind auf der offiziellen Homepage verfügbar: http://eur-lex.europa.eu.

Roboter von UR sind im Einklang mit den nachstehend aufgelisteten Richtlinien zertifiziert.

2006/42/EG — Maschinenrichtlinie

Gemäß der Maschinenrichtlinie 2006/42/EC werden e-Series-Roboter von Universal Robots als **unvollständige Maschinen** betrachtet und ohne **CE**-Kennzeichnung ausgeliefert.

Wird der UR Roboter zur Pestizidausbringung eingesetzt, beachten Sie die bestehende Richtlinie 2009/127/EC. Die Einbauerklärung gemäß 2006/42/EG Anhang II 1.B. ist in Anhang B angegeben.

2006/95/EC — Niederspannungsrichtlinie

2004/108/EC - Richtlinie über die elektromagnetische Verträglichkeit (EMV)

2011/65/EU – Beschränkung der Verwendung bestimmter gefährlicher Stoffe (RoHS)

2012/19/EU - Elektro- und Elektronikgeräte-Abfall (WEEE)

In der Einbauerklärung im Anhang B sind Konformitätserklärungen mit den vorstehenden Richtlinien enthalten.

Eine **CE**-Kennzeichnung ist gemäß den **CE**-Kennzeichnungsrichtlinien oben angebracht. Informationen über Elektro- und Elektronikabfall finden Sie im Kapitel 7.

Informationen zu den bei der Entwicklung des Roboters angewandten Standards finden Sie im Anhang C.

9.1 Produkt-Gewährleistung

Unbeschadet jeglicher Ansprüche, die der Benutzer (Kunde) gegenüber dem Vertriebshändler oder Einzelhändler geltend machen kann, wird dem Kunden eine Herstellergarantie entsprechend den unten stehenden Bedingungen gewährt:

Wenn neue Geräte und deren Komponenten innerhalb von 12 Monaten (maximal 15 Monate ab Versand) nach Inbetriebnahme Mängel aufgrund von Herstellungs- und/oder Materialfehlern aufweisen, stellt Universal Robots die erforderlichen Ersatzteile bereit, während der Benutzer (Kunde) die Arbeitsstunden für den Austausch der Ersatzteile bereitstellt, wobei Universal Robots das Bauteil entweder durch ein anderes Bauteil austauscht, das dem aktuellen Stand der Technik entspricht, oder repariert. Diese Gewährleistung verliert ihre Gültigkeit, wenn der Gerätedefekt auf eine unsachgemäße Behandlung und/oder die fehlende Einhaltung der Informationen in den Benutzerhandbüchern zurückzuführen ist. Diese Gewährleistung gilt nicht für und erstreckt sich nicht auf Leistungen, die durch den befugten Vertriebshändler oder den Kunden selbst durchgeführt werden (z. B. Aufbau, Konfiguration, Herunterladen von Software). Der Kaufbeleg, aus dem das Kaufdatum hervorgeht, ist als Nachweis für die Gewährleistung erforderlich. Ansprüche im Rahmen der Gewährleistung sind innerhalb von zwei Monaten einzureichen, nachdem der Gewährleistungsmangel aufgetreten ist. Das Eigentumsrecht an Geräten oder Komponenten, die durch Universal Robots ausgetauscht und an Universal Robots zurückgeschickt wurden, geht auf Universal Robots über. Diese Gewährleistung deckt jegliche anderen Ansprüche nicht ab, die durch das oder im Zusammenhang mit dem Gerät entstehen. Nichts in dieser Gewährleistung soll dazu führen, die gesetzlich festgeschriebenen Rechte des Kunden und die Herstellerhaftung für Tod oder Personenschaden durch die Verletzung der Sorgfaltspflicht zu begrenzen oder auszuschließen. Der Gewährleistungszeitraum wird nicht durch Leistungen verlängert, die gemäß den Bestimmungen der Gewährleistung erbracht werden. Sofern kein Gewährleistungsmangel besteht, behält sich Universal Robots das Recht vor, dem Kunden die Austauschund Reparaturarbeiten in Rechnung zu stellen. Die oben stehenden Bestimmungen implizieren keine Änderungen hinsichtlich der Nachweispflicht zu Lasten des Kunden. Für den Fall, dass ein Gerät Mängel aufweist, haftet Universal Robots nicht für indirekte, zufällige, besondere oder Folgeschäden einschließlich - aber nicht beschränkt auf - Einkommensverluste, Nutzungsausfälle, Produktionsausfälle oder Beschädigungen an anderen Produktionsmaschinen.

Wenn ein Gerät Mängel aufweist, kommt Universal Robots nicht für Folgeschäden oder Verluste auf, wie zum Beispiel Produktionsausfall oder Beschädigungen an anderen Produktionsgeräten.

VORSICHT:

Es wird generell empfohlen, höhere Beschleunigungen, als sie für eine bestimmte Anwendung erforderlich sind, zu vermeiden. Hohe Beschleunigungen, insbesondere in Verbindung mit hohen Lasten, können die Lebensdauer des Roboters verkürzen. Für Anwendungen mit kurzen Zykluszeiten und hohen Anforderungen an die Geschwindigkeit wird generell empfohlen, möglichst viele Überblendungen zu verwenden, um glatte Bahnkurven zu gewährleisten, ohne dass hohe Beschleunigungen erforderlich sind.

9.2 Haftungsausschluss

Universal Robots arbeitet weiter an der Verbesserung der Zuverlässigkeit und dem Leistungsvermögen seiner Produkte und behält sich daher das Recht vor, das Produkt ohne vorherige Ankündigung zu aktualisieren. Universal Robots unternimmt alle Anstrengungen, dass der Inhalt dieser Anleitung genau und korrekt ist, übernimmt jedoch keine Verantwortung für jedwede Fehler oder fehlende Informationen.

A Nachlaufzeit und -weg

HINWEIS:

Sie können benutzerdefinierte Sicherheitsgrenzen für maximale Nachlaufzeit und -strecke definieren. Siehe 2.1 und 13.2. Werden benutzerdefinierte Einstellungen verwendet, so wird die Geschwindigkeit des Programms dynamisch angepasst, um die ausgewählten Grenzwerte stets einzuhalten.

Die grafischen Daten für **Gelenk 0 (Basis)**, **Gelenk 1 (Schulter)** und **Gelenk 2 (Ellbogen)** gelten für Nachlaufweg und Nachlaufzeit:

- Stoppkategorie 0
- Stoppkategorie 1
- Stoppkategorie 2

Hinweis: Diese Werte stellen ein Worst-Case-Szenario dar, d. h. Ihre Werte werden davon abweichen.

Der Test an **Gelenk 0** wurde bei einer Horizontalbewegung durchgeführt, d. h. die Drehachse stand senkrecht zum Boden.

Während der Tests von **Gelenk 1** und **Gelenk 2** bewegte sich der Roboter auf einer vertikalen Bahn, d. h. die Drehachsen lagen parallel zum Boden. Der Stopp wurde durchgeführt, während sich der Roboter nach unten bewegte.

(a) Nachlaufweg in Meter für 33% maximale Nutzlast

(b) Nachlaufweg in Meter für 66% maximale Nutzlast

(c) Nachlaufweg in Meter bei maximaler Nutzlast

(a) Nachlaufzeit in Sekunden für 33% maximale Nutz- (b) Nachlaufzeit in Sekunden für 66% maximale Nutzlast

(c) Nachlaufzeit in Sekunden bei maximaler Nutzlast

Abbildung A.2: Nachlaufzeit für Gelenk 0 (BASIS)

(b) Nachlaufweg in Meter für 66% maximale Nutzlast

(c) Nachlaufweg in Meter bei maximaler Nutzlast

(a) Nachlaufzeit in Sekunden für 33% maximale Nutz- (b) Nachlaufzeit in Sekunden für 66% maximale Nutzlast

(c) Nachlaufzeit in Sekunden bei maximaler Nutzlast

B.1 EU Declaration of Incorporation in accordance with ISO/IEC 17050-1:2010

Manufacturer:		Person in the Community Authorized to Compile the			
		Technical File:			
	Universal Robots A/S	David Brandt			
	Energivej 25	Technology Officer, R&D			
DK-5260 Odense S Denmark		Universal Robots A/S			
		Energivej 25, DK-5260 Odense S			
De	scription and Identification of the Parti	ally-Completed Machine(s):			
	Product and Function:	Industrial robot (multi-axis manipulator with Control Box			
		and Teach Pendant). Function is determined by the com-			
		pleted			
		machine (with end-effector and intended use).			
	Model:	UR3e, UR5e, UR10e,UR16e (e-Series)			
	Serial Number:	Starting 20195000000 and higher — Effective 17 August			
		2019			
	Incorporation:	Universal Robots UR3e, UR5e, UR10e and UR16e shall			
		only be put into service upon being integrated into a final			
		complete machine			
		(robot system, cell or application), which conforms with			
		the provisions of the Machinery Directive and other ap-			
		plicable Directives.			

It is declared that the above products, for what is supplied, fulfil the following Directives as Detailed Below:

- I Machinery Directive 2006/42/EC The following essential requirements have been fulfilled: 1.1.2, 1.1.3, 1.1.5, 1.2.1, 1.2.4.3, 1.2.6, 1.3.4, 1.3.8.1, 1.5.1, 1.5.2, 1.5.6, 1.5.10, 1.6.3, 1.7.2, 1.7.4, 4.1.2.3 It is declared that the relevant technical documentation has been compiled in accordance with Part B of Annex VII of the Machinery Directive.
- II Low-voltage Directive 2014/35/EU Reference the LVD and the harmonized standards used below.
- III EMC Directive 2014/30/EU Reference the EMC Directive and the harmonized standards used below.
- IV RoHS Directive 2011/65/EU Reference the RoHS Directive 2011/65/EU
- V WEEE Directive 2012/19/EU Reference th WEEE Directive 2012/19/EU

UNIVERSAL ROBOTSB.1 EU Declaration of Incorporation in accordance with ISO/IEC 17050-1:2010

Reference the harmonized standards used, referred to in Article 7(2) of the MD & UV Directives and Article 6 of the EMC Directive

LV Directives and Article 6 of the EMC Directive							
(I) EN ISO 10218-1:2011	(I) EN ISO 13850:2015	(II) EN 60947-5-					
		5:1997/A11:2013					
TUV Nord Cert. 4470814097607	(I) EN 1037:1995+A1:2008	(III) EN 61000-6-2:2005					
(I) EN ISO 13732-1:2008	(II) EN 60204-1:2006/A1:2010	(III) EN 61000-6-					
		4:2007/A1:2011					
(I) EN ISO 13849-1:2015	(II) EN 60320-1:2001/A1:2007	(II) EN 61131-2:2007					
TUV Nord Cert. 4420714097610	(II) EN 60529:1991/A2:2013	(II) EN 61140:2002/A1:2006					
(I)EN ISO 13849-2:2012							
Reference to other technical stand	dards and specifications used:						
(I) ISO/TS 15066 as applicable	(III) IEC 60068-2-64:2008	(II) IEC 61784-3:2010 (SIL2)					
(III) IEC 60068-2-1:2007	(II) IEC 60664-1:2007	ISO 14664-1:2015 (Clean-					
		room Class 6					
(III) IEC 60068-2-2:2007	(II) IEC 60664-5:2007	for control assembly with en-					
		closure					
(III) IEC 60068-2-27:2008	(II) IEC 61326-3-1:2008	and Class 5 for UR3e, UR5e,					
		UR10e and					
		UR16e manipulators)					

The manufacturer, or his authorised representative, shall transmit relevant information about the partly completed machinery in response to a reasoned request by the national authorities.

Approval of full quality assurance system (ISO 9001), by the notified body Bureau Veritas, certificate #DK008850.

Odense Denmark, 17 August 2019 Name: Position/ Title

Universal Robots A/S, Energivej 25, DK-5260 Odense S, Denmark CVR-nr. 29 13 80 60

Mon She

Roberta Nelson Shea Global Technical Compliance Officer

Phone +45 8993 8989 Fax +45 3879 8989

info@universal-robots.com www.universal-robots.com

Copyright @2009-2020 by Universal Robots A/S. Alle Rechte vorbehalten.

Hersteller:		Person der Gemeinschaft, die für die Zusammenstel-					
		lung der technischen Datei autorisiert ist:					
	Universal Robots A/S	David Brandt					
	Energivej 25	Technology Officer, R&D					
	DK-5260 Odense S Dänemark	Universal Robots A/S					
		Energivej 25, DK-5260 Odense S					
Bes	schreibung und Bezeichnung der Unvo	llständigen Maschine(n):					
	Produkt und Funktion:	Industrieroboter (mehrachsiger Manipulator mit					
		Control-Box und Teach Pendant). Die Funktion ist durch					
		die komplettierte					
		Maschine (mit Anbaugerät und Verwendungszweck) be-					
		stimmt.					
	Modell:	UR3e, UR5e, UR10e, UR16e(e-Serie)					
	Seriennummer:	Beginnend bei 20185000000 und höher – Gültig ab					
		Montag, 28. Mai 2018					
	Inkorporierung:	Die Universal Robots UR3e, UR5e, UR10 und UR16e sind					
		nur dann in Betrieb zu nehmen, wenn sie in eine vollstän-					
		dige Maschine					
		(Robotersystem, Zelle oder Anwendung) integriert sind,					
		die den Bestimmungen der Maschinenrichtlinie und an-					
		deren anwendbaren Richtlinien entsprechen.					

B.2 CE/EU-Einbauerklärung (Übersetzung des Originals)

Es wird erklärt, dass obenstehende Produkte entsprechend der Lieferung die unten ausgeführten Richtlinien erfüllen:

- I Maschinenrichtlinie 2006/42/EG Die folgenden Grundanforderungen wurden erfüllt: 1.1.2, 1.1.3, 1.1.5, 1.2.1, 1.2.4.3, 1.2.6, 1.3.4, 1.3.8.1, 1.5.1, 1.5.2, 1.5.6, 1.5.10, 1.6.3, 1.7.2, 1.7.4, 4.1.2.3 Es wird erklärt, dass die relevanten technischen Unterlagen gemäß Anhang VII Teil B der Maschinenrichtlinie zusammengestellt wurden.
- II **Niederspannungs-Richtlinie 2014/35/EU** Siehe die Niederspannungsrichtlinie und die harmonisierten Normen unten.
- III EMV-Richtlinie 2014/30/EU Siehe die EMV-Richtlinie und die harmonisierten Normen unten.
- IV RoHS-Richtlinie 2011/65/EU Siehe die RoHS-Richtlinie 2011/65/EU
- V WEEE-Richtlinie 2012/19/EU Siehe die WEEE-Richtlinie 2012/19/EU

UNIVERSAL ROBOTS

Siehe die verwendeten harmonisierten Normen, wie in Art. 7, Abs. 2 der Maschinenrichtlinie & und Niederspannungsrichtlinie und in Artikel 6 der EMV-Richtlinie beschrieben

(I) EN ISO 10218-1:2011	(I) EN ISO 13850:2015	(II) EN 60947-5-		
()	()	5:1997/A11:2013		
TÜV Nord Zertifikat	(I) EN 1037:1995+A1:2008	(III) EN 61000-6-2:2005		
4470814097607				
(I) EN ISO 13732-1:2008	(II) EN 60204-1:2006/A1:2010	(III) EN 61000-6-		
		4:2007/A1:2011		
(I) EN ISO 13849-1:2015	(II) EN 60320-1:2001/A1:2007	(II) EN 61131-2:2007		
TÜV Nord Zertifikat	(II) EN 60529:1991/A2:2013	(II) EN 61140:2002/A1:2006		
4420714097610				
(I)EN ISO 13849-2:2012				
Verweis auf andere verwendete T	echnische Normen und Spezifikatio	nen:		
(I) ISO/TS 15066 soweit an-	(III) IEC 60068-2-64:2008	(II) IEC 61784-3:2010 (SIL2)		
wendbar				
(III) IEC 60068-2-1:2007	(II) IEC 60664-1:2007	ISO 14664-1:2015 (Reinraum		
		Klasse 6		
(III) IEC 60068-2-2:2007	(II) IEC 60664-5:2007	für Steuerungsbaugruppe		
		mit Gehäuse		
(III) IEC 60068-2-27:2008	(II) IEC 61326-3-1:2008	und Klasse 5 für UR3e, UR5e,		
		UR10e und		
		UR16e Manipulatoren)		

Der Hersteller oder sein Bevollmächtigter ist gehalten, relevante Informationen bezüglich der unvollständigen Maschine als Antwort auf einen begründeten Antrag seitens der nationalen Behörden zu übermitteln.

Zulassung für umfassende Qualitätssicherungssysteme (ISO 9001) durch benannte Stelle Bureau Veritas, Zertifikat #DK008850.

Odense Denmark, 17 August 2019

Name:

Position/ Title

Universal Robots A/S, Energivej 25, DK-5260 Odense S, Denmark CVR-nr. 29 13 80 60

She NOa

Roberta Nelson Shea Global Technical Compliance Officer

Phone +45 8993 8989 Fax +45 3879 8989 info@universal-robots.com www.universal-robots.com

B.3 Sicherheitszertifikat

B.3 Sicherheitszertifikat

TJV NORD

ZERTIFIKAT CERTIFICATE

Hiermit wird bescheinigt, dass die Firma / This is to certify, that the company

Universal Robots A/S Energivej 25 5260 Odense S Denmark

berechtigt ist, das unten genannte Produkt mit dem abgebildeten Zeichen zu kennzeichnen. is authorized to provide the product described below with the mark as illustrated.

Fertigungsstätte: Manufacturing plant: Universal Robots A/S Energivej 25 5260 Odense S Denmark

Beschreibung des Produktes (Details s. Anlage 1) Description of product (Details see Annex 1)

Tested in accordance with:

Geprüft nach:

EN ISO 13849-1:2015, Cat.3, PL d

Universal Robots Safety System e-Series

for UR16e, UR10e, UR5e and UR3e robots

Registrier-Nr. / Registered No. 44 207 14097610 Prüfbericht Nr. / Test Report No. 3524 9741 Aktenzeichen / File reference 8003008239

gsstelle der TÜV NORD CERT GmbH Zertifizierungsste Certification body of TÜV NORD CERT GmbH

TÜV NORD CERT GmbH Langemarckstraße 20

45141 Essen www.tuev-nord-cert.de

Bitte beachten Sie auch die umseitigen Hinweise Please also pay attention to the information stated overleaf

Gültigkeit / Validity

Essen, 2019-07-16

von / from 2019-07-16 bis / until 2024-07-15

technology@tuev-nord.de

EN ISO 13849-1

PL 'd'

```
UNIVERSAL ROBOTS
```

B.4 China RoHS

Management Methods for Controlling Pollution by Electronic Information Products Product Declaration Table For Toxic or Hazardous Substances 表1 有毒有害物质或元素名称及含量标识格式

Product/Part Name 产品/部件名称	Toxic and Hazardous Substances and Elements 有毒有害物 质或元素							
日本 (Pb) Mercury (Hg) Cadmium (Cd) Chromium (Cr+6) S溴联苯 Polybrominated biphenyls (PBB) (PBDE)								
UR Robots UR3 / UR5 / UR10 UR机器人 UR3/UR5/UR10	IR Robots JR3 / UR5 / UR10 JR机器人 X O X O X X JR3/UR5/UR10							
0: Indicates that this SJ/T11363-2006. 0: 表示该有毒有書	toxic or hazardous sub 导物质在该部件所有	ostance contained in a 时间质材料中的含量	ll of the homogeneous [均在SJ/T 11363-200	。 materials for this part 06规定的限量要求J	is below the limit requ 以下。	irement in		
X: Indicates that this t requirement in SJ/T1 X: 表示该有毒有害	toxic or hazardous sub 1363-2006. 译物质至少在该部件	ostance contained in a 的某一均质材科中	t least one of the homo 的含量超出SJ/T 11	ogeneous materials us 1363-2006规定的限	eed for this part is abou 重要求 •	ve the limit		
(企业可在此处,	根据实际情况对上	表中打"X" 的技 术原	原因进行进一步说明	月・)				
ltems below are wear 下列项目是损耗品	-out items and therefo 因而它们的使用剩	re can have useful live 导命可能短于环境修	es less than environme 使用时间:	ental use period:				
Drives, Gaskets, Probes, Filters, Pins, Cables, Stiffener, Interfaces 驱动器, 垫圈, 探针, 过滤器, 别针, 缆绳, 加强筋, 接口								
Refer to product man 详细使用情况请阅	ual for detailed conditi 司读产品手册.	ons of use.						
Universal Robots enc Universal Robots 鼓	ourages that all Electr 助回收再循环利用	onic Information Produ 所有的电子信息产	ucts be recycled but do 品, 但 Universal Robo	oes not assume respo its 不负任何责任或	nsibility or liability. 义务			

To the maximum extent permitted by law, Customer shall be solely responsible for complying with, and shall otherwise assume all liabilities that may be imposed in connection with, any legal requirements adopted by any governmental authority related to the Management Methods for Controlling Pollution by Electronic Information Products (Ministry of Information Industry Order #39) of the Peoples Republic of China otherwise encouraging the recycle and use of electronic information products. Customer shall defend, indemnify and hold Universal Robots harmless from any damage, claim or liability relating thereto. At the time Customer desires to dispose of the Products, Customer shall refer to and comply with the specific waste management instructions and options set forth at http://www.teradyne.com/about-teradyne/corporate-social-responsibility, as the same may be amended by Teradyne or Universal Robots.

B.5 KCC Sicherheit

Version 5.8

B.6 KC-Register

방송통	-신기자재등의 적합등록 필증
Registration	of Broadcasting and Communication Equipments
상호 또는 성명 Trade Name or Registrant	Universal Robots A/S
기자재명칭(제품명칭) Equipment Name	UR e-Series robot
기본모델명 Basic Model Number	UR10e
파생모델명 Saries Model Number	
등록번호 Registration No.	R-R-URK-UR10e
제조자/제조(조립)국가 Manufacturer/Country of Origin	Universal Robots A/S / 덴마크
등록연월일 Date of Registration	2018-10-23
기타 Others	
위 기자재는「전파법」 It is verified that foregoing eq Waves Act.	제58조의2 제3항에 따라 등록되었음을 증명합니다. uipment has been registered under the Clause 3, Article 58-2 of Radio 2018년(Year) 10월(Month) 23일(Day)
	국립전파연구원장 환장인
Director	General of National Radio Research Agency
※ 적합등록 방송통 위	신기자개는 반드시 "적 합성평가표시" 를 부착하여 유통하여야 합니다. 비반시 과태료 처분 및 등록이 취소될 수 있습니다.

B.7 Umweltverträglichkeitszertifikat

Climatic and mechanical assessmer	nt DELTA A PAR	T OF OR
Client Universal Robots A/S Energivej 25 5260 Odense S Denmark	Force Technology project no. 117-32120	
Product identification UR 3 robot arms UR 3 control boxes with attached Teach Pendants. UR 5 robot arms UR5 control boxes with attached Teach Pendants. UR10 robot arms: UR10 control boxes with attached Teach Pendants. See reports for details.		
Force Technology report(s) DELTA project no. 117-28266, DANAK-19/18069 DELTA project no. 117-28086, DANAK-19/17068		
Other document(s)		
Conclusion The three robot arms UR3, UR5 and UR10 including their c according to the below listed standards. The test results are tests were carried out as specified and the test criteria for en	ontrol boxes and Teach Pendants have been teste given in the Force Technology reports listed abov vironmental tests were fulfilled in general terms	d ve. Th
only a few minor issues (see test reports for details). IEC 60068-2-1, Test Ae; -5 °C, 16 h IEC 60068-2-2, Test Be; +35°C, 16 h IEC 60068-2-2, Test Be; +50°C, 16 h IEC 60068-2-64, Test Fh; 5 – 10 Hz: +12 dB/octave, 10-50 grms, 3 x 1½ h	Hz 0.00042 g²/Hz, 50 – 100 Hz: -12 dB/octave, 1	,66
only a few minor issues (see test reports for details). IEC 60068-2-1, Test Ae; -5 °C, 16 h IEC 60068-2-2, Test Be; +35°C, 16 h IEC 60068-2-2, Test Be; +50°C, 16 h IEC 60068-2-64, Test Fh; 5 – 10 Hz: +12 dB/octave, 10-50 grms, 3 x 1 ¹ ⁄ ₂ h IEC 60068-2-27, Test Ea, Shock; 11 g, 11 ms, 3 x 18 shocks	Hz 0.00042 g²/Hz, 50 – 100 Hz: -12 dB/octave, 1 s	,66

DELTA - a part of FORCE Technology - Venlighedsvej 4 - 2970 Hørsholm - Denmark - Tel. +45 72 19 40 00 - Fax +45 72 19 40 01 - www.delta.dk

EMV-Prüfung B.8

Attestation of Conformity

AoC no. 1645 Project / task no. 117-29565

DELTA has performed compliance test on electrical products since 1967. DELTA is an accredited test beer has performed complete test on executing products and or top beer as an executive test of the beer according to EN17025 and participates in the international standardisation organisation CEN/CENELEC, IEC/CISPR and ETSI. This attestation of conformity with the below mentioned standards and/or normative documents is based on accredited tests and/or technical assessments carried out at DELTA – a part of FORCE Technology.

Client

Universal Robots A/S Energivej 25 5260 Odense Denmark

Product identification (type(s), serial no(s).) UR robot generation 5, G5 for models UR3, UR5, and UR10

Manufacturer Universal Robots A/S

Technical report(s) EMC test of UR robot generation 5, DELTA project no.117-29565-1 DANAK 19/18171

Standards/Normative documents

EMC Directive 2014/30/EU, Article 6 EN 61326-3-1:2008 Industrial locations SIL 2 EN/(IEC) 61000-6-1:2007 EN/(IEC) 61000-6-2:2005 EN/(IEC) 61000-6-3:2007+A1 EN/(IEC) 61000-6-4:2007+A1 EN/(IEC) 61000-3-2:2014 EN/(IEC) 61000-3-3:2013

The product identified above has been assessed and complies with the specified standards/normative documents. The attestation does not include any market surveillance. It is the responsibility of the manufacturer that mass-produced apparatus have the same properties and quality. This attestation does not contain any statements pertaining to the requirements pursuant to other standards, directives or laws other than the above mentioned.

Hørsholm, 15 August 2017

1 Jail Michael Nielsen

Specialist, Product Compliance

DELTA – a part of FORCE Technology Venlighedsvej 4 2970 Hørsholm Denmark

Tel +45 72 19 40 00 Fax +45 72 19 40 01 www.delta.dk VAT No. 55117314

20aoctest-uk-i

Dieser Abschnitt beschreibt die bei der Entwicklung des Roboterarms und der Control-Box berücksichtigten Normen. Eine in Klammern stehende EU-Richtlinienbezeichnung bedeutet, dass der Standard diese Richtlinie erfüllt.

Ein Standard ist kein Gesetz. Ein Standard ist ein von bestimmten Mitgliedern einer Branche verfasstes Dokument, das Definitionen normaler Sicherheits- und Leistungsanforderungen für ein Produkt oder eine Produktgruppe enthält.

Bedeutung der Abkürzungen:

ISO	International Standardization Organization
IEC	International Electrotechnical Commission
EN	European Norm
TS	Technical Specification
TR	Technical Report
ANSI	American National Standards Institute
RIA	Robotic Industries Association
CSA	Canadian Standards Association

Die Konformität mit den folgenden Standards ist nur dann gewährleistet, wenn die Montageanweisungen, die Sicherheitsanweisungen und andere Anleitungen in diesem Handbuch befolgt werden.

ISO 13849-1:2006 [PLd] ISO 13849-1:2015 [PLd] ISO 13849-2:2012 EN ISO 13849-1:2008 (E) [PLd - 2006/42/EG] EN ISO 13849-2:2012 (E) (2006/42/EG)

Safety of machinery - Safety-related parts of control systems

Part 1: General principles for design

Part 2: Validation

Die Sicherheitssteuerung ist entsprechend den Anforderungen der Standards als Performance- Level D (PLd) ausgelegt.

ISO 13850:2006 [Stopp-Kategorie 1] ISO 13850:2015 [Stopp-Kategorie 1] EN ISO 13850:2008 (E) [Stopp-Kategorie 1 – 2006/42/EG] EN ISO 13850:2015 [Stopp-Kategorie 1 – 2006/42/EG]

Safety of machinery – Emergency stop – Principles for design

Die Notabschaltungsfunktion ist nach diesem Standard als Stopp-Kategorie 1 ausgelegt. Stopp-Kategorie 1 beschreibt einen kontrollierten Stopp, bei dem die Motoren unter Stromzufuhr gestoppt werden und die Stromversorgung getrennt wird, nachdem der Stopp ausgeführt wurde.

ISO 12100:2010 EN ISO 12100:2010 (E) [2006/42/EG]

Safety of machinery - General principles for design - Risk assessment and risk reduction

UR Roboter werden nach den Prinzipien dieses Standards beurteilt.

ISO 10218-1:2011 EN ISO 10218-1:2011(E) [2006/42/EG]

Robots and robotic devices - Safety requirements for industrial robots

Part 1: Robots

Dieser Standard gilt für den Hersteller des Roboters und nicht für den Integrator. Der zweite Teil (ISO 10218-2) ist für den Roboter-Integrator bestimmt, da er sich mit der Installation und dem Design der Roboter-Anwendung befasst.

ANSI/RIA R15.06-2012

Industrial Robots and Robot Systems - Safety Requirements

Dieser amerikanische Standard umfasst die ISO-Normen ISO 10218-1 und ISO 10218-2 in einem Dokument. Das britische Englisch des Originals wurde in amerikanisches Englisch umgeändert, der Inhalt bleibt jedoch gleich.

Beachten Sie, dass der zweite Teil (ISO 10218-2) dieser Norm auf den Integrator des Robotersystems und daher nicht auf Universal Robots zutrifft.

CAN/CSA-Z434-14

Industrial Robots and Robot Systems - General Safety Requirements

Dieser kanadische Standard umfasst die ISO-Normen ISO 10218-1 (siehe oben) und -2 (in einem Dokument). CSA hat zusätzliche Anforderungen an den Benutzer des Robotersystems hinzugefügt. Einige dieser Anforderungen müssen möglicherweise vom Roboter-Integrator beachtet werden.

Beachten Sie, dass der zweite Teil (ISO 10218-2) dieser Norm auf den Integrator des Robotersystems und daher nicht auf Universal Robots zutrifft.

IEC 61000-6-2:2005 IEC 61000-6-4/A1:2010 EN 61000-6-2:2005 [2004/108/EG] EN 61000-6-4/A1:2011 [2004/108/EG]

Electromagnetic compatibility (EMC)

Part 6-2: Generic standards - Immunity for industrial environments

Part 6-4: Generic standards - Emission standard for industrial environments

Diese Standards definieren Anforderungen in Bezug auf elektrische und elektromagnetische Störungen. Die Konformität mit diesen Standards gewährleistet, dass UR Roboter in Industrieumgebungen gut funktionieren und dass sie keine anderen Geräte stören.

IR

UNIVERSAL ROBOTS

IEC 61326-3-1:2008 EN 61326-3-1:2008

Electrical equipment for measurement, control and laboratory use - EMC requirements

Part 3-1: Immunity requirements for safety-related systems and for equipment intended to perform safetyrelated functions (functional safety) - General industrial applications

Dieser Standard definiert erweiterte EMV-Störfestigkeitsanforderungen für sicherheitsbezogene Funktionen. Die Konformität mit dieser Norm gewährleistet, dass die Sicherheitsfunktionen der UR-Roboter auch dann sicher arbeiten, wenn andere Geräte die in den IEC 61000 Normen definierten EMV-Grenzwerte überschreiten.

IEC 61131-2:2007 (E) EN 61131-2:2007 [2004/108/EG]

Programmable controllers

Part 2: Equipment requirements and tests

Sowohl normale als auch sicherheitsrelevante 24V E/A wurden gem. den Anforderungen dieser Norm entwickelt und konstruiert, um eine sichere Kommunikation mit anderen SPS-Systemen zu gewährleisten.

ISO 14118:2000 (E) EN 1037/A1:2008 [2006/42/EG]

Safety of machinery - Prevention of unexpected start-up

Diese beiden Standards sind sich sehr ähnlich. Sie definieren Sicherheitsprinzipien zur Vermeidung eines unerwarteten Anlaufs als Folge einer unbeabsichtigten Wiederherstellung der Stromversorgung während der Wartung oder Reparatur oder aufgrund von unbeabsichtigten Anlaufbefehlen von Seiten der Steuerung.

IEC 60947-5-5/A1:2005 EN 60947-5-5/A11:2013 [2006/42/EG]

Low-voltage switchgear and controlgear

Part 5-5: Control circuit devices and switching elements - Electrical emergency stop device with mechanical latching function

Die direkte Kontaktunterbrechung und der Sicherheitsverriegelungsmechanismus des Not-Aus-Schalters entsprechen den Anforderungen dieses Standards.

IEC 60529:2013 EN 60529/A2:2013

Degrees of protection provided by enclosures (IP Code)

Diese Norm legt Schutzarten hinsichtlich des Schutzes gegen Staub und Wasser fest. UR Roboter werden laut dieser Norm entwickelt und erhalten einen IP-Code (siehe Aufkleber auf dem Roboter).

IEC 60320-1/A1:2007 IEC 60320-1:2015 EN 60320-1/A1:2007 [2006/95/EG] EN 60320-1:2015

Appliance couplers for household and similar general purposes

Part 1: General requirements

Das Netzkabel erfüllt diese Norm.

ISO 9409-1:2004 [Typ 50-4-M6]

Manipulating industrial robots - Mechanical interfaces

Part 1: Plates

Die Werkzeugflansche der UR Roboter entsprechen Typ 50-4-M6 dieses Standards. Roboterwerkzeuge sollten ebenfalls laut diesem Standard konstruiert sein, um eine ordnungsgemäße Passform zu gewährleisten.

ISO 13732-1:2006 EN ISO 13732-1:2008 [2006/42/EG]

Ergonomics of the thermal environment – Methods for the assessment of human responses to contact with surfaces

Part 1: Hot surfaces

Die UR Roboter sind so ausgelegt, dass ihre Oberflächentemperaturen stets unter dem in diesem Standard definierten, ergonomischen Grenzwert bleiben.

IEC 61140/A1:2004 EN 61140/A1:2006 [2006/95/EG]

Protection against electric shock - Common aspects for installation and equipment

UR Roboter werden gemäß diesem Standard konstruiert, um vor Stromschlägen zu schützen. Ein Erdungs-/Masseanschluss ist nach Hardware-Installationshandbuch zwingend erforderlich. IEC 60068-2-1:2007 IEC 60068-2-2:2007 IEC 60068-2-27:2008 IEC 60068-2-64:2008 EN 60068-2-1:2007 EN 60068-2-2:2007 EN 60068-2-27:2009 EN 60068-2-64:2008

Environmental testing

Part 2-1: Tests - Test A: Cold

Part 2-2: Tests - Test B: Dry heat

Part 2-27: Tests - Test Ea and guidance: Shock

Part 2-64: Tests - Test Fh: Vibration, broadband random and guidance

UR Roboter werden nach den in diesen Normen definierten Testmethoden geprüft.

IEC 61784-3:2010 EN 61784-3:2010 [SIL 2]

Industrial communication networks - Profiles

Part 3: Functional safety fieldbuses - General rules and profile definitions

Diese Standards legen Anforderungen an sicherheitsbewertete Kommunikationsbusse fest.

IEC 60204-1/A1:2008 EN 60204-1/A1:2009 [2006/42/EG]

Safety of machinery - Electrical equipment of machines

Part 1: General requirements

Die allgemeinen Grundlagen dieser Norm sind erfüllt.

IEC 60664-1:2007 IEC 60664-5:2007 EN 60664-1:2007 [2006/95/EG] EN 60664-5:2007

Insulation coordination for equipment within low-voltage systems

Part 1: Principles, requirements and tests

Part 5: Comprehensive method for determining clearances and creepage distances equal to or less than 2 mm

Die elektrischen Schaltkreise der UR Roboter erfüllen diese Norm.

Robotertyp	UR10e
Gewicht	$33.3 \mathrm{kg} \; / \; 73.5 \mathrm{lb}$
Maximale Nutzlast	10 kg / 22 lb (4.4)
Reichweite	$1300{ m mm}~/~51.2{ m in}$
Gelenkreichweite	\pm 360 $^{\circ}$ für alle Gelenke
Geschwindigkeit	Basis und Schultergelenke: Max $120^{\circ}/s$.
	Alle anderen Gelenke: Max 180 $^{\circ}\!/\!\mathrm{s}.$
	Werkzeug: Ca. 1 m/s/ Ca. 39.4 in/s .
System-Update-Häufigkeit	$500\mathrm{Hz}$
Kraftmoment-Sensor-Genauigkeit	$5.5\mathrm{N}$
Pose-Wiederholgenauigkeit	\pm 0.05 mm / \pm 0.0019 in (1.9 mils) per ISO 9283
Grundfläche	$\varnothing190\mathrm{mm}$ / $7.5\mathrm{in}$
Freiheitsgrad	6 Drehgelenke
Abmessungen Control-Box $(B\timesH\timesT)$	460 mm \times 449 mm \times 254 mm / 18.2 in \times 17.6 in \times 10 in
E/A-Anschlüsse Control-Box	16 Digitale ingänge, 16 Digitalausgänge, 2 Analogeingänge, 2
	Analogausgänge
E/A-Anschlüsse Werkzeug	2 Digitaleingänge, 2 Digitalausgänge, 2 Analogeingänge
Werkzeugkommunikation	RS 485
E/A-Stromversorgung	24 V 2 A in Control-Box
Werkzeug-E/A-Stromversorgung	$12\mathrm{V}/24\mathrm{V}$ 2 A (Doppel-Pin) 1 A (Einzelner Pin)
Kommunikation	TCP/IP 1000 Mbit: IEEE 802.3ab, 1000BASE-T Ethernet-
	Buchse, MODBUS-TCP & EtherNet/IP-Adapter, Profinet
Programmierung	Grafische PolyScope-Benutzeroberfläche auf 12Touchscreen
Störung	Robot Arm: Less than $65 dB(A)$ Control Box: Less than
	$50\mathrm{dB}(\mathrm{A})$
IP-Klassifizierung	IP54
Reinraumklassifizierung	Roboterarm: ISO-Klasse 5
	Control-Box: ISO-Klasse 6
Maximale mittlere Leistung	$615\mathrm{W}$
Stromverbrauch	Ca. 350 W mit einem typischen Programm
Kollaborierender Betrieb	17 erweiterte Sicherheitsfunktionen. Gemäß: EN ISO 13849-
	$1{:}2008,$ PLd, Cat.3 und EN ISO 10218-1:2011, Abschnitt 5.10.5
Materialien	Aluminium, PP-Kunststoff
Temperatur	Der Roboter funktioniert in einem Umgebungstemperaturbe-
	reich von $0-50$ °C
Stromversorgung	100-240 VAC, 47-440 Hz
Verkabelung	Kabel zwischen Roboter und Control-Box $(6\mathrm{m}~/~236\mathrm{in})$
	Kabel zwischen Touchscreen und Control-Box $(4.5 \text{ m} / 177 \text{ in})$

E.1 Tabelle 1

UR e-Series Safety Functions and Safety I/O are PLd, Category 3 (ISO 13849-1), with certification by TÜV NORD (certificate # 44 207 14097610)

Safety Function (SF) Descriptions (see Chapter 2 of manual)

For safety I/O, the resulting safety function including the external device or equipment is determined by the overall architecture and the sum of all PFHds, including the UR robot safety function PFHd.

NOTE: All safety functions are individual safety functions.

If any safety function limit is exceeded, or a fault is detected in a safety function or safety-related part of the control system, the result is a Category 0 stop (immediate removal of power) according to IEC 60204-1.

SF#	Safety Function	Description	What happens?	Tolerance	PFHd	What is affected?
1	1, 2, 3, 4 Emergency Stop (according to ISO 13850)	Pressing the Estop PB on the pendant ¹ or the External Estop (if using the Estop Safety Input) results in a Cat 1 stop ³ with power removed from the robot actuators and the tool I/O. Command ¹ all joints to stop. Engage brakes and remove power from robot actuators. See Stop Time & Stop Distance Safety Functions ⁴ . ONLY USE FOR EMERGENCY PURPOSES , not safeguarding.	Category 1 stop (IEC 60204-1)		1.30E-07	Robot including robot tool I/O
2	Safeguard Stop ⁴ (Protective Stop according to ISO 10218-1)	This safety function is initiated by an external protective device using safety inputs which will initiate a Cat 2 stop ³ . The tool I/O are unaffected by the safeguard stop. Various configuration are provided. See the Stop Time and Stop Distance Safety Functions ⁴ . For the functional safety of the complete integrated safety function, add the BEHd of the external protective device to the BEHd of the Safeguard Stop.	Category 2 stop (IEC 60204-1) SS2 stop (as described in IEC 61800-5-2)		1.20E-07	Robot
3	Joint Position Limit (soft axis limiting)	Sets upper and lower limits for the allowed joint positions. Stopping time and distance is not a considered as the limit(s) will not be violated. Each joint can have its own limits. Directly limits the set of allowed joint positions that the joints can move within. It is set in the safety part of the User Interface. It is a means of safety-rated soft axis limiting & space limiting, according to ISO 10218-1:2011, 5.12.3.	Will not allow motion to exceed any limit settings. Speed could be reduced so motion will not exceed any limit. A protective stop will be initiated to prevent exceeding any limit.	5 °	1.20E-07	Joint (each)

1 Communications between the Teach Pendant, controller & within the robot (between joints) are SIL 2 for safety data, per IEC 61784-3.

² Estop validation: the pendant Estop pushbutton is evaluated within the pendant, then communicated¹ to the safety controller by SIL2

Category 0 & 1 result in the removal of drive power, with Cat 0 being IMMEDIATE & Cat 1 being a controlled stop (decelerate then
removal). With all UR robots, a Category 1 stop is a controlled stop where power is removed when a monitored standstill state is detected.

Category 2 is a stop where drive power is NOT removed. Category 2 stops are defined in IEC 60204-1. Descriptions of STO, SS1 and SS2

communications. To validate the pendant Estop functionality, press the Pendant Estop pushbutton and verify that an Estop results. This validates that the Estop is connected within the pendant, functioning as intended, and the pendant is connected to the controller.

³ Stop Categories according to IEC 60204-1 (NFPA79). Only Category 0 and 1 stops are allowed for the Estop.

are in IEC 61800-5-2. With UR robots, a Category 2 stop maintains the trajectory then retains power to the drives after stopping. 4 It is recommended to use the UR e-series' Stop Time and Stop Distance Safety Functions. These limits should be used for your application stop time/ safety distance values.

SF #	Safety Function	Description	What happens?	Tolerance	PFHd	What is affected?
4	Joint Speed Limit	Sets an upper limit for the joint speed. Each joint can have its own limit. This safety function has the most influence on energy transfer upon contact (clamping or transient). Directly limits the set of allowed joint speeds which the joints are allowed to perform. It is set in the safety setup part of the User Interface. Used to limit fast joint movements, e.g. risks related to singularities.	Will not allow motion to exceed any limit settings. Speed could be reduced so motion will not exceed any limit. A protective stop will be initiated to prevent exceeding any limit.	1.15 °/s	1.20E-07	Joint (each)
	Joint Torque Limit	Exceeding the internal joint torque limit (each joint) results in a Cat 0 stop ³ . This is shown as SF #5 in the Generation 3 (CB3) UR robots. This is not accessible to the user; it is a factory setting. It is NOT shown as a safety function because there are no user settings and no user configuration possibilities.				
5	Called various names Pose Limit Tool Orientation Limit Safety Planes Safety Boundaries	Monitors the TCP Pose (position and orientation) and will prevent exceeding a safety plane or TCP Pose Limit. Multiple pose limits are possible (tool flange, elbow, and up to 2 configurable tool offset points with a radius) Orientation restricted by the deviation from the feature Z direction of the tool flange OR the TCP. This safety function consists of two parts. One is the safety planes for limiting the possible TCP positions. The second is the TCP orientation limit, which is entered as an allowed direction and a tolerance. This provides TCP and wrist inclusion/ exclusion zones due to the safety planes.	Will not allow motion to exceed any limit settings. Speed or torques	3 ° 40 mm	1.20E-07	TCP Tool flange Elbow
6	Speed Limit TCP & Elbow	Monitors the TCP and elbow speed to prevent exceeding a speed limit.	could be reduced so motion will not exceed any limit.	50 mm/s	1.20E-07	ТСР
7	Force Limit (TCP)	The Force Limit is the force exerted by the robot at the TCP (tool center point) and "elbow". The safety function continuously calculates the torques allowed for each joint to stay within the defined force limit for both the TCP & the elbow. The joints control their torque output to stay within the allowed torque range. This means that the forces at the TCP or elbow will stay within the defined force limit. When a monitored stop is initiated by the Force Limit SF, the robot will stop, then "back-off" to a position where the force limit was not exceeded. Then it will stop again.	A protective stop will be initiated to prevent exceeding any limit. Will not allow motion to exceed any limit settings.	25 N	1.50E-07	ТСР
8	Momentum Limit	The momentum limit is very useful for limiting transient impacts. The Momentum Limit affects the entire robot.		3 kg m/s	1.20E-07	Robot
9	Power Limit	This function monitors the mechanical work (sum of joint torques times joint angular speeds) performed by the robot, which also affects the current to the robot arm as well as the robot speed. This safety function dynamically limits the current/ torque but maintains the speed.	Dynamic limiting of the current/ torque	10 W	1.50E-07	Robot

SF #	Safety Function	Description	What happens?	Tolerance	PFHd	What is affected?
New 15	Stopping Time Limit	Real time monitoring of conditions such that the stopping time limit will not be exceeded. Robot speed is limited to ensure that the stop time limit is not exceeded. The control SW continuously calculates the stopping capability of the robot in the given motion. If the time needed to stop the robot is at risk of exceeding the time limit, the speed of motion is reduced to ensure the limit is not exceeded. The safety function performs the same calculation of the stopping time and initiates a cat 0 stop if they are exceeded.	Will not allow the actual stopping time to exceed the limit setting. Causes decrease in speed or a protective stop so as NOT to exceed the limit	50 ms	1.20E-07	Robot
New 16	Stopping Distance Limit	Real time monitoring of conditions such that the stopping distance limit will not be exceeded. Robot speed is limited to ensure that the stop distance limit will not be exceeded. The control SW continuously calculates the stopping capability of the robot in the given motion. If the distance needed to stop the robot is at risk of exceeding the distance limit, the speed of motion is reduced to ensure the limit is not exceeded. The safety function performs the same calculation of the stopping distance and initiates a cat 0 stop if they are exceeded.	Will not allow the actual stopping time to exceed the limit setting. Causes decrease in speed or a protective stop so as NOT to exceed the limit	40 mm	1.20E-07	Robot
New 17	Safe Home Position	Safety function which monitors a safety rated output, such that it ensures that the output can only be activated when the robot is in the configured "safe home position". A cat 0 stop is initiated if the output is activated when the robot is not in the configured position.	The "safe home output" can only be activated when the robot is in the configured "safe home position"	1.7 °	1.20E-7	External connection to logic &/or equipment
10	UR Robot Estop Output	When configured for Estop output and there is an Estop condition (see SF1), the dual outputs are LOW. If there is no Estop condition, dual outputs are high. Pulses are not used but they are tolerated. For the integrated functional safety rating with an external Estop device, add the PFHd of the UR Estop function (SF0 or SF1) to the PFHd of the external logic (if any) and its components (e.g. Estop pushbutton). ⁵ For the Estop Output, validation is performed at the external equipment, as the UR output is an input to this external equipment.			4.70E-08	External connection to logic &/or equipment
11	UR Robot Moving: Digital Output	Whenever the robot is moving (motion underway), the dual digital outputs are LOW. Outputs are HIGH when no movement. The functional safety rating is for what is within the UR robot. The integrated functional safety performance requires adding this PFHd to the PFHd of the external logic (if any) and its components.			1.20E-07	External connection to logic &/or equipment

⁵ Estop validation: the pendant Estop pushbutton is evaluated within the pendant, then communicated^{Errort Bookmark not defined} to the safety controller by SIL2 communications.

To validate the pendant Estop function, press the Pendant Estop pushbutton and verify that an Estop results. This validates that the Estop is connected within the pendant, functioning as intended, and the pendant is connected to the controller. The connection from the pendant to the safety controller is by safety communications according to SIL 2.

SF #	Safety Function	Description	What happens?	Tolerance	PFHd	What is affected?
12	UR Robot Not stopping: Digital Output	Whenever the robot is STOPPING (in process of stopping or in a stand-still condition) the dual digital outputs are HIGH. When outputs are LOW, robot is NOT in the process or stopping and NOT in a stand-still condition. The functional safety rating is for what is within the UR robot. The integrated functional safety performance requires adding this PFHd to the PFHd of the external logic (if any) and its components.			1.20E-07	External connection to logic &/or equipment
13	UR Robot Reduced Mode: Digital Output	Whenever the robot is in reduced mode (or reduced mode is initiated), the dual digital outputs are LOW. See below. The functional safety rating is for what is within the UR robot. The integrated functional safety performance requires adding this PFHd to the PFHd of the external logic (if any) and its components.			1.20E-07	External connection to logic &/or equipment
14	UR Robot Not Reduced Mode: Digital Output	Whenever the robot is NOT in reduced mode (or the reduced mode is not initiated), the dual digital outputs are LOW. The functional safety rating is for what is within the UR robot. The integrated functional safety performance requires adding this PFHd to the PFHd of the external logic (if any) and its components.			1.20E-07	External connection to logic &/oi equipment
	Reduced Mode SF settings change	Reduced Mode can be initiated by a safety plane/ boundary (starts when at 2cm of the plane and reduced mode settings are achieved within 2cm of the plane) or by use of an input to initiate (will achieve reduced settings within 500ms). When the external connections are Low, Reduced Mode is initiated. Reduced Mode means that ALL reduced mode limits are ACTIVE. Reduced mode is not a safety function, rather it is a state affecting the settings of the following safety function limits: joint position, joint speed, TCP pose limit, TCP speed, TCP force, momentum, power, stopping time, and stopping distance.			PFHd is either 1.20E-07 or 1.50E-07 depending on the safety function	Robot
	Safeguard Reset	When configured for Safeguard Reset and the external connections transition from low to high, the safeguard stop RESETS. Safety input to initiate a reset of safeguard stop safety function.			Input to SF2 See SF2	Robot

SF #	Safety Function	Description	What happens?	Tolerance	PFHd	What is affected?
	3 Position Enabling Device INPUT	 When the external Enabling Device connections are Low, a Safeguard Stop (SF2) is initiated. Recommendation: Use with a mode switch as a safety input. If a mode switch is not used and connected to the safety inputs, then the robot mode will be determined by the User Interface. If the User Interface is in "run mode", the enabling device will not be active. "programming mode", the enabling device will be active. It is possible to use password protection for changing the mode by the User Interface. 			Input to SF2 See SF2 safeguard stop	Robot
	Mode switch INPUT	When the external connections are Low, Operation Mode (running/ automatic operation in automatic mode) is in effect. When High, mode is programming/ teach. Recommendation: Use with a 3-position enabling device. When in teach/program, initially the TCP speed will be limited to 250mm/s. The speed can manually be increased by using the pendant user interface "speed-slider", but upon activation of the enabling device, the speed limitation will reset to 250mm/s.			Input to SF2 See SF2 safeguard stop	Robot

Global safety standards for all industrial robots⁶

ISO 10218-1: Manufacturer of robots

ISO 13849-1 & -2: Provides safety requirements and guidance on the principles for the design and integration of safety- related parts of control systems (SRP/CS), including safety software.

Global safety requirements for robot system

ISO 10218-2: Integrator of robot systems

A risk assessment is mandatory for the robot system because it is a completed machine. A risk assessment is the overall process comprising a risk analysis and a risk evaluation. This means identifying all risks and reducing these risks to an acceptable level (See ISO 12100). ISO 13849-1 & -2: Safety-related parts of control systems

150 15649-1 & -2: Salety-related parts of control systems

ISO/TS 15066 is NOT a standard; it is a Technical Specification with additional guidance and requirements for collaborative applications. An informative annex includes a research study on pain thresholds. It has been adopted by various countries including in Europe. USA adopted it as a technical report (RIA TR R15.606).

Global acceptance of ISO 10218-1 and ISO 10218-2

ISO 10218-1, -2 have been adopted as key safety standards for industrial robots by many countries including:

- Europe: Harmonized, shown as EN ISO 10218-1 & -2
- USA: National adoption as ANSI/RIA R15.06
- Canada: National adoption as CAN/CSA Z434
- Japan: National adoption as JIS B 8433-1
- Republic of Korea: National adoption as KS B ISO 10218-1/-2

Regulations about machine safety in EU countries

All machines installed within EU shall comply with the essential health and safety requirements listed in ANNEX I of the Machinery Directive (MD) 2006/42/EC.

It is not required to comply with any standard, however, ISO 10218-1, ISO 10218-2 and ISO 13849-1 are harmonized under the MD. Harmonized standards have an "EN" prefix, e.g. EN ISO 10218. Complying with a harmonized standard provides a presumption of conformity with the relevant MD essential requirements.

For a completed machine (robot system), the following is required: • A risk assessment of the intended use(s);

- Instructions for use;
- A CE Declaration of Conformity (DOC);
- A DOI (Declaration of Incorporation) is provided for incomplete or partial machines. Robots are incomplete machines. A DOI is provided to enable integrators to CE mark their robot system.
- Marking, including the CE mark, on the completed machine (robot system) according to ANNEX III;
- · A supplier's "technical file", to be stored for 10 years.

⁶ ISO robot safety standards are developed by ISO TC 299 (Technical Committee 299), with industrial robots handled by WG 3. UR is a very active member of TC299 WG3.

Key safety clauses from ISO 10218-1

§5.10: Robots designed for collaborative operation shall comply with 1 or more of the requirements in§5.10.2 through §5.10.5

§5.10.2 safety-rated monitored stop

A Category 2 stop according to IEC 60204-1, monitored according to functional safety requirements in§5.4.

UR robots: Safeguard Stop safety function fulfils§5.10.2.

§5.10.5 power and force limiting by inherent design or control

Power and force limiting of the robot shall comply with §5.4. If any parameter limit is exceeded, a protective stop shall be issued. Whether an application is collaborative is determined by the application risk assessment. ISO 10218-2 is used for the robot system and robot application – collaborative or non-collaborative.

§5.12.3 safety-rated soft axis and space limiting

Soft limits are software-defined limits to robot motion. Space limiting is used to define any geometric shape which may be used as an inclusionary or exclusionary zone, either limiting robot motion within the defined space, or preventing the robot from entering the defined space.

With UR robots, the following can be used for §5.12.3:

- Safety Boundaries (Planes);
- Joint Position Limits;
- Pose Limits for the tool flange and TCP.
 With the e-Series, Pose Limits also include the elbow, and two configurable tool offset points with a radius.

E.2 Tabelle 2

UR e-Series robots comply with ISO 10218-1:2011 and the applicable portions of ISO/TS 15066. It is important to note that most of ISO/TS 15066 is directed towards the integrator and not the robot manufacturer. ISO 10218-1:2011, clause 5.10 collaborative operation details 4 collaborative operation techniques as explained below. It is very important to understand that collaborative operation is of the APPLICATION when in AUTOMATIC mode.

-	#	ISO 10218-1	Technique	Explanation	UR e-Series
1		Collaborative Operation 2011 edition, clause 5.10.2	Safety-rated monitored stop	Stop condition where position is held at a standstill and is monitored as a safety function. Category 2 stop is permitted to auto reset.	UR robots' safeguard stop is a safety- rated monitored stop, See SF2 on page 1.
	1			In the case of resetting and restarting operation after a safety -rated monitored stop, see ISO 10218-2 and ISO/TS 15066 as resumption shall not cause hazardous conditions.	It is likely, in the future, that "safety-rated monitored stop" will not be called a form of collaborative operation.
	2	Collaborative Operation 2011 edition, clause 5.10.3	Hand-guiding	This is essentially individual and direct personal control while the robot is in automatic mode. Hand guiding equipment shall be located close to the end-effector and shall have: • an Emergency Stop pushbutton; and • a 3-position enabling device; and • a safety-rated monitored stop function; and • a settable safety-rated monitored speed function.	UR robots do not provide hand-guiding for collaborative operation. <u>Hand-guided teach</u> (free drive) is provided with UR robots but this is for programming in manual mode and not for collaborative operation in automatic mode.
;;	3	Collaborative Operation 2011 edition, clause 5.10.4	Speed & separation monitoring (SSM) safety functions	 SSM is the robot maintaining a separation distance from any operator (human). This is done by monitoring of the distance between the robot system and intrusions to ensure that the MINIMUM PROTECTIVE DISTANCE is assured. Presently, this is accomplished using Sensitive Protective Equipment (SPE), where typically a safety laser scanner detects intrusion(s) towards the robot system and causing 1) dynamic changing of the parameters for the limiting safety functions; or 2) a safety-rated monitored stop condition. Upon detection of the intrusion exiting the protective device's detection zone, the robot is permitted to a) resume the "higher" normal safety function limits in the case of 1) above; b) resume operation in the case of 2) above. In the case of 2) b) restarting operation after a safety-rated monitored stop, see ISO 10218-2 and ISO/TS 15066 for requirements. 	To facilitate SSM, UR robots have the capability of switching between two sets of parameters for safety functions with configurable limits (normal and reduced). See Reduced Mode on page 4. Normal operation can be when no intrusion is detected. It can also be caused by safety planes/ safety boundaries. Multiple safety zones can be readily used with UR robots. For example, one safety zone can be used for "reduced settings" and another zone boundary is used as a safeguard stop input to the UR robot. Reduced limits can also include a reduced setting for the stop time and stop distance limits – to reduce the work area and floorspace.
	4	Collaborative Operation 2011 edition, clause 5.10.5	Power and force limiting (PFL) by inherent design or control	How to accomplish PFL is left to the robot manufacturer. The robot design and/or safety functions will limit the energy transfer from the robot to a person. If any parameter limit is exceeded, a protective stop happens. PFL applications require considering the ROBOT APPLICATION (including the end-effector and workpiece(s), so that any contact will not cause injury. The study performed evaluated pressures to the ONSET of pain, not injury. See Annex A. See ISO/TR 20218-1 End-effectors	UR robots are power and force limiting robots that were specifically designed to enable collaborative applications where the robot could contact a person and cause no injury. UR robots have safety functions that can be used to limit motion, speed, momentum, force, power and more of the robot. These safety functions are used in the robot application to thereby lessen pressures and forces caused by the end-effector and workpiece(s).

FAQs				
Do UR robots comply with ISO 10218-1 (EN ISO 10218-1)?	Yes, both Generation 3 (CB3) and e-Series are certified to comply with EN ISO 10218-1. Often the below questions are asked about UR robots and clauses of EN ISO 10218-1.			
	§5.7.1: Mode selector which can be locked in each position.			
	Automatic and manual mode are usability features and not safety functions for UR robots. Mode locking does not contribute to risk reduction for UR robots because the safeguard stop and all safety functions are operational in all modes. If the INTEGRATION risk assessment determines a mode selector is needed, it can be added and integrated as "mode selector" inputs to the UR safety controller.			
	§5.7.3 and §5.8.3: Manual control of the robot from inside the safeguarded space shall be performed with a reduced speed with an enabling device			
	UR does not know if there will be a safeguarded space or if programming will take place within the safeguarded space of a non-collaborative application. When PFL robots are integrated into collaborative applications, an enabling device might not be required according to ISO/TS 15066.			
	If the INTEGRATION risk assessment determines that an enabling device is needed for risk reduction, it can be added and integrated as inputs to the UR safety controller.			
	§5.12.1: Limiting motion by mechanical stops for axis 1 and comply with §5.12.2 or §5.12.3.			
	UR robots provide axis limiting capabilities completely by §5.12.3 safety-rated soft axis and space limiting safety functions. Soft axis and space limiting is an acceptable alternate to mechanical stops, as it achieves the same goal.			
	UR Robots have been certified to comply with both ISO 10218-1 and ISO 13849. UR robots comply with the optional collaborative operation requirements of §5.10.2 safety-rated monitored stop, §5.10.5 power and force limiting, and §5.12.3 safety-rated soft axis and space limiting. Power and force limiting safety functions enable collaborative applications where contact with people is permitted when contact pressure/forces are acceptable.			
	The robot application determines whether it is collaborative according to the risk assessment. If the application integrates a protective device, e.g. safety laser scanner, with the UR Robot, the application can be a collaborative application according to "Speed and Separation Monitoring".			
What is ISO/TS 15066:2016, Technical Specification on Collaborative Robots?	ISO/TS 15066 is a Technical Specification with guidance for collaborative applications to aid integrators. It also includes a research study's results on pain thresholds which can be used for verifying a collaborative (contact permitted) application. Pain thresholds are acknowledged to be more conservative than injury thresholds. Typical workplace safety standards and regulations require an injury-free, not a pain-free workplace.			
What is ISO 13849?7	ISO 13849-1: provides safety requirements and guidance on the principles for the design and integration of safety-related parts of control systems (SRP/CS), including the design of software. Functional safety performance is expressed as a PFHd (Probability of dangerous failure per hour).			
	ISO 13849-2: specifies the procedures and conditions for the validation by analysis and testing of the specified safety functions, the category and the performance level of the safety function & SRP/CS according to ISO 13849-1.			
What is a stop category?	"Stop Category" is a classification of how a stop operates. It is described in IEC 60204-1 (NFPA79):			
See IEC 60204-1	 Stop Category 0: A stop by immediate removal of power <to robot="" system="" the="">. It is an uncontrolled stop, where the <robot robot="" system=""> can deviate from the programmed path.</robot></to> 			
	— Stop Category 1: A stop with power available to the <robot robot="" system=""> to achieve the stop <decelerate> and then power is removed after the stop is achieved. It is a controlled stop, where the <robot robot="" system=""> continues along the programmed path. Power is removed after the stop.</robot></decelerate></robot>			
	 Stop Category 2: A controlled stop with power available <to robot="" system="" the="">.</to> The safety-related control system monitors that position is maintained. 			
What is "Cat 3" or "Category 3"?	Here "Category" refers to the architecture used for functional safety as described in ISO 13849. It is one attribute in the determination of a Performance Level (PL). With Category 3 architecture, a single fault will not lead to a loss of the safety function. "Category 3" is often called "dual charmer"			
See ISO 13849	nervener. Genegery of to tribut deliver wear charment.			
What is "PLd" or "Performance Level d"?	A Performance Level (PL) is a discrete level used to specify the ability of safety-related parts of control systems to perform safety functions under foreseeable conditions. According to ISO 13849, PL=d is highly reliable. PLd is required by ISO 10218 for bacaded use to the advectoriation.			
See ISO 13849	A PL is described by its PFHd (probability of dangerous failure per hour) where lower mean more reliable (safe) performance.			
What is the difference between Emergency stop and	Emergency stop functions are to be used for emergencies only. Emergency stop is manually activated by a person pressing the Emergency stop pushbutton.			
Safeguard stop?	Safeguard stop is used to stop the robot in a safe way, typically triggered by protective devices, e.g. sensitive protective equipment (light curtains, safety scanners), interlocking devices.			

⁷ Universal Robots publishes a list of the safety functions associated with both Generation 3 (CB3) and e-Series robots. This describes each safety function including what triggers the safety function, the outcome of the safety function, PL, Category, and PFHd value.

Teil II

PolyScope-Handbuch
10.1 PolyScope Grundlagen

PolyScope ist die grafische Benutzeroberfläche (GUI) im **Teach Pendant**, mit dem Roboterarm und Steuergerät bedient und Programme ausgeführt werden.

- A : Kopfzeile mit Tabs/Symbolen, über die Sie interaktive Bildschirme aufrufen können.
- B : Fußzeile mit Schaltflächen für Ihre geladenen Programme.
- C: Bildschirm mit Feldern zur Manipulation und Überwachung von Roboteraktionen.

Run	Program		+ Move					<unnamed> default</unnamed>	New	0pen	Save	с с с с	\equiv
							Catting S	tartod					
							Getting 5						
						What w	ould you	like to d	lo fii	rst?			
		RU		Rogra	M		PROGRAM T	IE ROBOT					
	Dor	n't show t	his mes	sage aga	ain								
0				Speed			100% B) (D			1:34:01 lay 7, 2018	Ċ

Hinweis: Bei Inbetriebnahme kann die Meldung "Kann nicht fortgesetzt werden" angezeigt werden. Zum Einschalten des Roboters müssen Sie **Zum Initialisierungsbildschirm** auswählen.

10.1.1 Symbole/Tabs in der Kopfzeile

Betrieb ist eine unkomplizierte Möglichkeit, den Roboter anhand vordefinierter Programme einzusetzen.

Programm erstellt und/oder ändert Roboterprogramme.

Installation konfiguriert die Roboterarm-Einstellungen und externe Vorrichtungen, z. B. die Montage und Sicherheit.

Move steuert und/oder regelt die Roboterbewegung.

E/A dient zum Überwachen und Steuern von Eingangs-/Ausgangssignalen in Echtzeit, die zu und von der Control-Box übertragen werden.

~

Protokoll enthält Angaben über den intakten Status des Roboters sowie Warn- oder Fehlermeldungen.

ABCDE	[]		
derault	Neu	Öffnen	Speichern

Programm- und Installations-

Manager für die Auswahl und Anzeige aktiver Programme und Installationen (siehe 20.4). Hinweis: Dateipfad, Neu, Öffnen und Speichern sind Befehle im Programm- und Installations-Manager.

Neu... dient zum Erstellen eines neuen Programms oder einer Installation.

Öffnen... dient zum Öffnen eines zuvor erstellten und gespeicherten Programms bzw. einer Installation.

^{Speichern.} **Speichern...** dient zum Speichern eines Programms, einer Installation oder beider Komponenten gleichzeitig.

Hinweis: Die Symbole für den automatischen und den manuellen Modus erscheinen nur dann in der Kopfzeile, wenn Sie ein Passwort für einen Bedienermodus festlegen.

Automatik gibt an, dass im Roboter eine Automatikumgebung geladen ist. Tippen Sie darauf, um auf manuelle Umgebung umzuschalten.

Manueller gibt an, dass im Roboter eine manuelle Umgebung geladen ist. Tippen Sie darauf, um auf Automatik-Umgebung umzuschalten.

Hinweis: Die Symbole für Lokal- und Fernsteuer-Modus sind nur aktiv, wenn die Fernsteuerung aktiviert ist.

Lokal- gibt an, dass der Roboter lokal gesteuert werden kann. Tippen Sie darauf, um auf Fernsteuerung umzuschalten. Für den Zugriff auf das Symbol Lokal-Modus muss ein Passwort eingerichtet werden.

Fernetuur Fernsteuer- gibt an, dass der Roboter von einer entfernten Position aus gesteuert werden kann. Tippen Sie darauf, um auf lokale Steuerung umzuschalten.

Sicherheitsprüfsumme zeigt die aktive Sicherheitskonfiguration an.

Hamburger-Menü" dient zum Aufrufen von PolyScope-Hilfe, Infos und Einstellungen.

10.1.2 Schaltflächen in der Fußzeile

Initialisieren handhabt den Status des Roboters. Wenn ROT, wird der Roboter durch Drücken in Betrieb gesetzt.

Geschwindigkeit Certer 100%

Der Geschwindigkeitsregler

zeigt unter Einbeziehung der Sicherheitseinstellungen die relative Geschwindigkeit in Echtzeit an, mit der sich der Roboterarm bewegt.

Simulation

Mit der Schaltfläche **Simulation** wird die Programmausführung zwischen dem Simulationsmodus und dem echten Roboter umgeschaltet. Bei Ausführung im Simulationsmodus bewegt sich der Roboterarm nicht. Daher kann der Roboter bei einer Kollision weder sich selbst noch Geräte in der Nähe beschädigen. Wenn Sie sich nicht sicher sind, wie sich der Roboterarm verhalten wird, testen Sie Ihre Programme im Simulationsmodus.

250mm/s Manuelle hohe Geschwindigkeit erlaubt ein temporäres Überschreiten des Grenzwerts von 250 mm/s. Diese Totmann-Funktion ist nur im manuellen Modus bei Konfiguration eines dreistufigen Zustimmschalters verfügbar.

Abspielen startet das aktuell geladene Roboterprogramm.

0

Schritt dient zur Einzelschrittausführung eines Programms.

Stopp hält das aktuell geladene Roboterprogramm an.

10.2 Bildschirm Erste Schritte

Führen Sie ein Programm aus , programmieren Sie den Roboter oder konfigurieren Sie die Roboterinstallation .

11 Schnellstart

11.1 Roboterarm-Grundlagen

Der Universal Robot Arm besteht aus Rohren und Gelenken. Mit dem PolyScope koordinieren Sie die Bewegung dieser Gelenke. Dabei werden der Roboter und das Werkzeug wie gewünscht verfahren bzw. positioniert. Davon ausgenommen sind die Bereiche direkt über und unter dem Unterteil.

Basis Diese bezeichnet den Teil, auf dem der Roboter befestigt ist.

Schulter und Ellbogen dienen der Ausführung größerer Bewegungen.

Handgelenke 1 und 2 dienen der Ausführung kleinerer Bewegungen.

Handgelenk 3 dient der Anbringung des Roboterwerkzeugs.

HINWEIS:

Vor dem ersten Einschalten des Roboters muss der beauftragte UR Roboterintegrator:

- 1. Die Informationen zur Sicherheit im Hardware-Installationshandbuch durchlesen und verinnerlichen.
- 2. Die Sicherheitskonfigurationsparameter aus der Risikobewertung festlegen (siehe Kapitel 13).

11.1.1 Installation von Roboterarm und Control-Box

Sobald der Roboterarm installiert und die Control-Box installiert und eingeschaltet ist, können Sie PolyScope nutzen.

- 1. Entpacken Sie den Roboterarm und die Control-Box.
- 2. Montieren Sie den Roboterarm auf einer stabilen Fläche, die mindestens dem Zehnfachen des vollen Drehmoments des Basisgelenks und mindestens dem Fünffachen des Roboterarmgewichts standhält. Die Fläche muss vibrationsfrei sein.
- 3. Stellen Sie die Control-Box auf ihren Fuß.
- 4. Schließen Sie das Kabel zwischen Roboter und Control-Box an.
- 5. Schließen Sie den Netzstecker der Control-Box an.

GEFAHR:

Kippgefahr. Wird der Roboter nicht sicher auf einer stabilen Fläche platziert, kann er umfallen und Verletzungen verursachen.

Ausführliche Anweisungen zur Installation, siehe Hardware-Installationshandbuch.

11.1.2 Control-Box ein- und ausschalten

In der Kontrolleinheit befinden sich hauptsächlich die elektrische Ein- und Ausgangskontakte, über die der Roboterarm, das Teach Pendant sowie die gesamte Peripherie miteinander verbunden sind. Um den Roboterarm mit Energie zu versorgen, müssen Sie die Control-Box einschalten.

- 1. Drücken Sie den Einschalter auf dem Teach Pendant, um die Control-Box einzuschalten.
- 2. Warten Sie, bis im Display ein Text vom Betriebssystem erscheint und anschließend mehrere Schaltflächen sichtbar werden.
- 3. Erscheint die Meldung "Kann nicht fortgesetzt werden", wählen Sie **Zum Initialisierungsbildschirm**, um den Initialisierungsbildschirm aufzurufen.

11.1.3 Roboterarm ein- und ausschalten

Am linken unteren Rand des Bildschirms zeigt das Initialisieren- Symbol den Status des Roboterarms über verschiedene Farben an:

- Rot Der Roboterarm ist im angehaltenen Status.
- Gelb Der Roboterarm ist eingeschaltet, jedoch nicht für den normalen Betrieb bereit.
- Grün Der Roboterarm ist eingeschaltet und betriebsbereit.

Roboterstatus		Initialisieren		
	Einschalten Startvorgang abgeschlossen	Roboter Brem aktiv gelö	nse Roboter in Ist Betriebsart Normal	
	START	-	🔴 AUS	
Nutzlast		Roboter		
Die aktive Nutzlast übers angegebene Nutzlast.	chreibt vorübergehend die in der Installatio	n		
Aktive Nutzlast	Installations-Nutzlast			
	0,00 kg		₩ H	
0.00 kg				

Hinweis: Bei der Inbetriebsetzung des Roboterarms sind durch das Lösen der Gelenkbremsen Geräusche zu hören und es finden leichte Bewegungen statt.

11.1.4 Initialisierung des Roboterarms

GEFAHR:

Stellen Sie stets sicher, dass die tatsächliche Nutzlast und Installation korrekt ist, bevor Sie den Roboterarm starten. Sind diese Einstellungen falsch, funktionieren der Roboter und die Control-Box nicht korrekt und können eine Gefährdung für Menschen oder Geräte darstellen.

VORSICHT:

Stellen Sie sicher, dass der Roboterarm kein Objekt berührt (z. B. einen Tisch), da eine Kollision des Roboterarms mit einem Hindernis das Gelenkgetriebe beschädigen könnte.

Zum Starten des Roboters:

- Klicken Sie auf die EIN-Taste mit der grünen LED, um den Initialisierungsvorgang zu starten. Die Status-LED wechselt nun zu gelb, um anzuzeigen, dass der Strom eingeschaltet und der Roboter im **Ruhemodus** ist.
- 2. Klicken Sie auf START, um die Bremsen zu lösen.
- 3. Klicken Sie auf die AUS-Taste mit der roten LED zur Abschaltung des Roboterarms.
- Sobald PolyScope hochgefahren ist, klicken Sie einmal auf EIN, um den Roboterarm einzuschalten. Die Status-LED wechselt nun zu gelb, um anzuzeigen, dass der Strom eingeschaltet und der Roboter im Ruhemodus ist. **Ruhemodus**.
- Ist der Roboterarm im Status Ruhemodus, klicken Sie auf die Taste START, um den Roboterarm zu starten. Nun werden die Sensordaten hinsichtlich der Konfiguration des Roboterarms geprüft. Wird eine fehlende Übereinstimmung entdeckt (mit einer Toleranz von 30°), wird die Taste deaktiviert und unter ihr eine Fehlermeldung angezeigt. Ist die Aufbauprüfung bestanden, werden durch Anklicken der Taste "Start" alle Gelenkbremsen gelöst und der Roboterarm ist für den normalen Betrieb einsatzbereit.

11.2 Schnelle Inbetriebnahme des Systems

Prüfen Sie vor der Benutzung von PolyScope , ob Roboterarm und Control-Box korrekt installiert sind.

- 1. Drücken Sie den Not-Ausschalter am Teach Pendant.
- 2. Drücken Sie den Einschalter am Teach Pendant und lassen Sie das System starten. In **PolyScope** wird ein Text angezeigt.
- 3. Im Touchscreen erscheint eine Meldung, dass das System bereit ist und der Roboter initialisiert werden muss.
- 4. Tippen Sie im Dialogfenster auf **Initialisierungsbildschirm** aufrufen, um den Initialisierungsbildschirm aufzurufen.
- 5. Entsperren Sie den Not-Aus-Schalter, um den Roboter von **Notabgeschaltet** auf **Abgeschaltet** umzustellen.
- 6. Verlassen Sie die Reichweite (den Arbeitsbereich) des Roboters.
- 7. Drücken Sie im Bildschirm **Roboter initialisieren** die Schaltfläche **EIN** und warten Sie, bis sich der Roboterstatus in **Ruhemodus** ändert.
- 8. Bestätigen Sie unter Aktive Nutzlast im Fenster **Nutzlast** das Nutzlast-Gewicht. Im Feld **Roboter** können Sie die korrekte Montageposition bestätigen.
- Tippen Sie auf die Schaltfläche Start, um das Bremssystem des Roboters zu lösen. Hinweis: Wenn der Roboter vibriert und Klickgeräusche zu hören sind, ist er für die Programmierung bereit.

HINWEIS:

Die Programmierung des Roboters können Sie in der Universal Robots-Akademie auf www.universal-robots.com/academy/ erlernen.

11.2.1 Freedrive

Mit Freedrive kann der Roboterarm manuell in die gewünschten Positionen und/oder Posen gezogen werden. Wenn sich der Roboterarm im Freedrive-Modus einer vordefinierten Grenze oder Ebene nähert (siehe 13.2.5), steigt der Widerstand.

		PROGRAMM < Installation c	unbenannt> Iefault	Neu Öffnen Sp	eichern	د د د د
✔ Basis-Befehle	Q	Befehl	Grafik	Variablen		
Bewegen	1 V Roboterprogramm	Brogra	~ ~			
Wegpunkt	2	Hier können	Sie Ihren Rob	oter programmiere	en.	
Richtung		Zum Progra	mmieren des	Roboters wählen S	ie die Befehle aus der	Befehlsliste aus.
Warten		Sie werden o	lann in der Pr	ogrammstruktur	r angezeigt.	
Einstellen		Befehlsli	ste Pr	ogrammstruktur	r	
Meldung		~	-			
Halt			-		Free	drive
Kommentar					Drücker	n & halten
Ordner					Bewegung einschrän	ken
> Fortgeschritten					Koordinatensy Basis	Aktiver TCP: TCP
> Assistenten		>			noor annatonity) baois	•
		>	14		A. I.	× ×
		□ Vor-9	Start-Sequenz	: hinzufügen	Alle Bewe	gungen frei
		🗖 Anfa	ngswert der ∖	/ariablen festlegen		
		Prog	rammausführ	ung in Endlosschle		
		-				RZ O
Ausschalten	Geschwindigkeit 🥌		100%			Simulation

HINWEIS:

Die LED in der Statusleiste im Freedrive-Feld zeigt dies an:

- Wenn ein oder mehrere Gelenke an ihre Gelenkgrenzen stoßen.
- Wenn sich die Position des Roboterarms einer Singularität nähert. Der Widerstand nimmt zu, wenn sich der Roboter einer Singularität nähert und er positioniert sich nur schwer.

Sie können eine oder mehrere Achsen sperren, damit sich der TCP in eine bestimmte Richtung bewegen kann, wie in der folgenden Tabelle definiert:

	Bewegung ist durch alle Achsen erlaubt.
Φ	
1×1×1	
Alle Achsen sind frei	
	Bewegung ist nur durch die x- und y-Achse erlaubt.
\times	
Ebene	
	Bewegung ist durch alle Achsen (ohne Rotation) er-
Ţ	laubt.
\sim	
Verschiebung	
	Kreisförmige Bewegung ist durch alle Achsen um
22	den TCP erlaubt.
63	
Rotation	

WARNUNG:

Das Bewegen des Roboterarms in einigen Achsen mit befestigtem Werkzeug kann einen Quetschpunkt bedeuten.

Sie haben folgende Möglichkeiten, Freedrive zu aktivieren:

- Verwendung der Freedrive-Schaltfläche.
- Verwenden Sie die Freedrive-Schaltfläche auf dem Move-Tab-Bildschirm (siehe 17.2).
- Verwenden Sie E/A-Aktionen (siehe 16.1.4).

WARNUNG:

- Aktivieren Sie nicht Freedrive, wenn Sie den Roboter schieben oder berühren, da dies zu einem Schräglauf des Roboters führen kann.
- Tauschen Sie nicht die Achsen, während der Roboter im Freedrive-Modus bewegt wird, da dies zu einem Schräglauf des Roboters führen kann.

Verwendung der Freedrive-Schaltfläche

- 1. Halten Sie die Freedrive-Schaltfläche auf dem Teach Pendant gedrückt.
- Wenn das Freedrive-Element angezeigt wird, wählen Sie die gewünschte Bewegungsart für die Gelenke des Roboterarms aus. Oder verwenden Sie die Liste der Achsen, um die Bewegungsart anzupassen.

3. Bei Bedarf können Sie die Funktionsart definieren, indem Sie eine Option aus der Dropdown-Liste der Funktionen auswählen.

Der Roboterarm kann seine Bewegung stoppen, wenn er sich einem Singularitätsszenario nähert. Tippen Sie auf **Alle Achsen sind frei** im Freedrive-Element, um die Bewegung fortzusetzen.

4. Bewegen Sie den Roboterarm wie gewünscht.

Verwendung der Freedrive-Schaltfläche auf dem Move-Tab-Bildschirm

- 1. Klicken Sie in der Kopfzeile auf **Move**.
- 2. Tippen Sie auf **Freedrive** im Roboter-Element.
- 3. Wenn das Freedrive-Element angezeigt wird, wählen Sie die gewünschte Bewegungsart für die Gelenke des Roboterarms aus. Oder verwenden Sie die Liste der Achsen, um die Bewegungsart anzupassen.
- 4. Bei Bedarf können Sie die Funktionsart definieren, indem Sie eine Option aus der Dropdown-Liste der Funktionen auswählen.

Der Roboterarm kann seine Bewegung stoppen, wenn er sich einem Singularitätsszenario nähert. Tippen Sie auf **Alle Achsen sind frei** im Freedrive-Element, um die Bewegung fortzusetzen.

5. Halten Sie **Freedrive** im Freedrive-Element gedrückt, um den Roboterarm zu bewegen.

11.2.2 Backdrive

Während der Initialisierung des Roboterarms können kleinere Vibrationen auftreten, wenn die Roboterbremsen gelöst werden. In bestimmten Situationen, wenn z. B. der Roboter kurz vor einer Kollision steht, sind diese Erschütterungen nicht erwünscht. Mit der Funktion **Zurückfahren** kann dann erzwungen werden, dass bestimmte Gelenke in die gewünschte Position gebracht werden, ohne alle Bremsen im Roboterarm lösen zu müssen.

Backdrive aktivieren

- 1. Tippen Sie im Bildschirm Initialisieren auf EIN, um die Hochfahrsequenz zu starten.
- 2. Wenn Sich der Roboter im Status **Ruhemodus** befindet, drücken und halten Sie die Schaltfläche **Freedrive**. Der Roboterstatus wechselt zu **Backdrive**.
- 3. Die Bremsen werden nur in den Gelenken gelöst, die unter erheblichem Druck stehen. Solange die Schaltfläche **Freedrive** aktiviert/gedrückt ist. Wenn **Backdrive** verwendet wird, ist der Roboterarm schwer zu bewegen.

11.3 Das erste Programm

Ein Programm ist eine Liste von Befehlen, die dem Roboter Anweisungen erteilt. Für die meisten Aufgaben erfolgt die Programmierung ausschließlich mit dem PolyScope. Lernen Sie den Roboterarm zur Ausführung einer Bewegung mit einer Reihe von Wegpunkten an und richten Sie einen Pfad ein, dem der Roboterarm folgt.

Klicken Sie auf den Move-Tab (siehe 17), um den Roboterarm in eine gewünschte Position zu bewegen oder lernen Sie die Position an, indem Sie den Arm in die richtige Position ziehen, während Sie die Schaltfläche Freedrive an der Oberseite des Teach Pendant gedrückt halten.

11.3 Das erste Programm

Sie können ein Programm erstellen, um an bestimmten Stellen entlang des Pfades des Roboters E/A-Signale an andere Maschinen zu senden und mittels Variablen und E/A-Signalen Befehle auszuführen, beispielsweise **if...then** und **Schleife**.

Das Folgende ist ein einfaches Programm, mit dem ein Roboterarm zwischen zwei Wegpunkten bewegt werden kann.

- 1. Klicken Sie in der Kopfzeile Dateipfad in PolyScope auf Neu..., und wählen Sie Programm.
- 2. Unter Basic klicken Sie auf **Wegpunkt**, um einen Wegpunkt zur Programmstruktur hinzuzufügen. Ein standardmäßiger MoveJ wird auch zur Programmstruktur hinzugefügt.
- 3. Wählen Sie den neuen Wegpunkt und tippen Sie auf Wegpunkt im Befehl-Tab.
- 4. Bewegen Sie den Roboterarm auf dem Bildschirm Move Tool durch Drücken der Bewegungspfeile.

Sie können den Roboterarm auch bewegen, indem Sie die Taste Freedrive gedrückt halten und den Roboterarm in die gewünschte Positionen ziehen.

- 5. Sobald sich der Roboterarm in Position befindet, drücken Sie **OK** und der neue Wegpunkt wird als Wegpunkt_1 angezeigt.
- 6. Befolgen Sie die Schritte 2 bis 5 zum Erstellen von Wegpunkt_2.
- 7. Wählen Sie Wegpunkt_2 und drücken Sie den Pfeil Move Up, bis er sich über Wegpunkt_1 befindet, um die Reihenfolge der Bewegungen zu ändern.
- Treten Sie zurück, halten Sie die Not-Aus-Taste gedrückt und in der PolyScope-Fußzeile drücken Sie die Taste **Abspielen**, damit sich der Roboterarm zwischen Wegpunkt 1_ und Wegpunkt _2

bewegt. Herzlichen Glückwunsch! Sie haben Ihr erstes Roboterprogramm erstellt, welches den Roboterarm zwischen zwei vorgegebenen Wegpunkten bewegt.

HINWEIS:

- Bewegen Sie den Roboter nicht gegen sich selbst oder andere Dinge, da dies den Roboter beschädigen kann.
- 2. Dies ist nur eine Schnellstartanleitung, um zu demonstrieren, wie einfach es ist, einen UR Roboter zu verwenden. Dabei wurde von einer gefährdungsfreien Umgebung und einem sehr vorsichtigen Benutzer ausgegangen. Erhöhen Sie nicht die Geschwindigkeit oder die Beschleunigung über die Standardwerte hinaus. Führen Sie immer eine Risikobewertung durch, bevor Sie den Roboter in Betrieb nehmen.

WARNUNG:

Halten Sie Ihren Kopf und Oberkörper vom Wirkungsbereich des Roboters fern. Halten Sie Finger fern von Bereichen, in denen sie sich verfangen können.

11.4 Roboterregistrierung und URCap-Lizenzdateien

Bevor Sie den Fernzugriff-TCP URCap verwenden, registrieren Sie den Roboter und laden und installieren Sie die URCap-Lizenzdatei (siehe 15.8).

> Einstellungen	Folgen Sie diesen drei einfachen	Schritte, um Ihren Roboter zu registrie	ren	
 Passwort System System Backup URCaps Roboter- Registrierung Fernsteue Eingeschrän Freedrive Netzwerk Aktualisieren 	Schritt 1	Schritt 2	Iaden Schritt 3	▲
Abbrechen				

Registrierung des Roboters aus Ihrem aktuellen Bildschirm

- 1. Klicken Sie in der Kopfzeile auf das "Hamburger-Menü" und wählen Sie Einstellungen.
- 2. Klicken Sie im Menü links auf **System** und wählen Sie **Roboter-Registrierung**, um die Einstellungen anzuzeigen.
- 3. Führen Sie die Schritte 1 und 2 aus, um Ihren Roboter zu registrieren.

Herunterladen der URCAP-Lizenzdatei

- 1. Füllen Sie die erforderlichen Felder online aus und laden Sie die Lizenzdatei auf Ihren PC herunter.
- 2. Kopieren Sie die Lizenzdatei auf einen USB-Stick und stecken Sie diesen in das Teach Pendant.
- 3. In den Einstellungen (Schritt 3) klicken Sie auf **Datei laden**, um **Registrierungsdatei aus**wählen zu öffnen.
- 4. Wählen Sie in der Liste den USB, um die Inhalte anzuzeigen und navigieren zur Lizenzdatei.
- 5. Wählen Sie **License.p7b** und klicken Sie auf **Öffnen**, um die Registrierung des Roboters zu bestätigen.
- 6. Klicken Sie unten links auf Verlassen.

		Registrierungsdatei auswählen	
Neu Ausschneiden Kopieren E	infügen Löschen Umbenennen		Sicherung
n license.p7b			
Dateiname:		Filter: Universal Robots Registrierungsdatei	en 🔻

Roboter-Registrierung zurücksetzen

Eine neue Lizenz wird erforderlich, wenn der Roboter den Besitzer wechselt. In diesem Fall muss die Registrierung des Roboters zunächst rückgängig gemacht werden.

- 1. Klicken Sie in der Kopfzeile auf das "Hamburger-Menü" und wählen Sie Einstellungen.
- 2. Klicken Sie im Menü links auf **System** und wählen Sie **Roboter-Registrierung**.
- 3. Klicken Sie im Bildschirm unten rechts auf Registrierung zurücksetzen.

12.1 Betriebsmodi

Betriebsmodi sind aktiviert, wenn Sie einen 3-Stellungs-Zustimmschalter konfigurieren, ein Passwort festlegen, einen über den Betriebsmodus konfigurierbaren E/A definieren sowie über den Dashboard Server (siehe 12.1).

Automatikmoduslst dieser Modus aktiv, kann der Roboter nur vordefinierte Arbeiten verrichten. Der Tab Move und der Freedrive-Modus sind nicht verfügbar, wenn ein 3-Stellungs-Zustimmschalter konfiguriert wurde. Sie können keine Programme und Installationen ändern oder speichern.

WARNUNG:

Die Schutzabschaltung im Automatikmodus kann nur im Automatikmodus aktiviert werden, daher ist die Schutzfunktion dieser Abschalteinrichtung nur im Automatikmodus aktiv.

Manueller Modus Ist dieser Modus aktiv, können Sie den Roboter über den Move-Tab, im Freedrive Modus sowie mit dem Geschwindigkeitsregler programmieren. Sie können Programme und Installationen ändern oder speichern.

Betriebsmodus	Manuell	Automatisch
Freedrive	x	*
Roboter mit den Pfeilen auf dem Move-Tab	x	*
bewegen		
Geschwindigkeitsregler	x	X**
Bearbeiten & Speichern von Programmen &	x	
Installationen		
Programme ausführen	Reduzierte	x
	Geschwin-	
	digkeit***	
Programm von ausgewähltem Knoten star-	x	
ten		

*Nur wenn kein Dreistufiger Zustimmschalter konfiguriert ist.

** Der Geschwindigkeitsregler auf dem Ausführungsbildschirm kann in den PolyScope-Einstellungen aktiviert werden.

*** Wenn ein Dreistufiger Zustimmschalter konfiguriert ist, arbeitet der Roboter bei Manueller Reduzierter Geschwindigkeit, es sei denn, Manuelle Hohe Geschwindigkeit wird aktiviert.

HINWEIS:

- Roboter von Universal Robots sind nicht mit dreistufigen Zustimmschaltern ausgestattet. Falls diese Vorrichtung aufgrund einer Risikobewertung benötigt wird, muss diese vor dem Robotereinsatz vorgesehen werden.
- Wenn kein Dreistufiger Zustimmschalter konfiguriert wurde, wird die Geschwindigkeit im Manuellen Modus nicht reduziert.

WARNUNG:

- Alle abgeschalteten Schutzvorrichtungen müssen wieder voll funktionsfähig gemacht werden, bevor der Automatikmodus ausgewählt wird.
- Soweit möglich sollte der manuelle Betriebsmodus dann aktiviert werden, wenn sich alle Personen außerhalb des Schutzzonenbereichs befinden.
- Die Vorrichtung zum Umschalten der Betriebsmodi muss sich außerhalb des Schutzzonenbereichs befinden.
- Wenn der Roboter auf Automatikmodus geschaltet ist, darf der Schutzzonenbereich nicht betreten werden, solange der Automatikmodus-Schutzzoneneingang nicht konfiguriert wurde.

Die Verfahren zum Konfigurieren der Betriebsmodus-Auswahl werden in den folgenden Teilabschnitten beschrieben. Jede Methode gilt ausschließlich, was bedeutet, dass die Verwendung einer bestimmten Methode zugleich die beiden übrigen Methoden inaktiv macht.

Verwendung des Betriebsmodus-Sicherheitseingangs

- 1. Wählen Sie im Register Installation den Punkt Sicherheits-E/A.
- 2. Konfigurieren Sie den Betriebsmodus-Eingang. Die Konfigurationsoption wird im Dropdown-Menü angezeigt.
- 3. Der Roboter befindet sich im Automatikmodus, wenn der Betriebsmoduseingang LOW ist und im manuellen Modus, wenn der Betriebsmoduseingang HIGH ist.

HINWEIS:

Der physische Modusauswahlschalter, wenn verwendet, muss sich für die Auswahl vollständig an den Standard ISO 10218-1: Artikel 5.7.1 halten.

Verwenden von PolyScope

1. Richten Sie ein Passwort zum Umschalten zwischen den Betriebsmodi ein (siehe 21.3.2).

12.2 Dreistufiger Zustimmschalter

2. Wählen Sie in der Kopfzeile das entsprechende Profilsymbol, um zwischen den Modi umzuschalten.

Hinweis: PolyScope befindet sich automatisch im manuellen Modus, wenn die Sicherheits-E/A-Konfiguration mit Dreistufigem Zustimmschalter aktiviert ist.

Verwendung des Dashboard Servers

- 1. Stellen Sie eine Verbindung zum Dashboard Server her.
- 2. Verwenden Sie die Befehle Betriebsmodus einstellen.
 - Betriebsmodus Automatisch einstellen
 - Betriebsmodus Manuell einstellen
 - Betriebsmodus löschen

Weiteres über die Verwendung des Dashboard Servers, siehe http://universal-robots.com/ support/.

12.2 Dreistufiger Zustimmschalter

Wenn ein Dreistufiger Zustimmschalter konfiguriert ist und als **Betriebsmodus** der Manuelle Modus eingestellt ist, kann der Roboter nur durch Drücken des Dreistufigen Zustimmschalters bewegt werden. Zugriff auf die Automatikmodus-Schutzabschaltung erhalten Sie durch Anschluss und Konfiguration eines Dreistufigen Zustimmschalters.

Der Dreistufige Zustimmschalter ist im Automatikmodus wirkungslos.

12.2.1 Manuelle hohe Geschwindigkeit

Die Totmann-Funktion **Manuelle hohe Geschwindigkeit** erlaubt ein temporäres Überschreiten des Grenzwerts von 250 mm/s. Diese Funktion ist nur im Manuellen Modus verfügbar und nur dann, wenn ein Dreistufiger Zustimmschalter konfiguriert ist. Wenn ein Dreistufiger Zustimmschalter konfiguriert ist, aber nicht gedrückt wird, führt der Roboter im Manuellen Modus eine Schutzabschaltung durch. Zum Umschalten zwischen Automatik- und Manuellem Modus muss der Dreistufige Zustimmschalter vollständig losgelassen und erneut gedrückt werden, damit der Roboter die Bewegungsfreigabe erhält.

Hinweis: Verwenden Sie bei Manuell Hoher Geschwindigkeit Sicherheits-Gelenkgrenzen (siehe 13.2.4) oder Sicherheitsebenen (siehe 13.2.5), um den Bewegungsbereich des Roboters einzuschränken.

13.1 Grundlagen der Sicherheitseinstellungen

In diesem Kapitel wird erläutert, wie die Sicherheitseinstellungen des Roboters aufgerufen werden. Sie besteht aus Optionen, mit denen die Sicherheitskonfiguration des Roboters festgelegt werden kann.

GEFAHR:

Bevor Sie die Sicherheitseinstellungen des Roboters konfigurieren können, muss Ihr Integrator eine Risikobewertung durchführen, mit der die Sicherheit des Personals und der Geräte um den Roboter herum sichergestellt werden kann. Bei einer Risikobewertung handelt es sich um eine Begutachtung aller Arbeitsvorgänge über die Lebensdauer des Roboters gesehen. Diese erfolgt, um die richtigen Sicherheitseinstellungen festzulegen (siehe Hardware-Installationshandbuch). Unter Berücksichtigung der Risikobewertung des Integrators müssen Sie folgendes festlegen.

- 1. Der Integrator hat dafür zu sorgen (z.B. durch Installation eines Passwortschutzes), dass es Unbefugten nicht möglich ist, Änderungen an der Sicherheitskonfiguration vorzunehmen.
- 2. Nutzung und Konfiguration der sicherheitsbezogenen Funktionen und Schnittstellen für eine bestimmte Roboteranwendung (siehe Hardware-Installationshandbuch).
- 3. Sicherheitseinstellungen für das Einstellen und Anlernen, bevor der Roboterarm zum ersten Mal eingeschaltet wird.
- 4. Alle Sicherheitseinstellungen, die über diesen Bildschirm und in den Unterregistern zugänglich sind.
- Der Integrator muss sicherstellen, dass alle Änderungen an den Sicherheitseinstellungen mit der Risikobewertung konform sind.

13.1.1 Sicherheitskonfiguration aufrufen

Hinweis: Sicherheitseinstellungen sind passwortgeschützt und können nur konfiguriert werden, nachdem ein Passwort festgelegt und anschließend verwendet wurde.

- 1. Tippen Sie in Ihrer PolyScope Kopfzeile auf das Symbol Installation.
- 2. Tippen Sie im Seitenmenü links im Bildschirm auf Sicherheit.
- 3. Stellen Sie sicher, dass der Bildschirm **Robotergrenzen** zwar erscheint, jedoch die Einstelllungen nicht aufrufbar sind.

- 4. Wenn zuvor ein Sicherheitspasswort festgelegt wurde, geben Sie das Passwort ein und drücken Sie Entsperren, um die Einstellungen zugänglich zu machen. Hinweis: Sobald die Sicherheitseinstellungen freigeschaltet sind, werden sämtliche Einstellungen aktiv.
- 5. Drücken Sie das Register **Sperren** oder navigieren Sie vom Sicherheitsmenü zu einer anderen Stelle, um die Sicherheitseinstellungen wieder zu sperren.

Allgemein	! GEFAHR					
Sicherheit	Die Verwendung von Sicherheitpar	rametern, die von denen de	s Integr	ators in der Risikobeurte	eilung festgele	gten Parametern abweich
Roboter- Limits	können Risiken und Gefährdunger	n verursachen, die sich mit d	diesen P	aramtern nicht angeme	ssen verringer	n oder beseitigen lassen.
Gelenkgre	🔘 Werksvoreinstellungen					
Ebenen		Stark eingeschränkt	t	1	Schwach ein	geschränkt
Werkzeugpo						J · · · · · · ·
Werkzeugric						
E/A						
Hardware	Grenzwert	Normal		Reduziert		
Zustimm-	Leistung	300		200		
taster	Impuls	25,0		10,0	kg m/s	
Sichere	Stopzeit	400		300		
Home-Posicion	Stopweg	500		300		
Coordinatensys	Werkzeuggeschwindigkeit	1500		750		
eldbus	Kraft am TCP	150,0		120,0		
	Ellbogengeschwindigkeit	1500		750		
	Kraft am Ellbogen	150,0		120,0		
	Ciele er le site e se		Ent	Sporrop	-	Übernehm

Weitere Informationen über das Sicherheitssystem finden Sie im Hardware-Installationshandbuch.

13.1.2 Sicherheitspasswort festlegen

Zum Entsperren aller Sicherheitseinstellungen, aus denen Ihre Sicherheitskonfiguration besteht, müssen Sie ein Passwort definieren.

Hinweis: Wenn kein Sicherheitspasswort gilt, werden Sie aufgefordert, eines festzulegen.

- 1. Drücken Sie in der PolyScope Kopfzeile oben rechts das **Hamburger**-Menü und wählen Sie **Einstellungen**.
- 2. Drücken Sie links im Bildschirm im blauen Menü auf **Passwort** und wählen Sie **Sicherheit**.
- 3. Geben Sie unter Neues Passwort ein Passwort ein.
- 4. Geben Sie unter **Neues Passwort bestätigen** das gleiche Passwort erneut ein und wählen Sie **Übernehmen**.
- 5. Drücken Sie im blauen Menü unten rechts auf Beenden, um zum vorherigen Bildschirm zurückzukehren.

Hinweis: Sie können auf das Register **Sperren** drücken, um alle Sicherheitseinstellungen wieder zu sperren. Alternativ können Sie aber auch zu einem anderen Bildschirm als dem Menü Sicherheit wechseln.

Sicherheitspasswort	Entsperren	Sperren	
---------------------	------------	---------	--

13.1.3 Änderung der Sicherheitskonfiguration

Änderungen an den Einstellungen der Sicherheitskonfiguration müssen mit der durch den Integrator durchgeführten Risikobewertung konform sein (siehe Hardware-Installationshandbuch).

Empfohlene Verfahrensweise:

- 1. Stellen Sie sicher, dass die Änderungen im Einklang mit der Risikobewertung des Integrators sind.
- 2. Passen Sie die Sicherheitseinstellungen an die Risikobewertung des Integrators an.
- 3. Stellen Sie sicher, dass die Einstellungen auch übernommen wurden.
- 4. Fügen Sie den folgenden Text in das Bedienerhandbuch ein:

"Stellen Sie vor jeglichen Arbeiten in der Nähe des Roboters sicher, dass die Sicherheitskonfiguration wie erwartet agiert. Dies lässt sich beispielsweise feststellen, indem geprüft wird, ob sich die Sicherheitsprüfsumme oben rechts in PolyScope geändert hat."

13.1.4 Neue Sicherheitskonfiguration anwenden

Der Roboter ist ausgeschaltet, während Sie die Konfiguration ändern. Ihre Änderungen treten erst in Kraft, wenn Sie auf **Übernehmen** klicken. Der Roboter kann erst wieder eingeschaltet werden, nachdem Sie **Übernehmen und Neustart** oder **Änderungen rückgängig machen** gewählt haben. Mit dem letzten Befehl können Sie die Sicherheitskonfiguration Ihres Roboters einsehen, die aus Sicherheitsgründen als Pop-up in SI-Einheiten angezeigt wird. Wenn Sie Ihre Sichtprüfung abgeschlossen haben, können Sie die **Sicherheitskonfiguration bestätigen**. Die Änderungen werden dann automatisch als Bestandteil der Roboterinstallation gespeichert.

13.1.5 Sicherheitsprüfsumme

сс

Hinweis:

- Die Sicherheitsprüfsumme ändert sich, wenn Sie die Einstellungen in den Sicherheitsfunktionen ändern, weil die Sicherheitsprüfsumme nur von den Sicherheitseinstellungen generiert werden.
- Damit die Änderungen an der **Sicherheitsprüfsumme** übernommen werden können, müssen Sie Ihre Änderungen an der **Sicherheitskonfiguration** übernehmen.

13.2 Einstellungen im Menü Sicherheit

In diesem Abschnitt werden die Einstellungen des Menüs Sicherheit erläutert, die die Sicherheitskonfiguration des Roboters bestimmen.

13.2.1 Robotergrenzen

Mit Robotergrenzen können Sie Roboterbewegungen generell einschränken. Im Bildschirm Robotergrenzen gibt es zwei Konfigurationsmöglichkeiten: **Werksvorgaben** und **Anwendungsspe**zifisch.

1. Unter Werksvorgaben können Sie mit dem Schieberegler eine vordefinierte Sicherheitseinstellung auswählen. In der Tabelle werden die jeweils entsprechenden Werte angezeigt, die von **Stark eingeschränkt** zu **Schwach eingeschränkt reichen**

Hinweis: Die Werte sind nur Vorschläge und kein Ersatz für eine umfassende Risikobewertung.

Allgemein	! GEFAHR					
Sicherheit	Die Verwendung von Sicherheitpa	rametern, die von denen de	s Integrat	ors in der Risikobeurte	iluna festaeleate	en Parametern abweich
Roboter- Limits	können Risiken und Gefährdunger	n verursachen, die sich mit o	diesen Par	ramtern nicht angemes	ssen verringern	oder beseitigen lassen
Gelenkgre	🔘 Werksvoreinstellungen					
Ebenen	-	Stark eingeschränkt		1	Schwach einge	schränkt
Werkzeugpo		etant en geeen en e			e en rider en rige	o o m car nec
Werkzeugric						
E/A						
Hardware	Grenzwert	Normal	R	eduziert		
Zustimm-	Leistung	300		200		
taster	Impuls	25,0		10,0	kg m/s	
Sichere	Stopzeit	400		300		
nome-rosition	Stopweg	500		300		
Koordinatensys	Werkzeuggeschwindigkeit	1500		750		
Feldbus	Kraft am TCP	150,0		120,0		
	Ellbogengeschwindigkeit	1500		750		
	Kraft am Ellbogen	150,0	N	120,0		
	Sicharbeitenscowort			Sporron Sporron	Übern	

- 2. Unter Anwendungsspezifisch können Sie Grenzwerte für die Funktionsweise des Roboters festlegen und die damit verbundene Toleranz im Auge behalten.
 - **Leistung** begrenzt die maximale mechanische Leistungskraft, die vom Roboter im Arbeitsumfeld aufgebracht wird.

Hinweis: Dieser Grenzwert berücksichtigt die Nutzlast als Teil des Roboters und nicht des Arbeitsumfelds.

- **Drehmoment** begrenzt das maximale Drehmoment des Roboters.
- **Nachlaufzeit** begrenzt die maximale Dauer, die der Roboter bis zum Stillstand benötigt, z. B. bei einem Not-Aus.
- **Nachlaufweg** begrenzt die maximale Strecke, die das Roboterwerkzeug oder der Ellbogen beim Anhalten zurücklegen kann.

HINWEIS:

Die Beschränkung der Nachlaufzeit und des Nachlaufwegs wirkt sich auf die Robotergeschwindigkeit insgesamt aus. Beispiel: Wenn die Nachlaufzeit auf 300 ms eingestellt ist, wird die Höchstgeschwindigkeit des Roboters eingeschränkt, damit der Roboter innerhalb von 300 ms zum Stillstand abbremsen kann.

Werkzeuggeschwindigkeit begrenzt die Höchstgeschwindigkeit des Roboterwerkzeugs.Werkzeugmoment begrenzt die maximale Kraft, die vom Roboterwerkzeug in Klemmsituationen aufgebracht wird.

Ellbogengeschwindigkeit begrenzt die Höchstgeschwindigkeit des Roboterwerkzeugs.

Ellbogenmoment begrenzt die maximale Kraft, die vom Ellbogen auf die Arbeitsumgebung ausgeübt wird.

Die Werkzeuggeschwindigkeit und das Moment werden am Werkzeugflansch und in der Mitte der beiden benutzerdefinierten Werkzeugpositionen begrenzt, siehe 13.2.6.

Allgemein	• GEFAHR					
Sicherheit	Die Verwendung von Sicherheitner	ametern, die von denen de	s Integrator	s in der Bisikobeurte	iluna festaeleat	en Parametern abweichen
Roboter- Limits	können Risiken und Gefährdungen	verursachen, die sich mit d	diesen Paran	ntern nicht angemes	ssen verringern	oder beseitigen lassen.
Gelenkgre	O Werksvoreinstellungen					
Ebenen		Stark eingeschränkt		1	Schwach einge	schränkt
Werkzeugpo.		ocant angooan and			contract on ig	
Werkzeugric.						
E/A	Detailer te Einstelichigen					
Hardware	Grenzwert	Normal	Red	luziert		
Zustimm-	Leistung	300	W	200	w	
taster	Impuls	25,0	kg m/s	10,0	kg m/s	
Sichere	Stopzeit	400	ms	300	ms	
Home-Fosicio	Stopweg	500	mm	300	mm	
	Werkzeuggeschwindigkeit	1500	mm/s	750	mm/s	
	Kraft am TCP	150,0	N	120,0	N	
Feidbus					1,	
Feldbus	Ellbogengeschwindigkeit	1500	mm/s	/50	mm/s	
Felabus	Ellbogengeschwindigkeit Kraft am Ellbogen	1500 150,0	mm/s N	120,0	mm/s N	

HINWEIS:

Alle Robotergrenzen können Sie auf die **Werksvorgaben** zurückstellen, sodass wieder die Standardwerte gelten.

13.2.2 Sicherheitsmodi

Unter normalen Bedingungen, d. h. wenn kein Sicherheitsstopp aktiv ist, arbeitet das Sicherheitssystem in einem Sicherheitsmodus, der mit einer Reihe von Sicherheitsgrenzen verbunden ist:

Normaler Modus ist der Sicherheitsmodus, der standardmäßig aktiv ist

Reduzierter Modus ist aktiv, wenn sich der **Werkzeugmittelpunkt** (TCP) des Roboters in einer Ebene mit einem Auslöser für reduzierten Modus befindet (siehe 13.2.5) oder bei der Auslösung durch einen konfigurierbaren Eingang (siehe 13.2.8) Wiederherstellungsmodus wird aktiviert, wenn die Sicherheitsbegrenzung des aktiven Grenzwertes überschritten wird. Der Roboterarm führt einen Stopp der Kategorie 0 aus. Wenn eine aktive Sicherheitsgrenze, wie eine Gelenkpositionsgrenze oder eine Sicherheitsebene bereits beim Einschalten des Roboterarms überschritten ist, wird er im Wiederherstellungsmodus gestartet. So kann er leicht in den Bereich innerhalb der Sicherheitsgrenzen bewegt werden. Im Wiederherstellungsmodus ist die Bewegung des Roboterarms durch einen festen Grenzwert eingeschränkt, den Sie nicht ändern können. Details zu den Grenzwerten des Wiederherstellungsmodus (siehe Hardware-Installationshandbuch).

WARNUNG:

Begrenzungen für die **Gelenkposition**, **Werkzeugposition** und **Werkzeugausrichtung** sind im Wiederherstellungsmodus inaktiv, so dass Sie beim Zurückbewegen des Roboterarms in seinen zulässigen Wirkungsbereich äußerste Vorsicht walten lassen sollten.

Im Menü des Bildschirms Sicherheitskonfiguration können Sie separate Gruppen von Sicherheitsgrenzen für den Normalen und den Reduzierten Modus festlegen. Die Werkzeug- und Gelenkgrenzwerte müssen im reduzierten Modus bei Geschwindigkeit und Drehmoment restriktiver sein als im normalen Modus.

13.2.3 Toleranzen

In der Sicherheitskonfiguration sind die Grenzwerte für das Sicherheitssystem festgelegt. Das *Sicherheitssystem* erhält die Werte von den Eingabefeldern und erfasst die Verstöße, falls diese Werte überschritten werden. Die Robotersteuerung versucht, Verstöße durch das Veranlassen vorausschauender Stopps oder durch Verringerung der Geschwindigkeit zu vermeiden. Das bedeutet, dass Bewegungen, die sehr nah bei einem Grenzwert liegen, unter Umständen nicht programmgemäß ausgeführt werden.

WARNUNG:

Toleranzen sind abhängig von der Softwareversion. Durch eine Softwareaktualisierung können sich die Toleranzen u. U. ändern. Informationen über Versionsänderungen der Software stehen in den Versionshinweisen.

13.2.4 Gelenkgrenzen

Mit Gelenkgrenzen können Sie die Bewegung einzelner Robotergelenke im Gelenkwirkbereich (z. B. die Gelenkdrehposition und die Drehgeschwindigkeit) einschränken. Zwei Optionen stehen unter Gelenkgrenzen zur Verfügung: **Maximale Geschwindigkeit** und **Positionsbereich**.

Der Positionsbereich von Handgelenk 3 ist standardmäßig unbegrenzt. Wenn die am Roboter angebrachten Kabel verwendet werden, muss zunächst das Kontrollkästchen **Uneingeschränkter Bereich für Handgelenk 3** deaktiviert werden, um Spannungen auf den Kabeln sowie Sicherheitsstopps zu vermeiden.

1. Unter maximaler Geschwindigkeit legen Sie die maximale Winkelgeschwindigkeit für jedes Gelenk fest.

 Unter Positionsbereich legen Sie den Positionsbereich f
ür jedes Gelenk fest. Die Eingabefelder f
ür den Reduzierten Modus sind hier deaktiviert, wenn keine Sicherheitsebene bzw. kein konfigurierbarer Eingang zu dessen Ausl
ösung vorhanden ist. Diese Begrenzung erm
öglicht eine sicherheitsbezogene weiche Achsenbegrenzung des Roboters.

Allgemein	Positionsbereic	h							
Sicherheit	Gelenke	Bereich	Normaler	Modus	Reduziert	er Modus			
Roboter			Minimum	Maximum	Minimum	Maximum			
Limits	Basis	-363 — 363 °	-363	363	-363	363	+2 °/-2 °		
Gelenkgre	Schulter	-363 — 363 °	-363	363	-363	363	+2 °/-2 °		
Ebenen	Ellbogen	-363 — 363 °	-363	363	-363	363	+2 °/-2 °		
Werkzeugpo	Handgelenk 1	-363 — 363 °	-363	363	-363	363	+2 °/-2 °		
Werkzeugric	Handgelenk 2	-363 — 363 °	-363	363	-363	363	+2 °/-2 °		
E/A	Handgelenk 3	-363 — 363 °	-363	363	-363	363	+2 °/-2 °		
Hardware									
Zustimm- taster	Maximale Gescl	hwindigkeit							
Sichere	Gelenke	Maximur	m Nori	maler Modus	Reduzierter Mo	odus			
Home-Position	Basis	Max.: 191 °/s	191		191	-11 °/s			
Koordinatensys	Schulter	Max.: 191 °/s	191		191	-11 °/s			
Feldbus	Ellbogen	Max.: 191 °/s	191		191	-11 °/s			
	Handgelenk 1	Max.: 191 °/s	191		191	-11 °/s			
	Handgelenk 2	Max.: 191 °/s	191		191	-11 °/s			
	Handgelenk 3	Max.: 191 °/s	191		191	-11 °/s			
		Ciele er le sitem sem um	et.	Ent	enerren Sn	erren		Überne	hme

13.2.5 Ebenen

HINWEIS:

Das Konfigurieren von Ebenen basiert vollständig auf Funktionen. Es ist ratsam, alle Funktionen zu erstellen und zu benennen, bevor die Sicherheitskonfiguration bearbeitet wird, da der Roboter abgeschaltet wird, sobald das Register Sicherheit entsperrt wurde. Eine Roboterbewegung ist dann nicht möglich.

Sicherheitsebenen schränken den Arbeitsbereich des Roboters ein. Sie können bis zu acht Sicherheitsebenen definieren und dazu das Roboterwerkzeug und die Ellbogenbewegung einschränken. Die Ellbogenbewegung können Sie auch für jede Sicherheitsebene begrenzen und durch Deaktivieren des Kontrollkästchens aufheben. Vor dem Konfigurieren von Sicherheitsebenen müssen Sie eine Funktion in der der Roboterinstallation definieren (siehe 16.1.4). Die Funktion kann anschließend in den Bildschirm Sicherheitsebene übernommen und konfiguriert werden.

WARNUNG:

Das Definieren von Sicherheitsebenen begrenzt nur die definierten Werkzeugbereiche und den Ellbogen, jedoch nicht den Roboterarm insgesamt. Mit anderen Worten wird durch Festlegung einer Sicherheitsebene nicht dafür gesorgt, dass sich auch andere Teile des Roboterarms an diese Beschränkung halten.

Betriebsarten

Zu jeder Ebene können Sie restriktive **Betriebsarten** anhand der unten aufgelisteten Symbole festlegen.

Deaktiviert Die Sicherheitsebene ist in diesem Status zu keiner Zeit aktiv.

- **Normal** Wenn sich das Sicherheitssystem im Normalen Modus befindet, ist eine normale Ebene aktiv und dient als strenge Positionsbegrenzung.
- **Reduziert** Wenn sich das Sicherheitssystem im Reduzierten Modus befindet, ist eine Ebene mit reduziertem Modus aktiv und dient als strenge Positionsbegrenzung.
- **Normal & Reduziert** Wenn sich das Sicherheitssystem im Normalen oder Reduzierten Modus befindet, ist eine Ebene mit normalem oder reduziertem Modus aktiv und dient als strenge Positionsbegrenzung.
- Auslöser Reduzierter Modus Die Sicherheitsebene veranlasst das Sicherheitssystem zum Umschalten auf Reduzierten Modus, wenn das Werkzeug oder der Ellbogen des Roboters die Ebenengrenzen überschreitet.
- Anzeigen Durch Drücken dieses Symbols wird die Darstellung der Sicherheitsebene in der Grafik eingeblendet bzw. verborgen.
- **Löschen** Löscht die erstellte Sicherheitsebene (Hinweis: Der Befehl kann nicht rückgängig gemacht werden. Wird eine Ebene versehentlich gelöscht, muss sie wieder neu definiert werden)
- **Umbenennen** Über dieses Symbol können Sie die Bezeichnung der Ebene ändern.

Sicherheitsebenen konfigurieren

- 1. Klicken Sie in der PolyScope Kopfzeile auf Installation.
- 2. Klicken Sie im Seitenmenü links im Bildschirm auf Sicherheit und wählen Sie Ebenen.
- 3. Klicken oben rechts im Feld Ebenen auf Ebene hinzufügen.
- 4. Legen Sie unten rechts im Feld Eigenschaften einen Namen, die Kopierfunktion und Einschränkungen fest. Hinweis: Unter Kopierfunktion können nur Undefiniert und Basis ausgewählt werden. Eine konfigurierte Sicherheitsebene können Sie durch Auswahl von Undefiniert zurücksetzen

Wenn die kopierte Funktion im Bildschirm Funktionen geändert wird, erscheint ein Warnsymbol rechts neben dem Text Kopierfunktion. Das Symbol deutet an, dass die Eigenschaft nicht synchronisiert wurde, d.h. die Angaben im Eigenschaftsfeld wurden nicht aktualisiert und berücksichtigen noch nicht die Änderungen, die an der Eigenschaft vorgenommen wurden.

Ellbogen

Sie können **Ellbogen begrenzen** aktivieren, um das Ellbogengelenk des Roboters daran zu hindern, eine Ihrer definierten Ebenen zu überschreiten. Wenn Sie Ellbogen begrenzen deaktivieren, darf der Ellbogen die Ebenen überschreiten.

Grau Ebene ist konfiguriert jedoch (A)

Gelb & Schwarz Normale Ebene (B)

Blau & Grün Auslöseebene (C)

- **Schwarzer Pfeil** Die Seite der Ebene, auf der sich das Werkzeug und/oder der Ellbogen aufhalten darf (bei Normalen Ebenen)
- **Grüner Pfeil** Die Seite der Ebene, auf der sich das Werkzeug und/oder der Ellbogen aufhalten darf (bei Auslöseebenen)

Grauer Pfeil Die Seite der Ebene, auf der sich das Werkzeug und/oder der Ellbogen aufhalten darf (bei deaktivierten Ebenen)

13.2.6 Werkzeugposition

Der Bildschirm Werkzeugposition ermöglicht eine kontrollierte Beschränkung von Werkzeugen und/oder Zubehörteilen, die am Ende des Roboterarms angebaut sind.

Unter Roboter können Sie Ihre Änderungen anschaulich begutachten.

Unter Werkzeug können Sie bis zu zwei Werkzeuge definieren und konfigurieren.

Werkzeug_1 ist das Standardwerkzeug, das mit den Werten x=0.0, y=0.0, z=0.0 und dem Radius=0.0 definiert ist. Diese Werte stehen für den Werkzeugflansch des Roboters. Hinweis:

- Unter TCP kopieren können Sie auch **Werkzeugflansch** auswählen und die Werkzeugwerte wieder auf 0 setzen.
- · Am Werkzeugflansch ist eine Standardkugel definiert.

Bei benutzerdefinierten Werkzeugen kann folgendes geändert werden:

- **Radius** zum Ändern des Radius des Werkzeugraums. Der Radius wird bei der Verwendung von Sicherheitsebenen berücksichtigt. Durchquert ein Punkt in dem Bereich eine Auslöseebene für den reduzierten Modus, schaltet der Roboter auf *reduzierten* Modus um. Das Sicherheitssystem verhindert, dass eine Sicherheitsebene von einem Punkt in dem Bereich durchquert wird (siehe 13.2.5).
- **Position** zum Ändern der Lage des Werkzeugs relativ zum Werkzeugflansch des Roboters. Die Position wird bei den Sicherheitsfunktionen Werkzeuggeschwindigkeit, Werkzeugmoment, Nachlaufweg und Sicherheitsebenen berücksichtigt.

Sie können einen bestehenden Werkzeugmittelpunkt (TCP) als Ausgangsbasis zur Definition neuer Werkzeugpositionen heranziehen. Eine Kopie des bestehenden Werkzeugmittelpunkts, der

im Menü Allgemein des Bildschirms TCP vordefiniert ist, kann über das Menü Werkzeugposition in der Dropdown-Liste TCP kopieren aufgerufen werden.

Wenn Sie die Werte in den Eingabefeldern **Position bearbeiten** ändern, steht anstatt des Namens für den Werkzeugmittelpunkt (TCP) im Dropdown-Menü **Anwendungsspezifisch**, um darauf hinzuweisen, dass sich der kopierte TCP und der aktuell eingegebene Grenzwert unterscheiden. Der ursprüngliche TCP ist in der Dropdown-Liste nach wie vor eingetragen und kann wieder ausgewählt werden, um die Werte wieder auf die ursprüngliche Position umzustellen. Die Auswahl im Dropdown-Menü TCP kopieren hat keinen Einfluss auf den Namen des Werkzeugs.

Wenn Sie die Änderungen im Bildschirm Werkzeugposition übernommen haben, erscheint rechts neben dem Text TCP kopieren ein Warnsymbol, sobald Sie versuchen, den kopierten TCP im TCP-Konfigurationsbildschirm zu ändern. Das Symbol deutet an, dass der Werkzeugmittelpunkt nicht synchronisiert wurde, d.h. die Angaben im Eigenschaftsfeld wurden nicht aktualisiert und berücksichtigen noch nicht die Änderungen, die Sie an dem TCP vorgenommen haben. Zum Synchronisieren des TCP drücken Sie das Sync-Symbol (siehe 16.1.1).

Hinweis: Um ein Werkzeug zu definieren und einwandfrei einzusetzen, muss der TCP nicht synchronisiert werden.

Die Werkzeugbezeichnung können Sie ändern, indem Sie auf den Stift neben dem angezeigten Werkzeugnamen drücken. Innerhalb eines zulässigen Bereichs von 0-300 m können Sie auch den Radius festlegen. Die Bereichsgrenze wird in der Grafik je nach Größe des Radius entweder als Punkt oder als Kugel dargestellt.

13.2.7 Werkzeugrichtung

Der Bildschirm Werkzeugrichtung kann verwendet werden, um den Winkel zu begrenzen, in dessen Richtung das Werkzeug zeigt. Die Begrenzung wird durch einen Konus definiert, der relativ zur Roboterarm-Basis eine fixe Orientierung aufweist. Bei den Bewegungsabläufen des Roboterarms wird die Richtung des Werkzeugs eingeschränkt, damit es den definierten konischen Bereich nicht überschreitet. Die Standardrichtung des Werkzeugs liegt auf der Z-Achse des Werkzeug-Ausgangsflanschs. Durch Angabe von Neige- und Schwenkwinkeln kann diese geändert werden.

Vor dem Konfigurieren der Begrenzung müssen Sie einen Punkt oder eine Ebene in der Roboterinstallation definieren (siehe 16.3). Die Funktion kann anschließend kopiert und ihre Z-Achse als Mitte des Begrenzungskonus verwendet werden.

HINWEIS:

Die Konfiguration der Werkzeugrichtung basiert auf Funktionen. Die gewünschte(n) Funktion(en) sollten Sie zuerst erstellen, bevor Sie die Sicherheitskonfiguration ändern, denn sobald das Register Sicherheit entsperrt wurde, schaltet sich der Roboterarm ab, sodass keine neuen Funktionen mehr definiert werden können.

Allgemein	Roboter					Begrenzungseinstellungen
 Sicherhelt Roboter- Limits Gelenkgre Ebenen Werkzeugric Werkzeugric E/A Hardware Zustimm- taster Sichere Home-Position Koordinatensys Feldbus 					+	Koordinatensysteme kopieren () toolBoundary Begrenzung Begrenzung () Beldes Winkel 35 5 – 181 , -3,0° Eigenschaften Werkzeug () TCP kopieren () Werkzeugflansch Richtung bearbeiten Neigen () Schwenken ()
		Sicherheitspasswort	E	ntsperren	Sperren	Übernehm

Grenzeigenschaften

Die Begrenzung der Werkzeugrichtung besitzt drei konfigurierbare Eigenschaften:

- 1. **Konusmitte**: Zur Definition der Konusmitte können Sie im Dropdown-Menü eine Punkt- oder Ebenenfunktion auswählen. Die Z-Achse der gewählten Funktion wird als Richtung für die Zentrierung des Konus verwendet.
- 2. **Konuswinkel**: Sie können festlegen, um wie viele Grad der Roboter von der Mitte abweichen darf.

Deaktivierte Werkzeugrichtungsbegrenzung ist nie aktiv

- **Normale Werkzeugrichtungsbegrenzung** ist nur aktiv, wenn sich das Sicherheitssystem im **normalen Modus** befindet.
- **Reduzierte Werkzeugrichtungsbegrenzung** ist nur aktiv, wenn sich das Sicherheitssystem im **reduzierten Modus** befindet.
- Normale & Reduzierte Werkzeugrichtungsbegrenzung ist aktiv, wenn sich das Sicherheitssystem im Normalen Modus oder im Reduzierten Modus befindet.

Sie können für die Werte wieder den Standard einstellen bzw. rückgängig machen, indem Sie die Kopierfunktion wieder auf "Undefiniert" setzen.

Werkzeugeigenschaften

Standardmäßig zeigt das Werkzeug in die gleiche Richtung wie die Z-Achse des Werkzeug-Ausgangsflanschs. Das kann durch Angaben von zwei Winkeln geändert werden:

IR

UNIVERSAL ROBOTS

- **Neigungswinkel**: Wie weit die Z-Achse des Ausgangsflanschs in Richtung der X-Achse des Ausgangsflanschs geneigt werden soll
- **Schwenkwinkel**: Wie weit die geneigte Z-Achse um die ursprüngliche Ausgangflansch-Z-Achse gedreht werden soll.

Als Alternative kann die Z-Achse eines vorhandenen Werkzeugmittelpunkts (TCP) durch Auswahl des TCP aus dem Dropdown-Menü kopiert werden.

13.2.8 E/A

Die E/As sind zwischen den Eingängen und Ausgängen aufgeteilt und werden paarweise so zusammengefasst, dass jede Funktion eine Kategorie 3 und PLd E/A bereitstellt.

alle auto a la	F ire and a set a i	E a latia a ser a la ser a	
chemen	Eingangssignai	Funktionszuweisung	
Roboter- Limits	config in[0], config in[1]	Reduzierter Modus	
Gelenkgre	config in[2], config in[3]	Schutz-Reset 👻	
Ebenen	config_in[4], config_in[5]	Nicht zugewiesen 👻	
Werkzeugpo	config_in[6], config_in[7]	Nicht zugewiesen 👻	
Werkzeugric	Ausgangesignal	Funktionezuwejeung	0550
E/A	Adagarigaalgi lai	Turkton azuwelaung	0330
Hardware	config out[0], config out[1]	Robater beweat sich	
Zustimm-	config_out[2], config_out[3]	System-NotHalt 👻	
Sichere	config_out[4], config_out[5]	Nicht zugewiesen	
Home-Position	config_out[6], config_out[7]	Nicht zugewiesen 💌	
ordinatensys			
ldbus			

HINWEIS:

Schließen Sie die physischen Betriebsmodus-Eingänge an, bevor Sie die Eingänge in der Benutzerschnittstelle konfigurieren. Ist der Eingang LOW, befindet sich der Roboter im automatischen Modus und es ist nicht möglich, Sicherheitseinstellungen zu konfigurieren.

Eingangssignale

Folgende Sicherheitsfunktionen können mit den Eingangssignalen benutzt werden:

- **System-Notabschaltung** Dies ist eine Not-Aus-Vorrichtung, die als Alternative zum Teach Pendant verwendet werden kann und die gleiche Funktion bietet, falls das Gerät mit der ISO 13850 konform ist.
- **Reduzierter Modus** Alle Sicherheitsgrenzen können entweder im normalen oder im reduzierten Modus angewendet werden (siehe 13.2.2). Sind diese konfiguriert, wird ein LOW-Signal an die Eingänge gesendet. Das Sicherheitssystem wechselt dadurch in den Reduzierten Modus. Der Roboterarm bremst ab, um dem im Reduzierten Modus festgelegten Grenzwert zu entsprechen. Das Sicherheitssystem sorgt dafür, dass der Roboter innerhalb von 0,5 s

UNIVERSAL ROBOTS

nach dem Ansteuern des Eingangs die Grenzwerte des Reduzierten Modus einhält. Sollte der Roboterarm eine der Grenzen des Reduzierten Modus weiterhin überschreiten, führt er einen Stopp der Kategorie 0 aus. Der Wechsel in den normalen Modus geschieht auf gleiche Weise. Hinweis: Auch Auslöseebenen können einen Wechsel in den Reduzierten Modus auslösen.

- **Dreistufiger Zustimmschalter** Im Manuellen Modus muss der Dreistufige Zustimmschalter gedrückt werden, um den Roboter zu bewegen.
- **Betriebsart** Wenn dieser Eingang definiert ist, kann er zum Umschalten zwischen **Automatikmodus** und **Manuellem Modus** verwendet werden (siehe 12.1).
- **Schutz-Reset** Wenn ein Schutzstopp auftritt, sorgt dieser Ausgang dafür, dass der Schutzstopp-Status gehalten wird, bis ein Reset ausgelöst wird.
- Automatikmodus-Schutzabschaltung Wenn konfiguriert, führt eine Automatikmodus-Schutzabschaltung eine Schutzabschaltung durch, wenn die Eingangskontakte LOW sind und NUR dann, wenn sich der Roboter im Automatikmodus befindet.
- **Automatikmodus-Schutz-Reset** Wenn eine Automatikmodus-Schutzabschaltung auftritt, bleibt der Roboter im Automatikmodus im Status Schutzabschaltung, bis eine steigende Flanke an den Eingangskontakten einen Reset auslöst.

WARNUNG:

- Wenn der Standardeingang des Schutz-Reset deaktiviert ist, befindet sich der Roboterarm nicht mehr im Status Schutzabschaltung, sobald der Eingang HIGH geschaltet wird. Ein Programm, das nur von der Schutzabschaltung angehalten wurde, wird fortgesetzt.
- Wird der standardmäßige Automatikmodus-Schutz-Reset deaktiviert, befindet sich (wie beim Schutz-Reset) der Roboterarm nicht mehr im Status Schutzabschaltung, sobald der Eingang der Automatikmodus-Schutzabschaltung HIGH geschaltet wird. Ein Programm, das nur von der Automatikmodus-Schutzabschaltung angehalten wurde, wird fortgesetzt.

Ausgangssignale

Folgende Sicherheitsfunktionen können Sie für die Ausgangssignale nutzen. Alle Signale werden wieder LOW, wenn der Status, der das HIGH-Signal ausgelöst hat, beendet ist:

System-Notabschaltung Ein wird *LOW*, wenn das Sicherheitssystem ausgelöst wurde und über den Eingang Roboter-Not-Aus oder mittels Not-Aus-Schalter in einen Not-Aus-Status gewechselt hat. Um Blockierungen zu vermeiden, wird kein LOW-Signal ausgegeben, wenn der Not-Aus-Status durch den Eingang System-Not-Aus ausgelöst wird.

Roboter in Bewegung ist *LOW*, wenn sich der Roboter bewegt, andernfalls HIGH.

Roboter stoppt nicht ist *HIGH*, wenn der Roboter aufgrund einer Notabschaltung oder eines Schutzstopps angehalten wurde oder im Begriff ist, anzuhalten. Ansonsten gilt Logikpegel LOW. **Reduzierter Modus** ist *LOW*, wenn sich der Roboterarm im Reduzierten Modus befindet oder wenn der Sicherheitseingang mit einem Eingang in Reduziertem Modus konfiguriert wird und das Signal aktuell LOW ist. Andernfalls ist das Signal HIGH.

IR

UNIVERSAL ROBOTS

Nicht-Reduzierter Modus Dies ist das Gegenstück zum oben definierten Reduzierter Modus.

Safe Home ist *HIGH*, wenn der Roboterarm in der konfigurierten Safe Home-Position angehalten wird. Andernfalls ist das Signal *LOW*.

HINWEIS:

Externe Maschinen, die ihren Not-Aus-Status über den Ausgang System-Not-Aus vom Roboter erhalten, müssen mit der ISO 13850 konform sein. Dies ist insbesondere bei Installationen erforderlich, bei denen der Not-Aus-Eingang des Roboters mit einer externen Not-Aus-Vorrichtung verbunden ist. In solchen Fällen wird der Ausgang System-Not-Aus HIGH, wenn die externe Not-Aus-Vorrichtung auslöst. Dies bedeutet, dass der Status der Notabschaltung bei der externen Maschine ohne manuelles Eingreifen durch den Roboterbediener zurückgesetzt wird. Um die Sicherheitsnormen zu erfüllen, muss die externe Maschine für einen weiteren Betrieb manuell bedient werden.

OSSD-Sicherheitssignale

Sie können die Control-Box für die Ausgabe von OSSD-Pulsen konfigurieren, wenn ein Sicherheitsausgang inaktiv/HIGH ist. OSSD-Pulse erkennen die Fähigkeit der Control-Box für aktive (LOW) Sicherheitsausgänge. Werden OSSD-Pulse für einen Ausgang aktiviert, so wird jede 32 ms ein niedriger Impuls von 1ms auf dem Sicherheitsausgang erzeugt. Das Sicherheitssystem erkennt, wenn ein Ausgang mit einer Versorgung verbunden ist und fährt den Roboter herunter.

Die folgende Abbildung zeigt: Die Zeit zwischen den Impulsen auf einem Kanal (32 ms), die Impulslänge (1 ms) und die Dauer von einem Impuls auf einem Kanal zu einem Impuls auf dem anderen Kanal (18 ms)

OSSD-Aktivierung für Sicherheitsausgang

- 1. Tippen Sie in der Kopfzeile auf Installation und wählen Sie Sicherheit.
- 2. Unter Sicherheit wählen Sie E/A.
- 3. Im E/A Bildschirm unter Ausgangssignal wählen Sie das gewünschte OSSD-Kontrollkästchen. Sie müssen das Ausgangssignal zuweisen, um die OSSD-Kontrollkästchen zu aktivieren.

13.2.9 Hardware

Den Roboter können Sie ohne Anschluss des Teach Pendant einsetzen. Durch das Entfernen des Teach Pendant muss eine andere Quelle für die Not-Aus-Funktion definiert werden. Sie müssen angeben, ob das Teach Pendant angeschlossen ist, um zu verhindern, dass eine Sicherheitsüberschreitung ausgelöst wird.

Verfügbare Hardware auswählen

Der Roboter kann ohne PolyScope als Programmierschnittstelle eingesetzt werden.

- 1. Klicken Sie in der Kopfzeile auf Installation.
- 2. Klicken Sie im Seitenmenü links auf Sicherheit und wählen Sie Hardware.
- 3. Geben Sie das Sicherheitspasswort ein, um den Bildschirm zu entsperren.
- Deaktivieren Sie das Teach Pendant, um den Roboter ohne Polyscope- Schnittstelle einzusetzen.
- 5. Drücken Sie auf Sichern und neu starten, um die Änderungen zu übernehmen.

VORSICHT:

Ist das Teach Pendant nicht verbunden bzw. vom Roboter getrennt, ist der Not-Aus-Schalter nicht mehr aktiv. Sie müssen das Teach Pendant aus dem näheren Umfeld des Roboters entfernen.

13.2.10 Safe Home-Position

Sie Safe Home-Position ist eine Rückkehrposition, die mithilfe der benutzerdefinierten Home-Position festlegt wird. Safe Home-E/As sind aktiv, wenn sich der Roboterarm in der Safe Home-Position befindet und Safe Home-E/As festgelegt sind. Der Roboterarm befindet sich in der Safe Home-Position, wenn sich die Gelenkpositionen an den angegebenen Gelenkwinkeln bzw. einem Vielfachen von 360 Grad davon befinden. Der Safe Home-Sicherheitsausgang ist aktiv, wenn der Roboter in der Safe Home-Position zum Stillstand kommt.

Aligemein	Roboter			Sichere Home-Posi	ition
🖌 Sicherheit				() Übernehmer	o dor Homo
Roboter- Limits					r der Home
Gelenkgre				Lösch	nen
Ebenen Werkzeugpo Werkzeugric E/A Hardware		 _	-1	Beim Löschen der s Home-Position wird des Ausgang "Siche Home-Position" ebei	icheren die Verwendun re nfalls gelöscht.
Zustimm- taster				Gelenkposition (0-	360°)
Sichere Home-Position		Ō		Basis	90,0
Koordinatensys				Schulter	270,0
Feldbus				Elibogen	270,0
				Handgelenk 1	270,0
				Handgelenk 2	90,0
				Handgelenk 3	0,0

Synchronisierung von Home

- 1. Klicken Sie in der Kopfzeile auf Installation.
- 2. Klicken Sie im Seitenmenü (links im Bildschirm) auf Sicherheit und wählen Sie Safe-Home.

- 3. Unter Safe Home tippen Sie auf Synchronisierung von Home.
- 4. Tippen Sie auf **Übernehmen** und im erscheinenden Dialogfenster auf **Übernehmen und neu** starten.

Safe Home-Ausgang

Die Safe Home-Position muss vor dem Safe Home-Ausgang definiert sein (siehe 13.2.8).

Festlegung des Safe Home-Ausgangs

- 1. Klicken Sie in der Kopfzeile auf Installation.
- 2. Wählen Sie im Seitenmenü links im Bildschirm unter Sicherheit E/A aus.
- 3. Wählen Sie **Safe Home** auf dem E/A-Bildschirm im Ausgangssignal unter Funktionszuweisung im Dropdown-Menü.
- 4. Tippen Sie auf **Übernehmen** und im erscheinenden Dialogfenster auf **Übernehmen und neu** starten.

Safe Home-Position bearbeiten

Das Bearbeiten der Safe Home-Position ändert nicht automatisch eine zuvor definierte Safe Home-Position. Während diese Werte nicht synchronisiert sind, ist der Home-Programmknoten nicht definiert.

Safe Home-Position bearbeiten

- 1. Klicken Sie in der Kopfzeile auf Installation.
- 2. Wählen Sie im Seitenmenü links im Bildschirm unter Allgemein Home aus.
- 3. Tippen Sie auf **Position bearbeiten**, setzen Sie die neue Roboterarm-Position und tippen Sie auf **OK**.
- 4. Wählen Sie im Seitenmenü unter **Sicherheit Safe Home** aus. Hinweis: Ein Sicherheitspasswort zum **Freischalten** der Sicherheitseinstellungen ist erforderlich (Siehe 13.1.2).
- 5. Unter Safe Home tippen Sie auf Synchronisierung von Home

14 Der Tab "Betrieb"

	PROGRAMM ABCDE 📮 🚰 🖬 C C C
Programm	Variablen
ABCDE	
Programm laden	
status Gestoppt	Keine Variablen
Betriebszeit	
Tage Stunden Minuten Sekunden 0 00 04 07	
	U Wegpunkte anzeigen
Normal Ges	chwindigkeit 💶 100% 🕞 🖸 🔵 Simulation 🔵

Der Tab **Betrieb** dient zur unkomplizierten Bedienung des Roboterarms und der Control-Box mit wenigen Schaltflächen und Optionen. Die einfache Bedienung kann mit einem Passwortschutz des Programmierteils von PolyScope kombiniert werden (siehe 21.3.2), um den Roboter zu einem Werkzeug für die Ausführung ausschließlich vorprogrammierter Programme zu machen.

In diesem Bildschirm können Sie ein Standardprogramm bei einem Flankenübergang eines externen Eingangssignals automatisch laden und starten lassen (siehe 16.1.6).

Hinweis: Die Kombination von automatischem Laden und Starten eines Standardprogramms und der Auto-Initialisierung beim Einschalten kann beispielsweise verwendet werden, um den Roboterarm in andere Maschinen zu integrieren.

14.1 Programm

Das Feld **Programm** zeigt den Namen und den aktuellen Status des Programms an, das im Roboter geladen ist. Zum Laden eines anderen Programms können Sie auf das Register **Programm Iaden** klicken.

14.2 Variablen

Ein Roboterprogramm kann Variablen nutzen, um während der Laufzeit verschiedene Werte zu aktualisieren. Es stehen zwei Arten von Variablen zur Verfügung:

Installationsvariablen Diese können von mehreren Programmen verwendet werden und ihre Namen und Werte bleiben zusammen mit der Roboterinstallation bestehen (siehe 16.1.5). Installationsvariablen behalten ihren Wert, auch nachdem Roboter und die Control-Box neu gestartet wurden. **Normale Programmvariablen** Diese stehen nur dem laufenden Programm zur Verfügung und ihre Werte gehen verloren, sobald das Programm gestoppt wird.

Wegpunkte anzeigen Das Roboterprogramm verwendet Script-Variablen, um Informationen über Wegpunkte zu speichern.

Aktivieren Sie das Kontrollkästchen **Wegpunkte anzeigen** unter **Variablen**, um Script-Variablen in der Variablenliste anzuzeigen.

Variablentypen

Boole	Eine Boole'sche Variable, deren Wert entweder True oder False ist.
int	Eine Ganzzahl im Bereich von -2147483648 bis 2147483647 (32 Bit).
Float	Eine Gleitkommazahl (dezimal) (32 Bit).
String	Eine Sequenz von Zeichen.
Pose	Ein Vektor, der die Lage und Ausrichtung im Kartesischen Raum be-
	schreibt. Er ist eine Kombination aus einem Positionsvektor (x, y, z) und
	einem Rotationsvektor (<i>rx</i> , <i>ry</i> , <i>rz</i>), der die Ausrichtung darstellt; Schreib-
	weise ist p[x, y, z, rx, ry, rz].
List	Eine Sequenz von Variablen.

14.3 Roboteralter

Dieses Feld gibt die Zeitdauer seit der ersten Inbetriebnahme an. Die Zahlenangaben in diesem Feld geben jedoch keine Rückschlüsse über die Ausführungsdauer des Programms

14.4 Roboter in Position fahren

Verwenden Sie den Menüpunkt **Roboter in Position fahren**, wenn der Roboterarm vor Ausführung eines Programms in eine bestimmte Ausgangsposition fahren soll oder zum Anfahren eines Wegpunktes während einer Programmänderung.

Für den Fall, dass der Roboterarm mit dem Menüpunkt **Roboter in Position fahren** nicht in die Programmstartposition gefahren werden kann, geht er zum ersten Wegpunkt in der Programmstruktur.

Der Roboterarm kann aufgrund der folgenden Gegebenheiten in eine falsche Pose fahren:

- Die TCP-, Feature- oder Wegpunkt-Pose der ersten Bewegung wird während der Programmausführung verändert, bevor die erste Bewegung ausgeführt wird.
- Der erste Wegpunkt befindet sich in einem If oder Switch-Programmstrukturknoten.

Zugriff auf den Bildschirm Roboter in Position fahren

- 1. Tippen Sie in der **Fußzeile** auf **Abspielen**, um auf den Bildschirm **Roboter in Position fahren** zuzugreifen.
- 2. Folgen Sie den Anweisungen auf dem Bildschirm, um zwischen Animation und dem echten Roboter zu interagieren.

IR

UNIVERSAL ROBOTS

Roboter fahren zu:

Halten Sie **Roboter fahren zu:** gedrückt, um den Roboterarm zu einer Startposition zu fahren. Die auf dem Bildschirm angezeigte Roboterarm-Animation zeigt die gewünschte, durchzuführende Bewegung.

HINWEIS:

Kollisionen können den Roboter oder andere Geräte beschädigen. Vergleichen Sie die Animation mit der Position des echten Roboterarms und stellen Sie sicher, dass der Roboterarm die Bewegung sicher ausführen kann, ohne auf Hindernisse zu treffen.

Manuell

Tippen Sie auf **Manuell** um auf den **Move**-Bildschirm zuzugreifen, in dem der Roboterarm unter Verwendung der Move-Tool-Pfeile und/oder durch Konfiguration der Werkzeugposition- und Gelenkposition-Koordinaten bewegt werden kann.

15 Programm - Tab

Der Tab "Programm" zeigt das aktuell bearbeitete Programm an.

15.1 Programmstruktur

Durch Tippen auf **Befehl** fügen Sie Programmknoten zur Programmstruktur hinzu. Konfigurieren Sie die Funktionalität des hinzugefügten Programmknotens auf der rechten Seite des Bildschirms.

Eine leere Programmstruktur ist nicht erlaubt. Programme mit falsch konfigurierten Programmknoten dürfen auch nicht ausgeführt werden. Ungültige Programmknoten werden gelb hervorgehoben, um anzuzeigen, was behoben werden sollte, bevor das Programm ausgeführt werden darf.

15.1.1 Programmausführungsanzeige

Ausführen Programm		PROGRAMM INSTALLATION	StartABCDE default	Neu Öffnen.	. Speichern		с с с с	≡
✔ Basis-Befehle	۹	Befehl	Grafik	Variable	ו			
Bewegen Wegpunkt Richtung Warten Einstellen Meldung	1 ▼ Roboterprogramm 2 ◆ FahreAchse 3 ● Start 4 ● ● 5 ● B 6 ● C 7 ● ● 8 ● E	Wegpu	nkt Wegp Pos	unkt festleg se bearbeiter	₽ ₽	Feste Pc	osition	•
Hait Kommentar Ordner Fortgeschritten	0	Stopp a	ın dieser Stellı	e	O Übergeoro	Hierher bew	ve erwenden	
		O Versch	leifen mit Radi	ius	O Gelenkges	chwindigkeit	60 °	
			0 mm		Gelenkbes	chleunigung	80 °	
	● ● ● ● う ぐ ¥ 目 首 面 〓	+ 5	Stopbedingu	ıng hinzufüg	O Zeit		2,0 s	
Aktiv	Geschwindigkeit		100%	0			nulation	

Wenn das Programm läuft, wird der aktuell ausgeführte Programmknoten durch ein kleines Symbol neben dem Knoten angezeigt. Außerdem wird der Weg der Ausführung mit einer blauen Farbe hervorgehoben.

Drücken Sie auf das <-> Symbol in der Ecke des Programms, um den Befehl zu verfolgen, der ausgeführt wird.

15.1.2 Schaltfläche "Suchen"

Klicken Sie auf \mathfrak{Q} , um eine Suche in der Programmstruktur durchzuführen. Drücken Sie das Symbol \times , um die Suche zu verlassen.

15.1.3 Programmstruktur Werkzeugleiste

Verwenden Sie die Werkzeugleiste unten in der Programmstruktur, um die Programmstruktur zu ändern.

Rückgängig/Erneut ausführen - Taste

Die Tasten 🏷 und 🤁 dienen dazu, Änderungen rückgängig zu machen Befehle zu wiederholen.

Nach Oben & Unten bewegen

Ausschneiden

Die Taste [★] schneidet einen Knoten aus und ermöglicht dessen Nutzung für andere Aktionen (z. B. Einfügen an anderer Stelle der Programmstruktur).

Kopieren

Die Taste ermöglicht das Kopieren eines Knoten, sodass dieser für andere Aktionen (z. B. Einfügen an anderer Stelle der Programmstruktur) verwendet werden kann.

Einfügen

Mit der Taste 🖻 können Sie einen Knoten einfügen, der zuvor ausgeschnitten oder kopierte wurde.

Löschen

Klicken Sie auf die Taste 🏛, um einen Knoten von der Programmstruktur zu entfernen.

Unterdrücken

Klicken Sie auf die Taste 🔤, um spezifische Knoten in der Programmstruktur zu unterdrücken.

Unterdrückte Programmzeilen werden bei der Programmausführung übersprungen. Die Unterdrückung einer Zeile kann zu einem späteren Zeitpunkt wieder aufgehoben werden. Dies ist eine einfache Methode, um Änderungen an einem Programm vorzunehmen, ohne die ursprünglichen Inhalte zu zerstören.

15.1.4 Ausdruck-Editor

Während der Ausdruck selbst als Text bearbeitet wird, verfügt der Ausdruckseditor über eine Vielzahl von Schaltflächen und Funktionen zur Eingabe der speziellen Ausdruckssymbole, wie zum Beispiel * zur Multiplikation und \leq für kleiner gleich. Die Tastatursymbol-Schaltfläche oben links im Bildschirm schaltet auf Textbearbeitung des Ausdrucks um. Alle definierten Variablen sind in der Variablen enthalten, während die Namen der Ein- und Ausgangsanschlüsse in den Auswahlfunktionen Eingang und Ausgang zu finden sind. Einige Sonderfunktionen finden Sie unter Funktion.

Der Ausdruck wird auf grammatische Fehler überprüft, wenn Sie die Schaltfläche OK betätigen. Mit der Schaltfläche Abbrechen verlassen Sie den Bildschirm und verwerfen alle Änderungen.

Ein Ausdruck kann wie folgt aussehen:

```
digital_in[1] \stackrel{?}{=} Wahr und analog_in[0]<0.5
```

15.1.5 Programm von ausgewähltem Knoten starten

Wenn sich der Roboter im Manuellen Modus befindet (siehe 12.1), dann ermöglicht die Option **Abspielen ab Auswahl** einen Programmstart von einem ausgewählten Knoten aus. Bei Auswahl von **Abspielen ab Start** wird ein Programm normal ausgeführt. Die Option **Abspielen ab Auswahl** ist nicht verfügbar, wenn ein Programm nicht von einem bestimmten Knoten ausgeführt werden kann. Abspielen ab Auswahl kann für Threads nicht ausgewählt werden, da ein Thread immer ab Start ausgeführt wird.

Basis-Befehle		Q	Befehl	Grafik	Variablen		
Bewegen	Boboterprogramm		-				
Wegpunkt	2 🕈 🕂 FahreAchse		Legen Sie fe	en st wie sich de	r Roboter zwisch	Far Jen den Wegnunkte	n bewegen soll
Richtung	3 OWegpunkt_1		Dis untenct	bondon Worts	aolton für alle n	achgoordpotop Wa	nunlta und hängen
Warten			von der gev	/ählten Bewegi	ungsart ab.	acrigeor difeterr we	gpunkte und nängen
Einstellen			TCP einstelle	n		Gelenkgeschv	vindigkeit
Meldung			Aktiven TCP	verwenden	▼		60,0 °/s
Halt							
Kommentar			Koordinaten	system		Gelenkbeschl	eunigung
Ordner 4			▶ Basis		•		80,0 %s²
Fortgeschritten							
Assistenten			🔲 Gelenkw	inkel verwende	n		
						rten vom Anfang	setzen
					♥ Ro	boterprogramm	
					O Sta	rten von Auswahl	

Verwendung der Option Abspielen ab Auswahl

Tippen Sie auf **Abspielen** und wählen Sie **Abspielen ab Auswahl**, um ein Programm von einem Knoten innerhalb der Programmstruktur aus auszuführen.

HINWEIS:

- Der Abschnitt Vor Start wird, falls verwendet, stets für Abspielen ab Auswahl und Ab Anfang abspielenausgeführt.
- Beim Auftreten einer nicht zugewiesenen Variablen stoppt das Programm und gibt eine Fehlermeldung aus.
- Ein Programm kann nur von einem Knoten im Roboterprogramm aus gestartet werden.
- **Abspielen ab Auswahl** kann innerhalb eines Unterprogramms verwendet werden. Die Programmausführung wird angehalten, wenn das Unterprogramm endet.

15.1.6 Verwendung von Haltepunkten in einem Programm

Ein Haltepunkt unterbricht die Programmausführung. Haltepunkte können dazu verwendet werden, ein Programm an einem bestimmten Punkt zu unterbrechen bzw. fortzuführen, um Position oder Variable usw. des Roboters zu untersuchen. Siehe 12.1. 1. Der Haltepunkt wird durch Antippen einer Zeilennummer in der Programmstruktur gesetzt bzw. gelöscht.

Eine rote Linie oberhalb oder unterhalb eines Knotens zeigt an, wann ein Haltepunkt gesetzt ist und die Ausführung unterbrochen wird. Bei den meisten Knoten kommt es vor der Ausführung zu einer Unterbrechung mit den folgenden Ausnahmen:

- Wegpunkte: Ein Haltepunkt auf einem Wegpunkt-Knoten ignoriert das Blending und unterbricht das Programm, wenn der Roboter diesen Wegpunkt erreicht.
- Bis-Knoten: Ein Haltepunkt auf einem Bis-Knoten unterbricht das Programm, sobald die Bedingung erfüllt ist. Im Bis-Knoten verwendete Blendings werden nicht ignoriert. Sie werden dann unterbrochen, wenn der Roboter den Blend-Radius erreicht.

15.1.7 Einzelschritte in einem Programm

Die Einzelschritt-Taste ermöglicht die schrittweise Ausführung von Knoten, wenn sich der Roboter im manuellen Modus befindet. Sie können die Einzelschritt-Taste verwenden, wenn das Programm unterbrochen ist. Tippen Sie auf die Einzelschritt-Taste, um die Programmausführung fortzusetzen bzw. anzuhalten, wenn Sie den nachfolgenden Knoten im Programm erreichen. Unterstützt ein Knoten keine Haltepunkte, bewirkt das Antippen der Einzelschritt-Taste für die Programmausführung keine Unterbrechung auf diesem Knoten. Stattdessen wird die Ausführung fortgesetzt, bis das Programm einen Knoten erreicht, der Haltepunkte unterstützt.

15.2 Tab "Befehl"

Dieses Handbuch enthält nicht sämtliche Einzelheiten über jede Art von Programmknoten . Der Roboterprogrammknoten enthält drei Kontrollkästchen, die das Gesamtverhalten des Programms steuern.

Vor-Start-Reihenfolge hinzufügen

Wählen Sie dieses Kontrollkästchen aus, um einen speziellen Abschnitt zum Programm hinzufügen, der sich beim Starten des Programms aktiviert.

Erste Variablenwerte einstellen

Wählen Sie diese Option aus, um die Anfangswerte der Programmvariablen festzulegen.

- 1. Wählen Sie eine Variable aus der Dropdown-Liste oder über die Variablen-Auswahlbox.
- 2. Geben Sie einen Ausdruck für die Variable ein. Dieser Ausdruck wird verwendet, um den Wert der Variablen beim Programmstart festzulegen.
- Sie können Wert von vorheriger Ausführung behalten auswählen, um die Variable auf den Wert zu initialisieren, der aus dem Tab Variablen hervorgeht (siehe 15.4).
 So können Variable ihre Werte zwischen Programmausführungen beibehalten. Die Variable

so konnen Variable ihre Werte zwischen Programmausführungen beibehalten. Die Variable erhält ihren Wert von dem Ausdruck bei erstmaliger Ausführung des Programms oder wenn der Tab-Wert gelöscht wurde. Eine Variable kann aus dem Programm gelöscht werden, indem ihr Namensfeld leer gelassen wird (nur Leerschritte).

Programmschleife läuft ewig

Wählen Sie diese Option, um das Programm kontinuierlich zu machen.

15.3 Grafik-Tab

Grafische Darstellung des aktuellen Roboterprogramms. Der Weg des TCP wird in einer 3D-Ansicht gezeigt, mit schwarzen Bewegungssegmenten und grünen Übergangssegmenten (Übergänge zwischen den Bewegungssegmenten). Die grünen Punkte bestimmen die Positionen des TCP an jedem der Wegpunkte im Programm. Die 3D-Zeichnung des Roboterarms zeigt die aktuelle Position des Roboterarms, während der *Schatten* des Roboterarms verdeutlicht, wie der Roboterarm beabsichtigt, die auf der linken Bildschirmseite gewählten Wegpunkte zu erreichen.

Nähert sich die aktuelle Position des Roboter-TCP einer Sicherheits- oder Auslöseebene oder befindet sich die Ausrichtung des Roboterwerkzeugs nahe einer (siehe 13.2.5), so wird eine 3D-Darstellung der Bewegungsgrenze angezeigt.

Hinweis: Beachten Sie, dass die Visualisierung der Begrenzungen deaktiviert wird, während der Roboter ein Programm ausführt.

Sicherheitsebenen werden in Gelb und Schwarz zusammen mit einem kleinen Pfeil angezeigt, der für die Normal-Ebene steht, was angibt, auf welcher Seite der Ebene der Roboter-TCP positioniert werden darf. Auslöseebenen werden in Blau und Grün zusammen mit einem kleinen Pfeil dargestellt, der auf die Seite der Ebene zeigt, bei der die Grenzen des **Normalmodus** aktiv sind (siehe 13.2.2). Das Limit der Werkzeugausrichtungsgrenze wird anhand eines sphärischen Kegels visualisiert, wobei ein Vektor die aktuelle Ausrichtung des Roboterwerkzeugs anzeigt. Das Innere des Kegels repräsentiert den zulässigen Bereich für die Werkzeugausrichtung (Vektor).

Wenn der Zielroboter-TCP sich nicht mehr in Nähe zum Limit befindet, verschwindet die 3D-Darstellung. Wenn der TCP einen Grenzwert überschreitet oder dem sehr nahe ist, ändert sich die Limitanzeige zu rot. Die 3D-Ansicht kann vergrößert und gedreht werden, um den Roboterarm besser sehen zu können. Die Schaltflächen oben rechts im Bildschirm können die verschiedenen grafischen Komponenten in der 3D-Ansicht deaktivieren. Die Schaltfläche unten schaltet die Visualisierung von Limits von Näherungsgrenzen ein/aus.

15.4 Der "Variablen"-Tab

Der **Variablen**-Tab zeigt die aktuellen Werte von Variablen im laufenden Programm und führt eine Liste von Variablen und Werten zwischen Programmverläufen auf. Er erscheint, wenn er anzuzeigende Informationen enthält. Wegpunkt-Variablen werden in der Liste angezeigt, wenn der Menüpunkt "Wegpunkte anzeigen" aktiviert ist.

Der **Move**-Befehl steuert die Roboterbewegung durch die zugrunde liegenden Wegpunkte. Wegpunkte müssen unter einem Move-Befehl vorhanden sein. Der Befehl "Move" definiert die Beschleunigung und die Geschwindigkeit, mit der sich der Roboterarm zwischen diesen Wegpunkten bewegen wird.

Bewegungsarten

Folgende drei Bewegungsarten stehen zur Auswahl: **MoveJ**, **MoveL** und **MoveP**. Jede Bewegungsart wird weiter unten erklärt.

- **moveJ** führt Bewegungen aus, die im **Gelenkraum** des Roboterarms berechnet werden. Gelenke werden so gesteuert, dass deren Bewegung zeitgleich endet. Diese Bewegungsart sorgt für eine gekrümmte Bewegung des Werkzeugs. Die gemeinsamen Parameter, die für diese Bewegungsart gelten, sind die maximale Gelenkgeschwindigkeit und die Gelenkbeschleunigung und werden in deg/s bzw. deg/s^2 angegeben. Wird gewünscht, dass sich der Roboterarm (ungeachtet der Bewegung des Werkzeugs zwischen diesen Wegpunkten) zwischen Wegpunkten schneller bewegt, ist diese Bewegungsart zu bevorzugen.
- MoveL sorgt für eine lineare Bewegung des Werkzeugmittelpunkts (TCP) zwischen Wegpunkten. Dies bedeutet, dass jedes Gelenk eine komplexere Bewegung ausführt, um die lineare Bewegung des Werkzeugs sicherzustellen. Die gemeinsamen Parameter, die für diese Bewegungsart eingestellt werden können, sind die gewünschte Werkzeuggeschwindigkeit und die Werkzeugbeschleunigung, angegeben in mm/s bzw. mm/s², und auch ein Merkmal.
- **MoveP** bewegt das Werkzeug linear bei konstanter Geschwindigkeit und kreisrunden Blending-Bewegungen und ist für Abläufe wie beispielsweise Kleben oder Ausgeben konzipiert. Die Größe des Blending-Radius ist standardmäßig ein gemeinsamer Wert zwischen allen Wegpunkten. Ein kleinerer Wert sorgt für eine engere Kurve und ein größerer Wert sorgt für eine länger gezogene Kurve. Während sich der Roboterarm bei konstanter Geschwindigkeit durch die Wegpunkte bewegt, kann die Control-Box weder auf die Betätigung eines E/A, noch auf eine Eingabe durch den Bediener warten. Dadurch kann die Bewegung des Roboterarms eventuell angehalten oder ein Schutzstopp ausgelöst werden.
- Circle move kann zu einem moveP hinzugefügt werden, um eine Kreisbewegung zu bewirken. Der Roboter beginnt die Bewegung von seiner aktuellen Position oder seinem Startpunkt aus, bewegt sich durch einen auf der Kreisbahn definierten Zwischenpunkt und einen Endpunkt, der die Kreisbewegung vollendet.

Ein Modus wird verwendet, um die Werkzeugausrichtung durch den Kreisbogen zu berechnen. Mögliche Moduseinstellungen:

- Fixe Orientierung: Werkzeugausrichtung wird nur durch den Startpunkt definiert
- Freie Orientierung: Der Startpunkt geht in den Endpunkt über, um die Werkzeugausrichtung festzulegen

Gemeinsame Parameter

Die Einstellungen der gemeinsamen Parameter (unten rechts auf dem Move -Bildschirm) gelten für den Weg zwischen der vorherigen Position des Roboterarms und dem ersten Wegpunkt unter dem Befehl und von dort zu jedem weiteren der nachfolgenden Wegpunkte. Die Einstellungen des Move-Befehls gelten nicht für den Weg vom letzten Wegpunkt unter diesem "Move" -Befehl.

TCP-Auswahl

Die Art und Weise, wie sich der Roboter zwischen den Wegpunkten bewegt, hängt davon ab, ob der TCP als benutzerdefinierter TCP oder aktiver TCP bestimmt wird. **Aktiven TCP ignorieren** ermöglicht das Anpassen der Bewegung in Bezug auf den Werkzeugflansch.

TCP bei einer Bewegung festlegen

- 1. Gehen Sie zum Programm-Tab, um den TCP für Wegpunkte festzulegen.
- 2. Wählen Sie den Bewegungstyp im Dropdown-Menü rechts unten.
- 3. Unter "Move" wählen Sie eine Option im Dropdown-Menü TCP festlegen.
- 4. Wählen Sie **Aktiven TCP verwenden** oder wählen Sie **einen benutzerdefinierten TCP**. Ebenso kann **Aktiven TCP ignorieren** ausgewählt werden.

Auswahl von Funktionen

Die Funktion vergibt die abzubildenden Wegpunkte unter dem Befehl "Move", wenn diese Wegpunkte festlegt werden (siehe Abschnitt 16.3). Dies bedeutet, dass sich das Programm bei der Bestimmung eines Wegpunktes an die Werkzeugkoordinaten im Bezugs-Koordinatensystem erinnert. Es gibt nur einige wenige Umstände, die einer detaillierteren Erläuterung bedürfen:

Relative Wegpunkte Das Bezugs-Koordinatensystem hat keinen Einfluss auf die relativen Wegpunkte. Die relative Bewegung ist immer hinsichtlich der Orientierung zur **Basis** ausgerichtet.

Abbildung 15.1: Geschwindigkeitsprofil für eine Bewegung. Die Kurve wird in drei Segmente unterteilt: *Beschleunigung, konstante Bewegung* und *Verlangsamung*. Die Ebene der *konstanten Bewegung* wird durch die Geschwindigkeitseinstellung der Bewegung vorgegeben, während der Anstieg und Abfall der Phasen in *Beschleunigung* und *Verlangsamung* durch den Beschleunigungsparameter vorgegeben wird.

- Variable-Wegpunkte Bewegt sich der Roboterarm zu einem variablen Wegpunkt, wird der Werkzeugmittelpunkt (TCP) als die Koordinaten der Variablen im Raum des Bezugs-Koordinatensystems berechnet. Deshalb ändert sich die Roboterarmbewegung für einen variablen Wegpunkt, sobald eine andere Funktion ausgewählt wird.
- **"Variablen" Funktion** Sie können die Position einer Funktion ändern, während das Programm ausgeführt wird, indem Sie der entsprechenden Variablen eine Pose zuordnen.

Gelenkwinkel verwenden

Als Alternative zur 3D-Pose, können Sie das Kontrollkästchen **Gelenkwinkel verwenden** auswählen, wenn Sie MoveJ benutzen, um Wegpunkte mit den Gelenkwinkeln des Roboters zu bestimmen. Ist **Gelenkwinkel verwenden** aktiviert, sind TCP und Optionen für Funktionen nicht verfügbar. Definierte Wegpunkte, die **Gelenkwinkel verwenden** nutzen, werden nicht angepasst, wenn das Programm zwischen Robotern bewegt wird.

Fixer Wegpunkt

Ein Punkt auf der Bahn des Roboters. Wegpunkte sind der wichtigste Faktor eines Roboterprogramms, da sie die Positionen des Roboterarms bestimmen. Ein Wegpunkt mit einer fixen Position wird angelernt, indem der Roboterarm physisch in die entsprechende Position bewegt wird.

Wegpunkte anlernen

Anlernen (Teaching) ist der Begriff dafür, wie dem Roboter vorgegeben wird, den TCP bezüglich eines Merkmals für eine Applikation zu positionieren. Um dem Roboter einen Wegpunkt anzulernen, gehen Sie wie folgt vor:

- 1. Fügen Sie einen Move-Knoten im Programm-Tab ein.
- 2. Verwenden Sie das Dropdown-Menü **TCP einstellen** im Move-Knoten, um den TCP einzustellen.
- 3. Verwenden Sie das Dropdown-Menü **Funktion**, um eine Funktion auszuwählen.
- 4. Verwenden Sie den **Teach-Modus** oder **Jog**, um den Roboter in einer gewünschten Konfiguration zu positionieren.

Verwenden von Wegpunkten

Mit der Verwendung von Wegpunkten wird die angelernte Beziehung zwischen Funktion und TCP in der gegenwärtigen Situation angewandt. Die Beziehung zwischen der Funktion und der TCP, angewendet auf das aktuelle Bezugs-Koordinatensystem, resultiert in der gewünschten TCP-Position. Der Roboter ermittelt daraufhin, wie er sich positionieren muss, um diese TCP-Position mit dem derzeit aktiven TCP umzusetzen. Um einen Wegpunkt zu verwenden, gehen Sie wie folgt vor:

- 1. Verwenden Sie einen vorhandenen Wegpunkt in einem Move-Knoten oder legen Sie den Wegpunkt in einen anderen Move-Knoten
 - (z. B. durch Kopieren und Einfügen oder die "Link"-Taste auf dem Wegpunkt).
- 2. Legen Sie die gewünschten TCP fest.
- 3. Legen Sie die gewünschte Funktion fest.

Festlegung des Wegpunktes Namen der Wegpunkte

Wegpunkte erhalten automatisch einen eindeutigen Namen. Der Name kann durch den Benutzer geändert werden. Wenn Sei ein Link-Symbol auswählen, werden Wegpunkte verknüpft und Positionsinformationen geteilt. Andere Wegpunktinformationen wie Blending-Radius, Werkzeug-/Gelenkgeschwindigkeit und Werkzeug-/Gelenkbeschleunigung werden für jeden einzelnen Wegpunkt konfiguriert, auch wenn sie verknüpft sein könnten.

Blending

Blending ermöglicht dem Roboter einen sanften Übergang zwischen zwei Bewegungsabläufen ohne am dazwischenliegenden Wegpunkt anzuhalten.

Beispiel Betrachten wir beispielsweise eine Pick-and-Place-Anwendung (siehe Abbildung 15.2), bei der sich der Roboter aktuell am Wegpunkt 1 (WP_1) befindet und ein Objekt am Wegpunkt 3 greifen (WP_3) soll. Um Kollisionen mit dem Objekt und anderen Hindernissen (0) zu vermeiden, muss sich der Roboter WP_3 aus der Richtung von Wegpunkt 2 kommend (WP_2) nähern. Es werden also drei Wegpunkte für die Bahn einbezogen, um die Anforderungen zu erfüllen.

Abbildung 15.2: WP_1: Ausgangsstellung, WP_2: Zwischenziel, WP_3: Aufnahmeposition, 0: Hindernis.

Ohne die Konfiguration weiterer Einstellungen führt der Roboter an jedem Wegpunkt einen Stopp aus, bevor er seinen Bewegungsablauf fortsetzt. Für diese Aufgabenstellung ist ein Stopp bei WP_2 nicht erwünscht, da mit einer reibungslosen Bewegung Zeit und Energie eingespart und die Anforderungen dennoch erfüllt werden. Es ist sogar zulässig, dass der Roboter WP_2 nicht genau erreicht, solange der Übergang von Bewegungsablauf eins zu zwei nahe dieser Position stattfindet.

Der Stopp bei WP_2 kann durch Konfigurieren eines Blending für den Wegpunkt vermieden werden und ermöglicht dem Roboter die Berechnung für einen reibungslosen Übergang zur nächsten Bewegung. Der primäre Parameter für das Blending ist ein Radius. Wenn sich der Roboter innerhalb des Blending-Radius des Wegpunktes befindet, kann er von der ursprünglichen Bahn abweichen. Dies ermöglicht schnellere und gleichmäßigere Bewegungen, da der Roboter weder abbremsen noch beschleunigen muss.

Blending-Parameter Neben den Wegpunkten beeinflussen mehrere Parameter den Bewegungsablauf im Blending-Bereich (siehe Abbildung 15.3):

- der Blending-Radius (r)
- die Anfangs- und Endgeschwindigkeit des Roboters (an Position p1 und entsprechend an p2)
- die Bewegungsdauer (z. B. wenn eine bestimmte Dauer für einen Bewegungsablauf vorgegeben wird, beeinflusst dies die Anfangs-/Endgeschwindigkeit des Roboters)
- die Bewegungsart im Blending von bzw. zu (MoveL, MoveJ)

Wird ein Blending-Radius eingestellt, so wird der Roboterarm um den Wegpunkt geführt, so dass der Roboterarm an dem Punkt nicht anhalten muss.

Blending-Bereiche können nicht überlappen, womit ausgeschlossen wird, dass ein eingestellter Blending-Radius mit einem Blending-Radius für einen vorhergehenden oder nachfolgenden Wegpunkt überlappt (siehe Abb. 15.4).

Bedingte Bewegungsabläufe im Blending-Bereich Bewegungsabläufe im Blending-Bereich sind sowohl vom Wegpunkt, in dem der Blending-Radius festgelegt ist, als auch dem in der Programm-struktur nachfolgenden Wegpunkt abhängig. Das heißt, im Programm in Abbildung 15.5 ist der

Abbildung 15.3: Blending über WP_2 mit Radius r, ursprüngl. Blending-Position bei p_1 und letzte Blending-Position bei p_2 . 0 ist ein Hindernis.

Abbildung 15.4: Blending-Radius-Überlappung nicht zulässig (*).

Blendingradius um WP_1 von WP_2 abhängig. Die Folge davon wird offensichtlicher, wenn das Blending wie in diesem Beispiel umWP_2 stattfindet. Es gibt zwei mögliche Endpositionen. Um den nächsten Wegpunkt für das Blending zu bestimmen, muss der Roboter den aktuellen Wert von digital_input[1] bereits beim Eintritt in den Blending-Radius berechnen. Dies bedeutet, dass der Ausdruck **if...then** oder andere notwendige Anweisungen, die den folgenden Wegpunkt bestimmen (z. B. variable Wegpunkte) bereits ausgewertet werden, bevor wir bei WP_2 tatsächlich ankommen. Bei Betrachtung des Programmablaufs klingt dies ein wenig unlogisch. Wenn es sich bei einem Wegpunkt um einen Wegpunkt ohne Blendingradius handelt auf welchen beispielsweise einem If-else-Befehl folgt durch welchen (z. B. mit einem E/A-Befehl) der nächste Wegpunkt bestimmt wird, so wird die Prüfung ausgeführt, sobald der Roboterarm am Wegpunkt anhält.

Abbildung 15.5: WP_I ist der Ausgangswegpunkt und es gibt zwei mögliche endgültige Wegpunkte WP_F_1 und WP_F_2 , je nach einem bedingten Ausdruck (if ... then). Die Bedingung if wird ausgewertet, sobald der Roboterarm den zweiten Übergang (*) erreicht.

Abbildung 15.6: Bewegung und Blending im Gelenkraum (MoveJ) im Vgl. zum kartesischen Raum (MoveL)

Blending-Bereiche In Abhängigkeit von der Bewegungsart (d. h. MoveL, MoveJ oder MOVEP) werden unterschiedliche Blending-Bereiche erzeugt.

• **Blendings in MoveP** Bei Blendings in MoveP folgt die Position des Blending einem Kreisbogen mit konstanter Geschwindigkeit. Die Ausrichtung folgt einem Blending mit sanfter Interpolation zwischen den beiden Bahnen. Das Blending von MoveJ oder MoveL in ein MO-VEP ist möglich. In einem solchen Fall verwendet der Roboter das Kreisbogen-Blending aus MoveP und interpoliert die Geschwindigkeit der beiden Bewegungen. Das Blending von MoveP zu MoveJ oder MoveL ist hingegen nicht möglich. Stattdessen gilt der letzte Wegpunkt des MoveP als Stopp-Punkt ohne Blending. Ein Blending ist nicht möglich, wenn die zwei Bahnen in einem Winkel nahe 180 Grad (Umkehrrichtung) stehen, da dies einen Kreisbogen mit einem sehr kleinen Radius darstellt, dem der Roboter nicht mit konstanter Geschwindigkeit folgen kann. Dies führt zu einer Laufzeitausnahme im Programm, die korrigiert werden

kann, indem eine Anpassung der Wegpunkte in einem weniger spitzen Winkel vorgenommen wird.

- Blending mit MoveJ MoveJ-Blending verursacht eine gleichmäßige Kurve im Gelenkraum. Dies gilt für Blending aus MoveJ zu MoveJ, MoveJ zu MoveL und MoveL zu MoveJ. Das Blending produziert eine glattere und schnellere Flugbahn als die Bewegungen ohne Blending.(siehe Abb. 15.6). Werden Geschwindigkeit und Beschleunigung für das Geschwindigkeitsprofil verwendet, bleibt das Blending innerhalb der Ausführung im Blending-Radius. Wird Zeit statt Geschwindigkeit und Beschleunigung zur Bestimmung des Geschwindigkeitsprofils beider Bewegungen verwendet, folgt der Bewegungsablauf dem Ablauf des ursprünglichen MoveJ. Wenn beide Bewegungen zeitlich eingeschränkt sind, spart der Einsatz von Übergängen keine Zeit.
- **Blendings in MoveL** Bei Blendings in MoveL folgt die Position des Blending einem Kreisbogen mit konstanter Geschwindigkeit. Die Ausrichtung folgt einem Blending mit sanfter Interpolation zwischen den beiden Bahnen. Der Roboter kann seine Bahnbewegung verlangsamen, bevor er dem Kreisbogen folgt, um sehr hohe Beschleunigungen zu vermeiden (z. B. wenn der Winkel zwischen den beiden Bahnen in der Nähe von 180 Grad liegt).

Relativer Wegpunkt

Ein Wegpunkt , dessen Position in Relation zur vorhergehenden Position des Roboterarms angegeben wird, wie z. B. "zwei Zentimeter nach links". Die relative Position wird als Unterschied zwischen den beiden gegebenen Positionen festgelegt (links nach rechts).

Hinweis: Bitte beachten Sie, dass wiederholte relative Positionen den Roboterarm aus dessen Wirkungsbereich heraus bewegen können.

Der Abstand hier ist der kartesische Abstand zwischen dem TCP an beiden Positionen. Der Winkel gibt an, wie sehr die Ausrichtung des TCP sich zwischen beiden Positionen ändert. Genauer gesagt handelt es sich um die Länge des Rotationsvektors, welche die Ausrichtungsänderung angibt.

Variabler Wegpunkt

Ein Wegpunkt, dessen Position durch eine Variable angegeben wird, in diesem Fall berechnete_Pos. Die Variable muss eine *Pose* sein, wie beispielsweise

var=p[0.5,0.0,0.0,3.14,0.0,0.0]. Die ersten drei sind *x,y,z* und die letzten drei beschreiben die Ausrichtung als *Rotationsvektor*, der durch den Vektor *rx,ry,rz* vorgegeben wird. Die Länge der Achse entspricht dem zu drehenden Winkel in Radianten, und der Vektor selbst gibt die Achse an, um die die Drehung erfolgt. Die Position wird immer in Bezug auf einen Bezugsrahmen oder ein Koordinatensystem angegeben, definiert durch die ausgewählte Funktion. Wird ein Übergangsradius auf einen festen Wegpunkt gelegt, wobei der vorangegangene und nachfolgende Wegpunkt variabel ist, oder wird ein Übergangsradius auf einen Variable Wegpunkt gelegt, so wird der Übergangsradius nicht auf Überschneidungen geprüft (siehe 15.5.1). Überschneidet der Übergangsradius bei der Ausführung des Programms einen Punkt, so ignoriert der Roboter diesen und bewegt sich zum nächsten Punkt.

Beispielsweise, um den Roboter 20 mm entlang der z-Achse des Werkzeugs zu bewegen:

```
var_1=p[0,0,0.02,0,0,0]
MoveL
Wegpunkt_1 (Variableposition):
    Verwenden Sie Variable=var_1, Funktion=Werkzeug
```

15.5.2 Richtung

Der Programmknoten **Richtung** gibt eine Bewegung relativ zu zur Funktionsachsen oder TCPs an. Der Roboter verfährt entlang des im Richtung-Programmknoten angegebenen Pfads, bis die Bewegung durch eine **Bis**-Bedingung gestoppt wird.

Hinzufügen einer Richtungsbewegung

- 1. Unter Basic klicken Sie auf **Richtung**, um eine lineare Bewegung zur Programmstruktur hinzuzufügen.
- 2. Definieren Sie die lineare Bewegung im Feld Richtung unter Funktion.

Stoppen einer Richtungsbewegung

1. Klicken Sie im Feld Richtung auf die Schaltfläche **Bis Hinzufügen**, um Stoppkriterien zu definieren und zur Programmstruktur hinzuzufügen.

Sie können Richtungsvektor- Einstellungen für **Werkzeuggeschwindigkeit** und **Werkzeugbeschleunigung** hinzufügen, um die Vektorrichtung für die lineare Bewegung zu definieren. Dies ermöglicht eine erweiterte Verwendung für:

- Das Definieren einer linearen Bewegung relativ zu mehreren Funktionsachsen
- Die Berechnung der Richtung als mathematischer Ausdruck

Die Richtungsvektoren definieren einen benutzerdefinierten Code-Ausdruck, der in einen Einheitsvektor aufgelöst wird. Die Richtungsvektoren [100,0,0] und [1,0,0] haben beispielsweise die gleiche Wirkung auf den Roboter. Stellen Sie die gewünschte Verfahrgeschwindigkeit entlang der X-Achse mit dem Geschwindigkeitsregler ein. Die Zahlenwerte im Richtungsvektor sind nur in Bezug aufeinander relevant.

Bis

Der Programmknoten **Bis** definiert ein Stoppkriterium für eine Bewegung. Der Roboter verfährt entlang eines Pfades und stoppt, wenn ein Kontakt erkannt wird. In der Programmstruktur können Sie Bis-Knoten unter Richtungsknoten und Wegpunktknoten hinzufügen. Für Bewegung können Sie mehrere Stoppkriterien hinzufügen. Die Bewegung stoppt, wenn die erste **Bis** Bedingung erfüllt ist.

		P INS	ROGRAMM < Tallation c	cunbenannt>* lefault	Neu Öffnen	
✔ Basis-Befehle	C	ર	Befehl	Grafik	Variablen	
Bewegen	1 V Roboterprogramm		Stopp	bedinau	na	
Wegpunkt	2 🕈 🕂 FahreLinear		Geben Sie	die Stoppbedir	ngung an	
Richtung	3		Der Robot erfüllt ist	er bewegt sich	in die ausgewäh	nite Richtung, Until (bis) die Stoppbedingung
Warten	4 - F Stoppbedingung					1
Einstellen				Ausdruc	k	<i>f</i> (x)
Meldung						
Halt				Distant	,	0 0
Kommentar				Distanz	-	Y
Ordner Fortgeschritten				Werkzeugko	ntakt	
Assistenten			\rm Für da als 100	s Erkennen ein),0 mm/s emfo	es Kontakts wird hlen	d eine Werkzeuggeschwindigkeit kleiner
				E/A-Inpu	it	
	▲ ♥ ♡ ♂ ₭ 哩 盲 茴		+ 9	Stopbedingun	g hinzufügen	Aktion hinzufügen
O Normal	Geschwindigkeit 🥌			100%		

Im Feld **Bis** können Sie die folgenden Stoppkriterien definieren:

• **Entfernung** Mit diesem Knoten kann eine Richtungsbewegung gestoppt werden, wenn der Roboter eine bestimmte Entfernung zurückgelegt hat. Die Geschwindigkeit wird verlangsamt, so dass der Roboter genau nach der Entfernung stoppt.

- Werkzeug-Kontakt (siehe 15.5.2) Mit diesem Knoten kann eine Bewegung gestoppt werden, wenn das Roboterwerkzeug einen Kontakt erkennt.
- **Ausdruck** Mit diesem Knoten kann die Bewegung an einem benutzerdefinierten Programmausdruck gestoppt werden. Zum Angeben der Stoppbedingung können Sie E/As, Variablen oder Skriptfunktionen verwenden.
- **E/A-Eingang** Mit diesem Knoten kann eine signalgesteuerte Bewegung an einem E/A-Eingang gestoppt werden.

Bis Werkzeug-Kontakt

Der Programmknoten **Bis Werkzeug-Kontakt** kann die Bewegung des Roboters stoppen, wenn ein Kontakt mit dem Werkzeug hergestellt wurde. Die Verzögerung beim Stopp sowie das Einfahren des Werkzeugs sind konfigurierbar.

VORSICHT:

Die Standard-Bewegungsgeschwindigkeit ist für eine Kontakterkennung zu hoch. Eine höhere Bewegungsgeschwindigkeit löst einen Sicherheitsstopp aus, bevor die Werkzeugkontaktbedingung wirksam werden kann. Zur Vermeidung eines Sicherheitsstopps muss die Bewegungsgeschwindigkeit verringert werden. Zum Beispiel: 100 m/s.

HINWEIS:

Bis Werkzeug-Kontakt funktioniert möglicherweise nicht, wenn das montierte Werkzeug vibriert. Zum Beispiel kann ein Sauggreifer mit integrierter Pumpe hochfrequente Vibrationen auslösen.

Der Knoten Bis Werkzeug-Kontakt kann bei Anwendungen wie Stapeln/Abstapeln zur Bestimmung der Höhe gestapelter Objekte eingesetzt werden.

Einfahren bis Kontakt

Mithilfe der Einstellung **Einfahren bis Kontakt** kann der Roboter an den ursprünglichen Kontaktpunkt zurückgefahren werden. Über eine zusätzliche Rückwärtsbewegung kann der Roboter frei oder in Kontaktrichtung verfahren. Dies ist hilfreich, wenn beispielsweise in Greifer Bewegungsraum benötigt oder eine Klemmaktion notwendig ist.

Aktion

Durch Hinzufügen einer **Aktion** kann ein Programmknoten hinzugefügt werden, wenn eine bestimmte **Bis**-Bedingung erfüllt ist. Beispielsweise kann Bis Werkzeug-Kontakt die Greifaktion für ein Greifwerkzeug aktivieren. Wenn keine **Aktion** definiert ist, wird die Programmausführung bis zum nächsten Programmknoten in der Programmstruktur fortgesetzt.

15.5.3 Warten

Warten unterbricht das E/A-Signal oder den Ausdruck für eine bestimmte Zeit. Wird **Nicht warten** ausgewählt, erfolgt keine Maßnahme.

Hinweis: Sobald die Kommunikationsschnittstelle für Werkzeug (TCI) aktiviert wird, ist der Analogeingang am Werkzeug für die Auswahl/den Ausdruck von **Warten auf** nicht verfügbar.

15.5.4 Einstellen

Ausführen Programm	Image: Borregen Image: Bor	PROGRAMM	<unbenannt>* default</unbenannt>	Neu Öffnen Speichern	сс =
✔ Basis-Befehle	C	ک Befehl	Grafik	Variablen	
Bewegen	1 V Roboterprogramm	Einete	llon		
Wegpunkt	2 🕈 🕂 FahreAchse	Wählen Si	e die Aktion, die (der Roboter an dieser Stel	le im Programm ausführen soll. Sie
Richtung	3 Wegpunkt_1	können av	ich Änderungen	in der Roboter-Nutzlast ar	ngeben.
Warten		O Kein	e Aktion		
Einstellen		O Digit	alausgang setzer	<dig. ausgang=""></dig.>	Low 🔻
Meldung		O Anal	ogausgang setze	n <an.output></an.output>	▼ 4,0 mA
Halt		O Einst	ellen <output></output>	-	f(x)
Kommentar		O Einz	elimpuls einsteller	<dig. ausgang=""></dig.>	0,500 s
Ordner		O Insta	llationsvariable u	m eins erhöhen: <th>e> 🔻</th>	e> 🔻
> Fortgeschritten					
> Assistenten					
		🗌 Gesan	ntnutzlast einstell	en 0,00 kg	
		🗆 Akt	iven TCP als Sch	werpunkt verwenden	
		🔲 TCP ei	nstellen	-	
	★ ♥ ♥ ♥ ♥ ■ 箇 面 🛾				lest
~		_			
Normal	Geschwindigkeit 🥌		 100%		Simulation

Setzt entweder digitale oder analoge Ausgänge auf einen vorgegebenen Wert. Digitale Ausgänge können auch so eingestellt werden, dass sie einen einzelnen Impuls senden.

Legen Sie die Tragfähigkeit des Roboterarms mit dem Befehl Einstellen fest. Sie können die Tragfähigkeit anpassen, um zu verhindern, dass der Roboter einen Schutzstopp auslöst, falls das Gewicht am Werkzeug vom erwarteten Gewicht abweicht. Soll der aktive TCP nicht den Schwerpunkt ausmachen, ist der Haken aus dem Kontrollkästchen zu entfernen.

Der aktive TCP kann ebenfalls mit einem Befehl **Einstellen** geändert werden. Aktivieren Sie dazu das Kontrollkästchen und wählen Sie einen der TCP-Offsets aus dem Menü.

Ist der aktive TCP für eine bestimmte Bewegung zum Zeitpunkt der Programmierung bekannt, können Sie die TCP-Auswahl durch Anklicken von **Move** im linken Seitenmenü verwenden (siehe 15.5.1). Weitere Informationen zu benannten TCP-Konfigurationen finden Sie hier (siehe 16.1.1).

15.5.5 Pop-up

	Herregan EA Protocol	PROGRAMM < INSTALLATION d	:unbenannt>* efault	Neu Öffnen Speicherr	h	с с с с	≡
✔ Basis-Befehle		Befehl	Grafik	Variablen			
Bewegen	1 V Roboterprogramm	Meldur	a		Text		•
Wegpunkt	2 P + FahreAchse	Zeigt die fol	gende Meldung	auf dem Bildschirm u	nd wartet darauf, dass		
Richtung	4 – Finstellen	der Benutze	r die Schaltflach	ne "weiter" betatigt.			
Warten	5 X Warten						
Einstellen	6 – 🗖 Meldung				Vorschau Popup		
Meldung							
Halt		PopUp-Typ:					
Kommentar		O Melduni	9				
Ordner	0	▶ O Warnur	ng				
> Fortgeschritten		O Fehler					
> Assistenten							
	★ ♥ ♥ ♥ ₩ ■ ■ ■	Die Prog	rammausführu	ng bei diesem Pop-up	stoppen		
Normal	Geschwindigkeit 🥌		100%		Simu	lation 🔵	

Ein Pop-up , ist eine Meldung, die auf dem Bildschirm angezeigt wird, wenn das Programm diesen Befehl erreicht. Der Meldungsstil ist wählbar und der Text kann mithilfe der Tastatur auf dem Bildschirm eingegeben werden. Der Roboter wartet, bis der Benutzer/Bediener die Schaltfläche "O.K." unter dem Pop-up betätigt, bevor er mit dem Programm fortfährt. Wenn der Punkt "Programmausführung stoppen" ausgewählt ist, hält das Programm bei dieser Meldung an. Hinweis: Nachrichten werden auf maximal 255 Zeichen beschränkt.

15.5.6 Halt

Die Ausführung des Programms wird an dieser Stelle angehalten.

15.5.7 Kommentar

Hier erhält der Programmierer die Möglichkeit, das Programm durch eine Textzeile zu ergänzen. Diese Textzeile hat auf die Ausführung des Programms keinerlei Auswirkung.

Ein **Ordner** wird zur Organisation und Kennzeichnung bestimmter Programmteile, zur Bereinigung der Programmstruktur und zur Vereinfachung des Lesens und Navigierens im Programm eingesetzt.

Ordner haben keine Auswirkungen auf das Programm und seine Ausführung.

15.6 Erweiterte Programmknoten

15.6.1 Schleife

Ausführen Programm Installation	PROGRAMM < unbenannt>* 📴 📷 📮 c INSTALLATION default Heal Officer. spechem. c	
> Basis-Befehle	Q Befehl Grafik Variablen	
 > Basis-Befehle > Fortgeschritten Schleife UnterProg Zuweisung If Script Event Thread Switch Timer Schrauben Home > Assistenten 	Q Befeh Grafik Variablen 1 ✓ Roboterprogramm Schleife Schleife 3 ✓ Wegunkt_1 Bitte wählen Sle, wie oft der Programmtell in dieser Schleife ausgeführt werden soll. Schleife 5 ৺ Warten Endlosschleife Schleife X mal: 6 Thekkung Schleife X mal: Azzahl Schleifendurchläufe 9 ✓ Ordner Schleife Solange die Bedingung erfült ist 11 ✓ Schleife Schleife solange die Bedingung erfült ist 12 ✓ <leer> ✓ scher> 11 Ø Bedingung kontinulerlich prüfen</leer>	
Normal	Geschwindigkeit 100% 🕞 🕤 Simulation	

Die zugrunde liegenden Programmbefehle befinden sich in einer Schleife. In Abhängigkeit von der Auswahl werden die zugrunde liegenden Befehle entweder unbegrenzt, eine gewisse Anzahl oder solange wiederholt wie die vorgegebene Bedingung wahr ist. Bei der Wiederholung für eine bestimmte Anzahl wird eine fest zugeordnete Schleifenvariable (im vorherigen Screenshot Schleife_1 genannt) erstellt, die in Ausdrücken innerhalb der Schleife eingesetzt werden kann. Die Schleifenvariable zählt von 0 bis N - 1.

Bei der Erstellung von Schleifen mit einem Ausdruck als Endbedingung bietet PolyScope eine Option zur kontinuierlichen Bewertung dieses Ausdrucks, sodass die "Schleife" jederzeit während der Ausführung (statt nach jedem Durchlauf) unterbrochen werden kann.

15.6.2 If

If und If...Else-Anweisungen ändern das Verhalten des Roboter aufgrund von Sensoreingängen oder Variablenwerten.

IR

	Image: Sea product PROGRAMM Cunbenannt>* Image: Sea product Image: Sea product C C C Berry Back Example Different Spectrum C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C
> Basis-Befehle	Q Befehl Grafik Variablen
✓ Fortgeschritten	1 V Roboterprogramm
Schleife	2 🕈 🕂 FahreAchse
UnterProg	3 Wegpunkt_1 Einzelne oder mehrere Befehle können z.B. bedingt an einen Eingang oder an den Wert
Zuweisung	4 – Einstellen
If	6 - I Meldung Reating Lanting
Script	7 O Halt
Event	8 – D Ordner
Thread	10 - <leer></leer>
Switch	11 9 C Schleife
Timer	12 - Ceer>
Schrauben	14
Home	15 🕈 🕹 If
	10 - leer >
Assistenten	
	Hinzufügen Elself Entfernen Elself
O Normal	Geschwindigkeit 💶 100% 🕞 🚺 🔲 Simulation 🔵

Im Ausdruck-Editor können Sie die Bedingungen auswählen, die Ausdrücke mit einer If-Anweisung bilden. Wenn eine Bedingung mit True bewertet wird, werden die Anweisungen in diesem If-Befehl ausgeführt. Eine If-Anweisung kann nur eine Else-Anweisung enthalten. Mit Add ElseIf und Remove ElseIf können Sie Elself-Ausdrücke hinzufügen oder entfernen.

Wählen Sie Ausdruck ständig prüfen, um zu ermöglichen, dass If, ElseIf und Loop Anweisungen ausgewertet werden, während die enthaltenen Programmzeilen ausgeführt werden. Wird ein Ausdruck innerhalb einer If-Anweisung Mit False bewertet, werden die Anweisungen ElseIf oder Else befolgt.

HINWEIS:

Befinden sich in einem If-Ausdruck oder einem Loop-Ausdruck Wegpunkte, dann können Sie mit der Option Ausdruck ständig prüfen einen stopj() oder einen stopl() nach dem Ausdruck einfügen, um den Roboterarm sanft zu verzögern. Dies gilt sowohl für If- als auch für Loop-Befehle (siehe Abschnitt 15.6.1).

15.6.3 Unterprogramm

Ausführen Programm Installation	Heregen E/A Protokal	PROGRA INSTALLAT	MM <unbenannt></unbenannt> * ON default	· Da Contra · Neu Öffnen	Speichern	د د د د
> Basis-Befehle	Q	Befe	nl Grafik	Variablen		
✔ Fortgeschritten	1 V Roboterprogramm					Understand
Schleife	2 - <i><leer< i=""> ></leer<></i>	Ein Unt	erprogram erprogramm kan	m_⊥ n entweder auf eir	ne Datei auf der Festplatt	e
UnterProg	3 L Unterprogramm_1	verwei	en oder in dieser	n Programm entha	alten sein.	
Zuweisung		Untorn	rogrammdatol			
If		<keir< td=""><td>e Datei ausgev</td><td>/ählt></td><td></td><td></td></keir<>	e Datei ausgev	/ählt>		
Script					Datei laden	
Event						_
Thread						
Switch		P.				
Timer						
Schrauben						
Home						
🔪 Assistenten		Unte	erprogramm sp	eichern Unt	terprogramm löschen	
			erprogramm ann	and dieses Progra	amms aktualisieren	
	↑ ↓ う ぐ × Ⅲ Ё 亩 		erprogrammbau	n verbergen		
Normal	Geschwindigkeit 🥌		100%	00		Simulation

Ein Unterprogramm kann Programmteile enthalten, die an mehreren Stellen erforderlich sind. Ein Unterprogramm kann eine separate Datei auf der Diskette oder auch versteckt sein, um sie gegen ungewollte Änderungen am Unterprogramm zu schützen.

Unterprogram	m aufrufen						
	Ausführen Programm		PROGRAMM < NSTALLATION C	:unbenannt>* lefault	Neu öffnen	Speichern	د د د د
	> Basis-Befehle	٩	Befehl	Grafik	Variablen		
	✓ Fortgeschritten	1 V Roboterprogramm	Untorn			_	
	Schleife	2 🕈 🕂 FahreAchse	onterp	rogramm	aurrulei	n	
	UnterProg	3 Wegpunkt_1 4 Einstellen	Wählen Sie	nin Linterprogr		aa an diacar Stalla aufar	arufan warden coll
	Zuweisung	5 - X Warten	Keine	ein Onterprogr	▼	ies an dieser stelle aurge	er drent wer den soll.
	If						
	Script	8 - Kommentar					
	Event	9 9 Drdner					
	Thread	10 - - 11 9 2 Schleife					
	Switch	12 - <leer></leer>					
	Timer	13 – La Aufruf					
	Schrauben						
	Home						
	Assistenten						
	Normal	Geschwindigkeit		100%			Simulation

Wenn Sie ein Unterprogramm aufrufen, werden die Programmzeilen im Unterprogramm ausgeführt, bevor zur nächsten Zeile übergegangen wird.

15.6.4 Zuordnung

Weist den Variablen Werte zu. Der berechnete Wert auf der rechten Seite wird der Variablen auf der linken Seite zugeordnet. Dies kann sich bei komplexen Programmen als nützlich erweisen.

Die folgenden Optionen sind in der Dropdownliste unter Befehl verfügbar:

- **Zeile** ermöglicht Ihnen das Schreiben einer einzelnen Zeile von URscript-Code mithilfe des Ausdruck-Editors (15.1.4)
- Datei ermöglicht Ihnen das Schreiben, Bearbeiten bzw. Laden von URscript-Dateien.

Sie können Anweisungen zum Schreiben von URscript im Script-Handbuch auf der Support-Website (http://www.universal-robots.com/support) finden. Funktionen und Variablen in einer URscript-Datei sind für den Einsatz im Programm in PolyScope verfügbar.

15.6.6 Ereignis

Ein Ereignis kann zur Überwachung eines Eingangssignals eingesetzt werden und eine Maßnahme durchführen oder eine Variable einstellen, wenn dieses Eingangssignal auf HIGH wechselt. Wechselt beispielsweise ein Ausgangssignal auf HIGH, kann das Ereignisprogramm 200 ms warten, bevor es das Signal anschließend wieder auf LOW zurücksetzt. Dadurch kann der Hauptprogrammcode erheblich vereinfacht werden, falls eine externe Maschine durch eine ansteigende Flanke anstelle eines HIGH-Levels ausgelöst wird. Ein Ereignis wird einmal pro Kontrollzyklus (2 ms) überprüft.

15.6.7 Thread

UNIVERSAL ROBOTS

Ein Thread ist ein paralleler Vorgang zum Roboterprogramm. Ein Thread kann zur Steuerung einer externen Maschine, unabhängig vom Roboterarm, eingesetzt werden. Ein Thread kann mithilfe von Variablen und Ausgangssignalen mit dem Roboterprogramm kommunizieren.

15.6.8 Schrauben

Der Programmknoten **Schrauben** ist eine einfache Möglichkeit, eine Schraubanwendung für einen angeschlossenen Schraubendreher einzufügen. Die Konfiguration des Schraubendrehers und der Anschluss an den Roboter werden im Tab Installation (siehe 16.1) definiert.

Basis-Befehle			Q	Befehl	Grafik	Variablen			
 Fortgeschritten Schleife UnterProg Zuweisung If Script Event Thread Switch Timer 	1 V Roboterp 2 V V Schraut 3 V Schraut 4 V Schraut 4 V Schraut	rogramm ven vedingung fehle für diese Aufgabe	e unte	Schrauber Schrauber Es mu Richtung Hineir Herau	ben ndreher: Benu ss ein Start-Eir n schrauben us schrauben unkt hinzufüge	itzerdefiniert Ingang und TCP i	n der Installatio	n definiert sein	
Schrauben Home				Prozess					
Assistenten				Der So	hraube folgen:	mit		V	
				Kraft				N	
				max.	Geschwindigke	eit		mm/s	
	< ↑ ↓ つ ⊂	× 🖪 🖻 💼	> =	+ St	opbedingun inzufügen				

Hinzufügen eines Schrauben-Knotens

- 1. Klicken Sie in der Kopfzeile auf Programm.
- 2. Tippen Sie unter Erweitert auf Schrauben.
- Wählen Sie Festziehen, um der Schraube in Anzugsrichtung (nach innen) zu folgen, oder Lösen, um der Schraube in Löserichtung (nach außen) zu folgen. Diese Auswahl hat nur Auswirkungen auf die Roboterbewegung beim Verfolgen der Schraube und auf die Messberechnungen.
- 4. Im Feld **Programmauswahl** können Sie ein Schraubprogramm in Abhängigkeit von den **Programmauswahl**-Signalen in der Installation auswählen.
- 5. Wählen Sie Startpunkt aktivieren, um der Programmstruktur ein MoveL hinzuzufügen, das ausgeführt wird, wenn der Schraubendreher bereits läuft. Wählen Sie Maschinenfehler-Handler aktivieren, um gegebenenfalls die Programmstruktur mit einer Korrekturmaßnahme zu ergänzen, bevor der Schraubvorgang startet.

Wählen Sie unter dem **Vorgang Schraube verfolgen** aus, um den Schraubvorgang folgendermaßen zu beeinflussen:

• **Kraft**: Wählen Sie **Kraft**, um festzulegen, wie viel Kraft auf eine Schraube ausgeübt wird. Wählen Sie dann **Geschwindigkeitsbegrenzung**, damit sich der Roboter mit dieser Geschwindigkeit bewegt, solange er keinen Kontakt mit der Schraube hat.

VORSICHT:

Platzieren Sie den Schraubeinsatz über der Schraube, bevor Sie ein Schraubprogramm starten. Das Ausüben von Kraft auf die Schraube kann die Leistung des Schraubprogramms beeinflussen.

- Geschwindigkeit: Wählen Sie für den Roboter zur Verfolgung der Schraube eine feste Werkzeuggeschwindigkeit und Beschleunigung aus.
- **Ausdruck**: Wählen Sie analog zum If-Befehl (siehe 15.6.2) **Ausdruck** aus, um die Bedingung zu beschreiben, unter der Roboter die Schraube verfolgen soll.

Schrauben Bis

Der Programmknoten Schrauben enthält eine obligatorischen **Bis**-Knoten (bis Erfolg), der die Stoppkriterien für den Schraubvorgang festlegt.

Ausführen Programm Installation	Image: Bewegen E/A Protokol	ROGRAMM <unbenannt>* La braine state</unbenannt> TALLATION default* New öffner	cc speichern cc
> Basis-Befehle	٩	Befehl Grafik Variablen	
Fortgeschritten Schleife UnterProg Zuweisung If Script Event Thread Switch Timer	I Roboterprogramm Stopbedingung Stopbedingung Berfehle für diese Aufgabe unter Stopbedingung Berfehle für diese Aufgabe unter Berfehle für d	Stopbedingung angeben. Der Robot Stopbedingung erreicht ist. Erfolgreich OK Zeit Strecke Ausdruck	ter führt den Schraubprozess aus bis die
Schrauben		Nicht erfolgreich	
Home Assistenten		Nicht OK Strecke	ių.
		Timeout	
	< ★ ★ 5 € X ■ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	+ Stopbedingung hinzufüge	n
Normal	Geschwindigkeit	100%	Simulation

Sie können die folgenden Stoppkriterien definieren:

- **Erfolg**: Das Schrauben wird fortgesetzt, bis der Abschluss der von Ihnen gewählten Option erkannt wird. Sie können nur eine Erfolg-Bedingung hinzufügen.
- **Fehler**: Das Schrauben wird fortgesetzt, bis für die von Ihnen gewählte/n Option/en ein Fehler erkannt wird. Sie können mehr als eine Fehler-Bedingung hinzufügen.

	Erfolg	
	 OK: Das Schrauben wird fort- gesetzt, bis ein OK-Signal vom Schraubendreher erkannt wird. Zeit: Das Schrauben wird bis zu ei- ner definierten Zeit fortgesetzt. Abstand: Das Schrauben wird bis zu einem definierten Abstand fort- gesetzt. 	
	Ausdruck: Das Schrauben wird fortgesetzt, bis eine benutzerdefi- nierte Ausdrucksbedingung erfüllt ist.	
	Fehler	
	 Nicht OK: Das Schrauben wird gestoppt, wenn ein Nicht OK- Signal vom Schraubendreher er- kannt wird. 	
	Abstand: Das Sabrauban wird as	
•	stoppt, wenn der festgelegte Ab- stand überschritten wird.	
15.6.9 Switch

		PROGRAMM <	cunbenannt>* lefault	Neu öffrien Speichern	
> Basis-Befehle	۹	Befehl	Grafik	Variablen	
 Basis-Befehle Fortgeschritten Schleife UnterProg Zuweisung If Script Event Thread Switch Timer Schrauben Home Assistenten 	1 Roboterprogramm PahreAchse Wegpunkt_1 Einstellen X Warten Einstellen X Warten Mekdung O Halt Kommentar Erstellen Schlefe Sche Sche Sche<!--</th--><th>Befehi Switch Siekönnen Programms Eiself-Anwe ausgewählte Switch Switch Standard + Ca</th><th>Grafik Switch-Anweisu zu steuern. Dii sisungen ersetz in Bedingungs- d-Case ase</th><th>Variablen ingen verwenden, um den Ablauf ihres ese können komplexe Ir ern und eine Reihe von Werten der Variablen prüfen. f(x) f(x) keine Auswehl</th><th></th>	Befehi Switch Siekönnen Programms Eiself-Anwe ausgewählte Switch Switch Standard + Ca	Grafik Switch-Anweisu zu steuern. Dii sisungen ersetz in Bedingungs- d-Case ase	Variablen ingen verwenden, um den Ablauf ihres ese können komplexe Ir ern und eine Reihe von Werten der Variablen prüfen. f(x) f(x) keine Auswehl	
Normal	▲◆うぐ X 世 箇 面 〓 Geschwindigkeit 🥌		100%	•••	Simulation

Eine **Switch Case**-Konstruktion bewirkt eine Änderung des Roboterverhaltens basierend auf Sensoreingänge oder Variablenwerte. Verwenden Sie den **Ausdruckseditor**, um die Bedingung zu beschreiben, in welcher der Roboter mit den Unterbefehlen dieses Switch fortfahren soll. Wenn die Bedingung einen dieser Fälle erfüllt, werden die Zeilen in dem jeweiligen Case ausgeführt. Wurde ein Default Case festgelegt, werden die Linien nur dann ausgeführt, wenn keine anderen passenden Fälle wurden gefunden.

Jeder Switch kann mehrere Cases sowie einen Default Case haben. In einem Switch kann immer nur eine Instanz pro Case-Wert definiert sein. Cases können mithilfe der Schaltflächen auf dem Bildschirm hinzugefügt werden. Ein Case-Befehl kann für diesen Switch vom Bildschirm entfernt werden.

15.6.10 Timer

Ein Timer misst die benötigte Zeitdauer, die bestimmte Teile des Programms für die Ausführung benötigen. Eine Programmvariable

15.6.11 Home

Der Home-Knoten verwendet Gelenkwinkeln zum Bewegen des Roboters an eine zuvor festgelegte Position. Wenn der Home-Knoten als Safe Home-Position definiert ist, wird er als Home (Sicherheit) in der Programmstruktur angezeigt. Wenn die Home-Position nicht mit "Sicherheit" synchron ist, ist der Knoten nicht definiert.

15.7 Templates

15.7.1 Palettierung

Dieser Abschnitt beschreibt, wie die Palettierungsvorlage zur Programmierung von Palettierungs-/Depalettierungsaufgaben, zum Aufnehmen und Platzieren von Teilen (d. h. aus Trays, Vorrichtungen usw.) und zur Durchführung wiederholbarer Aktionen für verschiedene, in mehreren Lagen angeordnete Artikel verwendet werden kann. Sie können die Palettierungsvorlage auch für Folgendes verwenden:

- Erstellen unterschiedlicher Muster und Zuordnung zu bestimmten Lagen.
- Fügen Sie nach jeder Lage einen Trenner ein. (siehe 15.7.2).
- Verwenden Sie die Funktionen siehe 16.3 der Paletten-Eigenschaften für eine einfache Ausrichtung Ihrer Palette.

Beachten Sie die Anweisungen im folgenden Abschnitt **Ein Palettierungs-Programm erstellen**, um die Palettierungs-Vorlage zu nutzen.

Ein Palettierungs-Programm erstellen

Ausführen Programm Installation		I	PROGRAMM <	cunbenannt>* lefault	Neu Öffnen Speichern	
> Basis-Befehle		Q	Befehl	Grafik	Variablen	
> Fortgeschritten	1 V Roboterprogramm		Paletti	arung		
✔ Assistenten	2 9 # Pallet_1		raietti	erung		
Suchen	4 - <leer></leer>		Die Palettier Depalettiera	vorlage ermögli ufgaben zu pro	icht dem Anwender auf einfac grammieren. So können zum	he Weise Palletier- und Beispiel Pick und Place
Ralattiorung	5 • • Muster		Aufgaben a werden.	n verschiedener	n Positionen und in verschied	enen Ebenen ausgeführt
Förderband	7		Palettie Depalet	rung tieren		
	11 -		▶ Palettene	igenschaften		
			Bezeichnu	ung	Pallet_1]
			Koordinat Objekthöł	ensystem ne	Basis	
			Letzte	Position merke	Pallet_1_cht	
			Aktionen			
	▲ ╄ ゔ ♂ ₭ ₫ 箇 面		 ✓ Aktion v ✓ Aktion n 	or Palettierung ach Palettierung	hinzufügen g hinzufügen	
Ausschalten	Geschwindigkeit 🧲			100%	\mathbf{b}	Simulation

- 1. Entscheiden Sie, ob Sie eine Funktion anlernen (siehe 16.3) oder eine Basis als Bezugsebene verwenden wollen.
- 2. Klicken Sie im Programm Tab unter Vorlagen auf Palettierung.
- 3. Wählen Sie im Palettierungsbildschirm eine der folgenden Aktionen aus:
 - (a) Wählen Sie Palettierung, um Elemente auf einer Palette zu organisieren.
 - (b) Wählen Sie **Depalettierung**, um Elemente von einer Palette zu entfernen.
- 4. Geben Sie unter Paletten-Eigenschaften den Namen des Programms, die Funktion (siehe Schritt 1), die Objekthöhe und den Namen des Elementzählers für Ihr Programm an. Aktivieren Sie das Kontrollkästchen Position des letzten Elements merken, wenn der Roboter nach einem Neustart mit dem Element fortfahren soll, bei dem er gestoppt wurde.
- 5. Fügen Sie im Bildschirm Palettierung unter **Aktionen** eine der folgenden Aktionen hinzu, die vor oder nach der Palettierungssequenz ausgeführt werden sollen:
 - (a) Aktion vor Palettierung hinzufügen: Diese Aktionen werden vor Beginn der Palettierung ausgeführt.
 - (b) Aktion nach Palettierung hinzufügen: Diese Aktionen werden nach Abschluss der Palettierung ausgeführt.
- Klicken Sie in der Programmstruktur auf den Knoten Muster, um Muster f
 ür Ihre Lagen festzulegen. Eines dieser Arten von Mustern kann in der folgenden Tabelle erstellt werden: Sie können auch w
 ählen, ob Sie einen Trenner zwischen den Lagen einf
 ügen m
 öchten (siehe 15.7.2)

HINWEIS:

Jeder einzelnen Lage kann je ein Muster zugeordnet werden. Wenn die Elemente in einer Lage gleichmäßig angeordnet werden sollen, verwenden Sie Linie oder Gitter. Wenn Sie eine ungleichmäßige Anordnung wünschen, verwenden Sie das Muster Unregelmäßig.

	Linie				
	Wählen Sie zum Anlernen der Positio-				
	nen jedes Element in der Programm-				
	struktur aus:				
	Start_Item_1				
	• End_Item_1				
	Fügen Sie die Anzahl der Elemente mit				
	dem Textfeld Elemente unten am Bild-				
	schirm in Ihre Sequenz ein.				
	Gitter				
	Wählen Sie zum Anlernen der Positio-				
1555	nen jedes Element in der Programm-				
	struktur aus:				
	Corner_Item_1				
	Corner_Item_2				
	Corner_Item_3				
	Corner_Item_4				
	Fügen Sie zum Festlegen der Abmes-				
	sungen des Musters die Anzahl der Zei-				
	len und Spalten in die entsprechenden				
	Textfelder ein.				
	Unregelmäßig				
	Wählen Sie zum Anlernen der Positio-				
	nen jedes Element in der Programm-				
	struktur aus:				
	• Element_1				
	• Element_2				
	• Element_3				
	Klicken Sie auf Element hinzufügen,				
	um ein neues Element in der Sequenz				
	hinzuzufügen und festzulegen.				

- 7. Tippen Sie auf den/die Musterknoten in der Programmstruktur, um dem Roboter lagenspezifische Positionen beizubringen. (z. B. Start-/Endpunkte, Gitterecken und/oder Anzahl der Elemente). Siehe 15.5.1 für Lehranweisungen. Alle Positionen müssen an der Unterseite der Palette angelernt werden. Tippen Sie zum Duplizieren eines Musters in dem Musterknoten-Bildschirm, den Sie duplizieren wollen, auf die Schaltfläche Muster duplizieren.
- 8. Klicken Sie in der Programmstruktur auf den Knoten **Lagen**, um die Lagen in Ihrer Palettierungssequenz zu konfigurieren.
 - Wählen Sie aus dem Dropdown-Menü **Muster wählen** ein Muster für jede Lage aus.
 - Tippen Sie auf die Schaltfläche Lage hinzufügen, um Ihrem Programm weitere Lagen hinzuzufügen. Lagen müssen in der richtigen Reihenfolge hinzugefügt werden, da sie später nicht mehr neu geordnet werden können.
- 9. Tippen Sie in der Programmstruktur auf den Knoten An jedem Element und wählen Sie An

jedem Element oder An jedem Element manuell konfigurieren als Standardoption. Sie sind in den folgenden Abschnitten beschrieben.

Verwendung des Assistenten An jedem Element

Der Assistent An jedem Element definiert die folgenden Aktionen, die bei jedem Element auf einer Palette ausgeführt werden: Referenzpunkt, Annäherungs-Wegpunkt, Werkzeugaktionspunkt-Wegpunkt und Ausgangs-Wegpunkt. Die Annäherungs- und Ausgangs-Wegpunkte für jedes Element verbleiben, unabhängig von den verschiedenen Ausrichtungen der Elemente im Muster stets in der gleichen Ausrichtung und Richtung.

- 1. Klicken Sie in der Programmstruktur auf den Knoten An jedem Element.
- 2. Klicken Sie im Bildschirm An jedem Element auf Weiter.
- 3. Tippen Sie **Hierher bewegen** und halten dann die Schaltfläche **Auto** gedrückt oder verfahren Sie den Roboter mit der Schaltfläche **Manuell** zum Referenzpunkt.
- 4. Tippen Sie auf **Weiter** und auf **Nächster**.
- 5. Klicken Sie auf **Wegpunkt setzen**, um den Annäherungs-Wegpunkt anzulernen (siehe 15.5.1). Klicken Sie auf **Weiter**.
- 6. Wiederholen Sie Schritt 3.
- 7. Klicken Sie auf **Wegpunkt setzen**, um den Ausgangs-Wegpunkt anzulernen (siehe 15.5.1). Klicken Sie auf **Weiter**.
- 8. Klicken Sie auf Fertig.
- 9. Jetzt können Sie im Ordner Werkzeugaktionen in der Programmstruktur geeignete Aktionsknoten für Greifer hinzufügen.

Die folgende Tabelle zeigt die mit Bei jedem Assistenten definierten Aktionen.

	Werkzeugaktionspunkt-Wegpunkt: Die Lage und
	Position, an der sich der Roboter befinden soll, wenn
	für jedes Element in einer Lage eine Aktion ausge-
	führt wird. Der Werkzeugaktionspunkt-Wegpunkt
	ist der Standard-Referenzpunkt, kann aber durch
	Klicken auf den Knoten Werkzeugaktionspunkt-
	Wegpunkt in der Programmstruktur bearbeitet
	werden.
	Im Assistent ist der Referenzpunkt die erste
Werkzeugaktionspunkt	Position in der ersten definierten Lage auf der
	Palette. Der Referenzpunkt wird verwendet,
	um dem Roboter den Annäherungs-Wegpunkt,
	den Werkzeugaktionspunkt-Wegpunkt und den
	Ausgangs-Wegpunkt für jedes Element in einer
	Lage zu vermitteln.
	Annäherungs-Wegpunkt: Die kollisionsfreie Positi-
	on und Richtung, in die der Roboter bei der Annähe-
	rung an ein Element in einer Lage verfahren soll.
1079 m	
Annäherung	
	Workzougaktion: Die Aktion die das Poboterwerk-
	zeug für jedes Element ausführen soll
	Zeug für jedes Element ausführen son.
+ +	
Werkzeugaktion	
	Ausgangs-Wegpunkt: Die Position und Richtung, in
	die der Roboter beim Entfernen von einem Element
	in einer Lage verfahren soll.
î 💻 🏹	
Ausgang	

Verwendung der manuellen Konfiguration

- 1. Klicken Sie in der Programmstruktur auf den Knoten An jedem Element.
- 2. Klicken Sie im Startbildschirm An jedem Element auf Manuelle Konfiguration.
- 3. Wählen Sie aus dem Dropdown-Menü ein Muster und ein Referenzpunkt-Element aus. Klicken Sie auf **Diesen Referenzpunkt verwenden**, um den Referenzpunkt zu setzen.
- 4. Klicken Sie auf Hierher bewegen, um den Roboter zum Referenzpunkt zu verfahren.
- 5. Klicken Sie in der Programmstruktur auf den Knoten **Annäherung**, um dem Roboter den Annäherungs-Wegpunkt anzulernen (siehe 15.5.1). Der Annäherungs-Wegpunkt verbleibt, unabhängig von den verschiedenen Ausrichtungen des Elements, stets in der gleichen Ausrichtung und Richtung.
- 6. Klicken Sie in der Programmstruktur auf den Knoten An jedem Element.
- 7. Wiederholen Sie Schritt 4.
- 8. Klicken Sie in der Programmstruktur auf den Knoten **Ausgang**, um dem Roboter den Wegpunkt für den Ausgang anzulernen (siehe 15.5.1).
- 9. Jetzt können Sie im Ordner Werkzeugaktionen in der Programmstruktur geeignete Aktionsknoten für Greifer hinzufügen.

15.7.2 Palettierungssequenz

Trenner zwischen den Lagen einfügen

In diesem Abschnitt wird beschrieben, wie Trenner zwischen den Lagen in einer Palettierungssequenz hinzugefügt werden können.

- 1. Wählen Sie in der Programmstruktur den Knoten Muster aus.
- 2. Wählen Sie im Bildschirm **Muster** den Menüpunkt **Trenner** aus und definieren die Höhe. im Textfeld **Trenner-Höhe** Wenn keine Höhe definiert ist, wird das Programm nicht ausgeführt.
- 3. Wählen Sie **Lagen** in der Programmstruktur aus. Wählen Sie auf dem Lagenbildschirm aus, zwischen welchen Lagen die Trenner eingefügt werden sollen (Trenner werden automatisch zwischen den einzelnen Lagen platziert).
- 4. Klicken Sie in der Programmstruktur auf den Knoten **Trenner**. Klicken Sie auf **Trenner setzen**, um die Position des Trenners zu vermitteln.
- 5. Wählen Sie zwischen der Standardoption (A) Trenner-Assistent oder der Option (B) Manuelle Konfiguration der Trennersequenz. Nachstehend finden Sie die Anleitung für jede Option.

Wenn der Assistent abgeschlossen ist oder Sie den Assistenten abbrechen, wird in der Programmstruktur unter Trenner-Aktion eine Vorlage angezeigt. Zusätzlich zum Ordner Werkzeugaktion können Sie unter dem Knoten Trenner-Aktion einen der folgenden Ordner auswählen:

UNIVERSAL ROBOTS

- Aufnahme Trenner legt die Stelle fest, an der der Roboter die Trenner für die Palettierung aufnimmt
- Ablage Trenner ist die Stelle, an der die Trenner bei Depalettierung abgelegt werden

Verwendung des Trenner-Assistenten

- 1. Klicken Sie in der Programmstruktur auf den Knoten **Trenner-Aktion**.
- 2. Klicken Sie im Bildschirm Trenner-Aktion auf Weiter.
- Klicken Sie auf die Schaltfläche Hierher bewegen und halten Sie die Schaltfläche Auto gedrückt oder verfahren Sie den Roboter mit der Schaltfläche Manuell zum Trennerpunkt. Klicken Sie auf die Schaltfläche Fortsetzen. Klicken Sie auf Weiter.
- 4. Klicken Sie auf **Wegpunkt setzen**, um den Annäherungs-Wegpunkt anzulernen (siehe 15.5.1). Klicken Sie auf **Weiter**.
- 5. Wiederholen Sie Schritt 3.
- 6. Klicken Sie auf **Wegpunkt setzen**, um den Ausgangs-Wegpunkt anzulernen (siehe 15.5.1). Klicken Sie auf **Weiter**.
- 7. Klicken Sie auf **Fertig**.
- 8. Jetzt können Sie in den Ordnern Aufnahme Trenner, Ablage Trenner und Werkzeugaktionen in der Programmstruktur geeignete Aktionsknoten hinzufügen.

Verwendung der manuellen Trenner-Konfiguration

- 1. Klicken Sie in der Programmstruktur auf den Knoten Trenner-Aktion.
- 2. Klicken Sie im Startbildschirm Trenner-Aktion auf Manuelle Konfiguration.
- 3. Klicken Sie auf **Zum Trennerpunkt bewegen**, um den Roboter zum Trennerpunkt zu verfahren.
- 4. Klicken Sie in der Programmstruktur auf den Knoten Annäherung, um dem Roboter den Annäherungs-Wegpunkt anzulernen (siehe 15.5.1).
- Klicken Sie in der Programmstruktur auf den Knoten Trenner-Aktion. Wiederholen Sie Schritt
 3.
- 6. Klicken Sie in der Programmstruktur auf den Knoten Ausgang, um dem Roboter den Ausgangs-Wegpunkt anzulernen (siehe 15.5.1).
- 7. Jetzt können Sie in den Ordnern Aufnahme Trenner, Ablage Trenner und Werkzeugaktionen in der Programmstruktur geeignete Aktionsknoten hinzufügen.

Optionen zur Anpassung eines Palettierungs-Programms

Sie können Ihr Palettierungs-Programm in der folgenden Weise anpassen:

- Passen Sie die Palette an oder positionieren Sie sie neu, nachdem Sie ein Palettierungsprogramm erstellt haben, indem Sie die Palettenfunktion neu anlernen. (siehe 16.3). Die Palettierreihenfolge ist relativ zum Feature festgelegt, so dass sich alle anderen Programmkomponenten automatisch an die neu angelernte Position anpassen.
- Sie können die Eigenschaften der Bewegungsbefehle bearbeiten (siehe 15.5.1).
- Sie können die Geschwindigkeiten und Blend-Radien ändern (siehe 15.5.1).
- Sie können den Sequenzen An jedem Element oder Trenner-Aktion weitere Programmknoten hinzufügen.

15.7.3 Suchen

Die Suchfunktion verwendet einen Sensor, um zu bestimmen, wann die korrekte Position erreicht ist, um ein Element zu fassen oder loszulassen. Der Sensor kann ein Drucktastenschalter, ein Drucksensor oder ein kapazitiver Sensor sein. Diese Funktion ist für Arbeiten an Stapeln aus Artikeln mit unterschiedlicher Stärke konzipiert, oder wenn die genauen Positionen der Artikel nicht bekannt oder schwierig zu programmieren sind.

Bei der Programmierung eines Stapelvorgangs ist der Ausgangspunkt s, die Stapelrichtung d und die Stärke der Artikel auf dem Stapel i zu definieren.

Dazu ist die Voraussetzung für die nächste Stapelposition sowie eine spezielle Programmabfolge, die an jeder Stapelposition ausgeführt wird, zu definieren. Auch Geschwindigkeit und Beschleunigungen müssen für die Bewegung im Stapel bestimmt werden.

Beim Stapeln bewegt sich der Roboterarm in die Ausgangsposition und dann in die *Gegenrichtung*, um die nächste Stapelposition zu suchen. Wenn gefunden, merkt sich der Roboter die Position und führt die spezielle Abfolge aus. Das nächste Mal startet der Roboter die Suche aus dieser Position, erweitert um die Stärke des Elements in der Stapelrichtung. Das Stapeln ist beendet, wenn die Stapelhöhe eine bestimmte Anzahl erreicht hat oder der Sensor ein Signal gibt.

Stapeln

Abstapeln

Basis-Derenie		Q	Befehl	Grafik	Variablen		
> Fortgeschritten	1 Soboterprogramm						
🗸 Assistenten	2 9 4 FahreAchse		Entstap	ein			
Suchen	3 Gegpunkt_1						
Suchen	4 – Einstellen						
Kraft	5 – 🕱 Warten						
Palettierung	6 – 🗖 Meldung						
Eördorhand	7 🕘 Halt			Das E	Entstapeln wird durch folgende Para	meter definiert:	
rorderband	8 – 🗩 Kommentar				A		
	9 🕈 🖿 Ordner			B B: Ric	: Ausgangsposition :htung des Stapels - Anfang		
	10			C: Ric	htung des Stapels - Ende		
(👔 11 📍 🔁 Schleife			C D: Dic	cke des Stapelteils		
	12 -		UL	(A)			
	13 – L Aufruf						
	14 ar_2:=2 * force()						
	15 🗣 🕨 If						
	16 - <leer></leer>		Die nächste S	tapelposition ist	erreicht, wenn:		
	1/ B Script				f(x)		
	18 • Switch				_		
			Dicke des S	stapelteils	Übergeordnete Parameter		
	20 V Entstapeln			0.0 mm	Werkzeuggeschwindigkelt	250	mm/s
	21 StartPos 1				Werkzeugbeschleunigung	1200	mm/s
	22 0 0/264	~	_				

Beim Abstapeln bewegt sich der Roboterarm von der Ausgangsposition in die angegebene Richtung, um nach dem nächsten Element zu suchen. Die Voraussetzung auf dem Bildschirm bestimmt, wann das nächste Element erreicht wird. Wenn die Voraussetzung erfüllt wird, merkt sich der Roboter die Position und führt die spezielle Abfolge aus. Das nächste Mal startet der Roboter die Suche aus dieser Position, erweitert um die Stärke des Elements in der Stapelrichtung.

Ausgangsposition

Das Stapeln beginnt mit der Ausgangsposition. Wird die Ausgangsposition weggelassen, fängt das Stapeln an der aktuellen Position des Roboterarms an.

Richtung

Die Richtung wird durch zwei Punkte angezeigt und wird als Differenz der TCP-Punkt 1 und 2 ermittelt.

Hinweis: Eine Richtung berücksichtigt nicht die Ausrichtung der Punkte.

Ausdruck der nächsten Stapel-Position

Der Roboterarm bewegt sich entlang des Richtungsvektors, während er fortlaufend bewertet, ob die nächste Stapel-Position erreicht worden ist. Wenn der Ausdruck als Wahr bewertet wird, wird die spezielle Abfolge ausgeführt.

"VorStart"

Die optionale VorStart-Abfolge wird kurz vor Anfang des Stapelvorgangs ausgeführt. Dies kann genutzt werden, um auf Freigabesignale zu warten.

"NachEnde"

Die optionale NachEnde-Abfolge wird kurz nach Ende des Stapelvorgangs ausgeführt. Dies kann genutzt werden, um ein Signal für Fließbandbewegung zur Vorbereitung auf den nächsten Stapel zu geben.

Einlege/Entnahme-Sequenz

Die Einlege/Entnahme-Sequenz ist eine spezielle Programmsequenz, die bei jeder Stapelposition ausgeführt wird, ähnlich dem Palettiervorgang . .

15.7.4 Kraft

Im Wirkungsbereich des Roboters erlaubt der **Kraftmodus** eine Anpassung und Kraftanwendung in konformen Achsen. Alle Roboterarmbewegungen im Rahmen eines **Kraft**-Befehls erfolgen im **Kraftmodus**. Bei Bewegung des Roboterarms im **Kraftmodus** können eine oder mehrere Achsen ausgewählt werden, in denen sich der Roboterarm konform verhält. Der Roboterarm geht mit der Umgebung entlang einer vorgegebenen Achse konform. d. h. der Roboterarm passt seine Position automatisch an, um die vorgegebene Kraft zu erreichen. Der Roboterarm kann auch selbst auf seine Umgebung (z. B. ein Werkstück) Kraft ausüben.

Der **Kraftmodus** eignet sich für Anwendungen, bei denen die eigentliche TCP-Position entlang einer vorgegebenen Achse keine ausschlaggebende Bedeutung hat, sondern eher eine bestimmte Kraft entlang dieser Achse benötigt wird. Dies ist beispielsweise der Fall, wenn der Roboter-TCP auf eine gekrümmte Oberfläche trifft oder beim Schieben oder Ziehen eines Werkstücks. Der **Kraftmodus** lässt sich auch auf bestimmte Drehmomente um vorgegebene Achsen anwenden. Hinweis: Trifft der Roboterarm auf einer Achse mit Krafteinstellung ungleich Null auf keinerlei Hindernis, so tendiert er entlang/an dieser Achse zur Beschleunigung.

Auch wenn eine Achse als konform ausgewählt wurde, versucht das Roboterprogramm den Roboter entlang dieser Achse zu bewegen. Mithilfe der Kraftregelung ist jedoch sichergestellt, dass der Roboterarm die vorgegebene Kraft dennoch erreicht.

HINWEIS:

Wenn sich ein Kraftmodus innerhalb von If, ElseIf oder Loop befindet und die Option Ausdruck ständig prüfen ausgewählt ist, können Sie am Ende des Ausdrucks ein end_force_mode()-Script hinzufügen, um die Kraftregelung zu beenden.

WARNUNG:

- 1. Vermeiden Sie zu starke Verlangsamung kurz vor Eintritt in den Kraftmodus.
- 2. Vermeiden Sie zu starke Beschleunigung im Kraftmodus, da dies zu Genauigkeitsverlusten bei der Kraftregelung führt.
- 3. Vermeiden Sie parallele Bewegungen zu konformen Achsen vor Eintritt in den Kraftmodus.

Auswahl von Funktionen

Im **Funktionsmenü** wird das vom Roboter während des Betriebs im Kraftmodus zu verwendende Koordinatensystem (Achsen) ausgewählt. Die im Menü enthaltenen Funktionen sind diejenigen, die bei der Installation festgelegt wurden, (siehe 16.3).

Kraftmodustyp

Es gibt vier verschiedene Kraftmodustypen, die bestimmen, wie das Bezugs-Koordinatensystem jeweils zu interpretieren ist.

- **Einfach**: In diesem Kraftmodus ist nur eine Achse konform. Die Kraftanwendung entlang dieser Achse ist anpassbar. Die gewünschte Kraft wird immer entlang der z-Achse des Bezugs-Koordinatensystems angewendet. Bei Linienfunktionen geschieht dies entlang der y-Achse.
- **Rahmen**: Der Rahmen-Kraftmodus ermöglicht eine erweiterte Anwendung. Die Positionsanpassung und die Kräfte in allen sechs Freiheitsgraden können hier unabhängig voneinander eingestellt werden.
- **Punkt**: Bei Auswahl des Punkt-Kraftmodus verläuft die y-Achse des Task-Rahmens vom Roboter-TCP zum Ursprung des Bezugs-Koordinatensystems. Der Abstand zwischen dem Roboter-TCP und dem Ursprung des Bezugs-Koordinatensystems muss mindestens 10 mm betragen. Bitte beachten Sie, dass sich der Task-Rahmen während der Ausführung mit der

Position des Roboter-TCPs ändert. Die x- und z-Achse des Task-Rahmens sind von der ursprünglichen Ausrichtung des Bezugs-Koordinatensystems abhängig.

Bewegung: Bewegung bedeutet, dass sich der Task-Rahmen mit der Richtung der TCP-Bewegung verändert. Die x-Achse des Task-Rahmens ist eine Projektion der TCP-Bewegungsrichtung auf der Ebene zwischen x- und y-Achse des Bezugs-Koordinatensystems. Die y-Achse ist orthogonal zur Bewegung des Roboterarms ausgerichtet und liegt in der x-y-Ebene des Bezugs-Koordinatensystems. Dies kann beim Entgraten entlang eines komplexen Pfades hilfreich sein, bei dem eine zur TCP-Bewegung senkrechte Kraft benötigt wird.
 Hinweis: Im Falle eines Stillstandes des Roboterarms : Wird in den Kraftmodus übergegangen, wenn der Roboterarm stillsteht, so gibt es keine konformen Achsen bis die TCP-Geschwindigkeit über Null liegt. Wenn der Roboterarm später (immer noch im Kraftmodus) wieder stillsteht, hat der Task-Rahmen die gleiche Ausrichtung wie zu dem Zeitpunkt, als die TCP-Geschwindigkeit das letzte Mal über Null lag.

Für die letzten drei Kraftmodustypen wird der tatsächliche Task-Rahmen während der Ausführung im Tab (siehe 15.3) angezeigt, wenn der Roboter im Kraftmodus betrieben wird.

Auswahl des Kraftwertes

- Der Kraft- oder Drehmomentwert kann für konforme Achsen eingestellt werden, so dass der Roboterarm seine Position anpasst, um die ausgewählte Kraft zu erreichen.
- Bei nichtkonformen Achsen folgt der Roboterarm der Bahn, die mit dem Programm festgelegt wurde.

Für Übersetzungsparameter wird die Kraft in Newton [N] angegeben, für Rotationsparameter wird das Drehmoment in Newtonmeter [Nm] angegeben.

HINWEIS:

Folgende Schritte sind erforderlich:

- Verwenden Sie die Scriptfunktion Festlegung_TCP-_Kraft() in einem separaten Thread, um Ist-Kraft und -Drehmoment auszulesen.
- Korrigieren Sie den Vektor f
 ür den Schl
 üssel, falls die tats
 ächliche Kraft und/oder Drehmoment niedriger sein sollte als ben
 ötigt.

Geschwindigkeitsbegrenzung

Kartesische Höchstgeschwindigkeit ist für konforme Achsen einstellbar. Der Roboter bewegt sich bei dieser Geschwindigkeit mit Kraftregelung, solange er nicht mit einem Objekt in Berührung kommt.

Testeinstellungen für Kraft

Über den als **Test** gekennzeichneten Ein-/Aus-Schalter wird die **Freedrive**-Taste hinten am Teach Pendant vom normalen Freedrive-Modus auf das Testen der Kraft umgeschaltet. Wird bei eingeschaltetem **Testschalter** die **Freedrive**-Taste hinten am Teach Pendant gedrückt, führt der Roboter den Kraftbefehl ohne Durchlauf des Programms direkt aus, sodass die Einstellungen vor der eigentlichen Ausführung des Programms geprüft werden können. Diese Funktion ist besonders nützlich, um sicherzustellen, dass konforme Achsen und Kräfte korrekt ausgewählt und eingestellt wurden. Halten Sie den Roboter-TCP einfach mit einer Hand, drücken Sie mit der anderen Hand die **Freedrive**-Taste und beobachten Sie, in welche Richtungen der Roboterarm bewegt oder nicht bewegt werden kann. Nach Verlassen dieses Bildschirms wird der Test-Schalter automatisch abgeschaltet, so dass die **Freedrive**-Taste hinten am Teach Pendant wieder für den freien **Freedrive**-Modus genutzt werden kann.

Hinweis: Die **Freedrive**-Taste ist nur wirksam, wenn eine gültige Funktion für den Kraft-Befehl ausgewählt wurde.

15.7.5 Fließband-Tracking

Fließband-Tracking ermöglicht es dem Roboterarm, die Bewegung von bis zu zwei Fließbändern zu verfolgen. Fließband-Tracking wird im Tab "Installation" festgelegt (siehe Abschnitt 16.1.10).

ren Programm Installatio	n 🖶 💭 M Bewegen E/A Protokal	PROGRAMM <unbenannt>*</unbenannt> INSTALLATION default*	Neu Öffnen	Speichern	с с с с
Allgemein	Einstellungen für Förderband	lverfolgung			
ТСР		·····jj			
Montage	☐ Fließbandverfolgung aktivieren				
E/A- Einstellung	Förderband-Parameter				
Variablen	Encoder-Typ		~		
Autostart					
Sanfter Übergang					
Förderband					
Schrauben	Parameter für Förderbandsbandver	folgung			
Home	Förderbandtyp auswählen		Ŧ		
Werkzeug E/A					
Sicherheit					
Koordinatensys					

Der Programmknoten "Fließband-Tracking" steht im Tab Programm unter dem Tab Vorlagen zur Verfügung. Alle Bewegungen unter diesem Knoten sind beim Fließband-Tracking erlaubt, stehen aber im Verhältnis zu der Fließbandbewegung. Übergänge sind beim Beenden des Fließband-Trackings nicht erlaubt, sodass der Roboter vollständig vor der nächsten Bewegung stoppt.

Verfolgen eines Fließbands

- 1. Klicken Sie in der Kopfzeile auf Programm.
- Tippen Sie auf Vorlagen und wählen Sie Fließband-Tracking, um einen Fließband-Tracking-Knoten zur Programmstruktur hinzuzufügen. Alle Bewegungen unter dem Fließband-Tracking-Knoten verfolgen die Bewegung des Fließbands.
- 3. Wählen Sie unter Fließband-Tracking in der Dropdownliste "Fließband auswählen" **Fließband 1** oder **Fließband 2**, um festzulegen, welches Fließband zu verfolgen ist.

HINWEIS:

Wenn sich ein Fließband-Tracking von If, ElseIf oder Loop befindet und die Option Ausdruck ständig prüfen ausgewählt ist, können Sie am Ende des Ausdrucks ein end_conveyor_tracking()-Script hinzufügen, um das Fließband-Tracking zu beenden.

15.8 URCaps

15.8.1 Remote-TCP und Werkzeugpfad URCap

Der Remote-TCP und der Werkzeugpfad URCap erlauben es Ihnen, Remote Tool Center Points (RTCP) einzustellen, wobei der Werkzeugmittelpunkt ein fester Punkt im Raum mit einem relativen Bezug zur Roboterbasis ist. Der Remote-TCP und der Werkzeugpfad URCap erlauben es Ihnen darüber hinaus, Wegpunkte und Kreisbewegungen zu programmieren sowie Roboterbewegungen zu generieren, die auf importierten Werkzeugpfad-Dateien basieren und in CAD/CAM-Software von Fremdanbietern definiert wurden.

Für die Verwendung von Remote-TCP URCaps muss Ihr Roboter zuvor registriert werden (siehe 11.4). Der RTCP funktioniert in Anwendungen, bei denen der Roboter Elemente relativ zu einem fixierten Werkzeug greifen und bewegen muss. Der RTCP dient zusammen mit den Befehlen RTCP_MoveP und RTCP_CircleMove dazu, ein gegriffenes Teil mit konstanter Geschwindigkeit, relativ zum fixierten Werkzeug zu bewegen.

	PROGRAMM Sample 📴 📷 C C C
🔪 Allgemein	Remote TCP & Toolpath
 > Allgemein > Sicherheit > Koordinatensys > Feldbus > URCaps Remote TCP & Toolpath 	Remote TCP & Toolpath Starten Sie den Controller vor Verwendung dieser URCap: Start Stopp Controller-Status: LÅUFT Wählen Sie unten auf Basis Ihrer Anwendung eine Option aus: Remote TCP Werkzeugpfadbeweg Lin. & zirk. Bewegung Normaler TCP Werkzeugpfadbeweg
Spannung AUS	Geschwindigkeit - 100% G G Simulation

Ähnlich wie bei einem normalen TCP (siehe 16.1.1) können Sie einen RTCP in der Tab Installation definieren und benennen. Außerdem können Sie die folgenden Aktionen ausführen:

- Hinzufügen, Umbenennen, Ändern und Entfernen von RTCPs
- Unterscheiden von Standard- und aktiven RTCPs
- Anlernen der RTCP-Position
- Kopieren der RTCP-Ausrichtung

Einrichtung eines RTCP über eine Funktion

Richten Sie einen RTCP über eine Funktion ein, um den Roboter relativ zum RTCP bewegen zu können und dabei RTCP-Wegpunkte und RTCP-Kreisbewegungen aufzunehmen.

- 1. Tippen Sie auf das Plus-Symbol, um einen neuen RTCP**RTCP** zu erstellen. Oder wählen Sie aus dem Dropdown-Menü einen vorhandenen RTCP aus.
- 2. Tippen Sie auf das Dropdown-Menü **Werte von einer Punktfunktion kopieren** und wählen Sie eine Funktion aus. Prüfen Sie, ob die RTCP-Ausrichtungswerte mit denen der ausgewählten Funktion übereinstimmen.

Allgemein	Remote TCP & Toolpath	
Sicherheit	Anleitung Remote TCP	
Koordinatensys	Pomoto Tool Contor Doint	
Feldbus	Im Hinblick auf das Grundgestell des Roboters definiert.	f
🖊 URCaps		
Remote TCP & Toolpath	Position Legen Sle mithilfe des Assistenten die Position fest:	
	X 0.00 mm	
	Y 0.00 mm	
	Y Remote TCP	6
	Ausrichtung Werte aus einem Koordinatensystem kopleren:	
	RX 0,0000 rad	
	RY 0,0000 rad	
	RZ 0,0000 rad	

15.8.2 Bewegungsarten für Remote-TCP

RTCP_MoveP

Wie bei einem normalen MoveP definiert der RTCP_MoveP die Werkzeuggeschwindigkeit und die Beschleunigung, mit der der Roboterarm relativ zum Remote-TCP bewegt wird. Siehe 16.1.1.

RTCP Circle Move

Wie bei einer normalen Kreisbewegung kann der RTCP CircleMove zu einem RTCP_MoveP hinzugefügt werden, um Kreisbewegungen auszuführen. Siehe 16.1.1.

HINWEIS:

Die maximale Geschwindigkeit einer Kreisbewegung kann unter dem angegebenen Wert liegen. Wenn der Kreisradius *r* und die maximale Beschleunigung *A* ist, dann kann die maximale Geschwindigkeit aufgrund der Zentripetalbeschleunigung nicht größer werden als *Ar*.

15.8.3 RTCP-Wegpunkt

Wie normale Wegpunkte dienen RTCP-Wegpunkte einer linearen Bewegung eines Werkzeugs mit konstanter Geschwindigkeit und kreisförmigen Blend-Bewegungen. Die Standardgröße für den

Blend-Radius ist ein gemeinsamer Wert zwischen allen Wegpunkten. Ein kleinerer Blend-Radius schärft die Wegkurven. Ein größerer Blend-Radius glättet den Pfad. RTCP-Wegpunkte werden angelernt, indem der Roboterarm physisch in eine gewünschte Position bewegt wird.

Ausführen Programm Instalation		IN	PROGRAMM NSTALLATION	Sample default	Г . Neu	Öffnen Speichern	in.	c c	с Ш
✓ Basis-Befehle	۹	E	Befehl	Grafik	v	/ariablen			
Bewegen Wegpunkt	1 ▼ Roboterprogramm 2 ♥ ▼ RTCP_MoveP 3 ■ RTCPWaypoint 1	R	lemote	-TCP-V	Vegj	punkt			
Richtung	4 RTCPToolpath_1		🖉 R	TCPWaypc	pint_1				
Einstellen			Weg	ounkt fes	tlegen	ı	Hierher b	ewegen	
Meldung		0	Gemeins	amen	dan	Gemeins	same Parameter		
Halt		C	Blendrad	ius verwer	luen	O Werkzei	uggeschwindigkeit	10	0 mm/s
Ordner		Ð	25	i mm		Werkzeu	ugbeschleunigung	100	0 mm/s ²
> Fortgeschritten									
> Assistenten		I F	+ Wegpur	nkt					
> URCaps			+ CircleM	ove	ī				
			+ Werkze	ugpfad	ī				
					_				
	▲ ╄ ७ ♂ ₭ ₫ Ё 前 Ξ								
Spannung AUS	Geschwindigkeit 🥌		-	100%			0	Simulatior	

Anlernen der RTCP-Wegpunkte

- 1. Fügen Sie im Tab Programm einen **RTCP_MoveP** Knoten ein.
- 2. Tippen Sie auf dem RTCP_MoveP-Knoten auf **Einstellen**, um den Bildschirm Move aufzurufen.
- Verwenden Sie im Bildschirm Move den Teach-Modus oder Jog, um den Roboter in einer gewünschten Konfiguration zu positionieren.
- 4. Tippen Sie zur Bestätigung auf das grüne Häkchen.

Konfiguration eines RTCP-Wegpunkts

Verwenden Sie Überblendungen, damit der Roboter reibungslos zwischen zwei Bahnkurven wechseln kann. Tippen Sie auf **Gemeinsamen Blend-Radius verwenden** oder auf **Blending mit Radius**, um den Blend-Radius für einen Wegpunkt aus einem RTCP_MoveP einzurichten.

HINWEIS:

Ein physikalischer Zeitknoten (z. B. Move, Wait) kann nicht als vererbter Knoten eines RTCP_MoveP-Knotens verwendet werden. Wird ein nicht unterstützter Knoten als vererbter Knoten zu einem RTCP_MoveP-Knoten hinzugefügt, wird das Programm als ungültig bewertet.

15.8.4 Remote-TCP-Werkzeugpfad

Der Remote-TCP und Werkzeugpfad URCap erzeugen Roboterbewegungen automatisch, was es einfacher macht, komplexeren Bahnkurven akkurat zu folgen.

Konfigurieren eines Remote-TCP-Werkzeugpfads

- 1. Wählen Sie **Remote TCP Werkzeugpfad-Bewegungen** auf dem Remote TCP & der Werkzeugpfad URCap Startseite, um in den Arbeitsablauf zu gelangen.
- 2. Folgen Sie den Anweisungen unter dem Tab Anweisungen.

Ein Remote-TCP Werkzeugpfad Move erfordert die folgenden Hauptkomponenten:

- Werkzeugpfad-Datei
- Remote-TCP
- Remote-TCP-PCS

Konfigurieren eines Werkzeugs mit CAD/CAM-Software

Ein Werkzeugweg definiert Ausrichtung, Bahnverlauf, Geschwindigkeit oder Vorschub und Bewegungsrichtung des Werkzeugs.

- 1. Erstellen oder importieren Sie ein CAD-Modell eines Teils.
- 2. Richten Sie ein Teil-Koordinaten-System (PCS) ein, das am Teil fixiert ist.
- 3. Erstellen Sie einen Werkzeugpfad, relativ zum PCS, basierend auf Teile-Features
- 4. Simulieren Sie die Werkzeugpfad-Bewegung, um zu überprüfen, ob die Erwartungen erfüllt werden.
- 5. Exportieren Sie den Werkzeugpfad in eine G-Code-Datei mit .nc-Dateierweiterung.

Importieren eines G-Code Werkzeugpfads in PolyScope

Ausführen Programm Installation	PROGRAMM Sample Distriction default Name of theme.
✓ Basis-Befehle	Q Befehl Grafik Variablen
Bewegen	1 V Roboterprogramm
Wegpunkt	
Richtung	BTCPToolpath 1 Festes PCS
Warten	Werkzeuopfad auswähl PCS auswählen
Einstellen	<werkzeugpfaddat aktives="" ersten="" pcs="" punkt<="" th="" verwe="" zum="" ▼=""></werkzeugpfaddat>
Meldung	Gemeinsamen
Halt	
Kommentar	O Blendradius O Gem. Werkzeuggeschw.
Ordner	25 mm O Werkzeuggeschwindigkeit 100 mm/s
> Fortgeschritten	Gem
> Assistenten	+ Wegpunkt O Werkzeugbeschleunigung
> URCaps	+ CircleMove O Werkzeugbeschleunigung 1000 mm/s ²
	+ Werkzeugpfad
	Fin Dateipfad muss ausgewählt werden.
Spannung AUS	Geschwindigkeit 💳 100% 🕞 💽 🖸 Simulation 🔵

- 1. Laden Sie die Werkzeugpfad-Dateien ins Stammverzeichnis eines USB-Sticks. Werkzeugpfad-Dateien müssen auf die Erweiterung .nc enden.
- 2. Stecken Sie den USB-Stick in das Teach-Pendant.
- 3. Tippen Sie in der Kopfzeile auf Installation > URCaps und wählen Sie Remote-TCP & Werkzeugpfad. Wählen Sie Remote-TCP-Werkzeugpfad-Bewegungen und danach Werkzeugpfad.
- 4. Wählen Sie die nach Polyscope zu importierenden Werkzeugpfad-Dateien.

HINWEIS:

Eine .nc-Datei, die Leerzeichen enthält, kann in PolyScope nicht geladen werden. Schließen Sie bei der Benennung der .nc-Datei daher keine Leerzeichen ein.

15.8.5 Remote-TCP

Konfigurieren eines Remote-TCP für Werkzeugpfad-Bewegungen

- 1. Bestimmen Sie die Werkzeugausrichtung am ersten Wegpunkt in der CAM-Umgebung.
- 2. Verwenden Sie Freedrive, um das Teil mit dem Greifer manuell zu greifen.
- 3. Wählen Sie den Ort des Remote-TCP
- 4. Verwenden Sie den Positionsassistenten, um die positiven Werte zu erhalten.
- 5. Passen Sie den Roboter an, bis die gewünschte Teilpose für die Annäherung an den Remote-TCP erreicht ist.
- 6. Stellen Sie sich die Werkzeugausrichtung am ersten Wegpunkt für das physische Teil bildlich vor. Hinweis: Die positive Z-Achse sollte von der Teilefläche weg zeigen.
- 7. Erstellen Sie eine Ebene-Funktion mit derselben Ausrichtung wie im vorherigen Schritt angedacht.
- 8. Legen Sie die Remote-TCP-Ausrichtung durch Kopieren der Werte aus der Ebene-Funktion fest. Die gewünschte Teil-Pose wird beibehalten, während der Werkzeugpfad ausgeführt wird.

15.8.6 Remote-TCP-PCS

Das Remote-TCP-Teil-Koordinatensystem (PCS) ist als fixe Größe, relativ zu dem Roboterwerkzeugflansch definiert. Tippen Sie auf den Zauberstab auf dem PolyScope-Bildschirm, um den Assistenten zu aktivieren und den Remote-TCP PCS anzulernen. Sie können eine der beiden im Folgenden beschriebenen Anlernmethoden verwenden.

Konfigurieren eines Remote-TCP PCS

Verwenden Sie diese Methode, wenn das PCS auf die Teiloberfläche eingestellt werden kann.

- 1. Verwenden Sie Freedrive, um das Teil mit dem Greifer manuell zu greifen.
- 2. Wählen Sie einen Remote-TCP, um die Referenzpunkte anzulernen. Für höhere Genauigkeit richten Sie einen vorübergehenden, scharfen Remote-TCP ein, um diesen Anlernvorgang abzuschließen.
- 3. Verfahren Sie den Roboter für den Remote TCP, so dass er den Ursprung, die positive X-Achsen- und positive Y-Achsenrichtung des PCS auf dem Teil berührt.
- 4. Tippen Sie Einstellen, um den Anlernvorgang abzuschließen. Die Positons- und Ausrichtungswerte werden automatisch ausgefüllt.

Alternativ verwenden Sie diese Methode:

- 1. Wählen Sie drei oder vier Referenzpunkte auf der Teiloberfläche.
- 2. Notieren Sie die x-, y-, z-Koordinaten der ausgewählten Referenzpunkte, relativ zum PCS in der CAD/CAM-Software.
- 3. Verwenden Sie Freedrive, um das Teil mit dem Greifer manuell zu greifen.
- 4. Wählen Sie einen Remote-TCP, um die Referenzpunkte anzulernen. Für höhere Genauigkeit richten Sie einen vorübergehenden, scharfen Remote-TCP ein, um diesen Anlernvorgang abzuschließen.
- 5. Geben Sie die Koordinaten für den ersten Referenzpunkt ein.
- 6. Verfahren Sie den Roboter für den Remote-TCP, um den ersten Referenzpunkt auf dem Teil zu berühren.
- 7. Wiederholen Sie die Schritte fünf und sechs für die anderen Referenzpunkte.

Einrichten eines Variablen-PCS

Für fortgeschrittene Anwendungsfälle, in denen das Teil nicht mit hoher Gleichmäßigkeit erfasst wird, kann man ein Variablen- PCS einrichten, das den Werkzeugpfad entsprechend der Position und Ausrichtung des Teils relativ zum Roboter-Werkzeugflansch anpasst. Sie können eine an einen externen Sensor gebundene Pose-Variable erstellen, die die PCS-Position und -Ausrichtung erkennen kann.

- 1. Richten Sie einen externen Sensor ein, der die PCS-Position und -Ausrichtung erkennt. Der Sensorausgang muss an den Roboter-Werkzeugflanschrahmen umgesetzt werden.
- 2. Stellen Sie sicher, dass das PCS relativ zum Teil eingerichtet ist und die Position und Ausrichtung durch den externen Sensor erfassbar sind.
- 3. Erstellen Sie eine Pose-Variable in PolyScope, die an den externen Sensorausgang als Variable-PCS angebunden ist. Ordnen Sie dieser einen eindeutigen Namen zu, z. B. **Variable_rtcp_pcs_1**.
- 4. Fügen Sie einen RTCP Werkzeugpfad-Knoten ein.
- 5. Wählen Sie **Variable PCS** im Drop-Down-Menü in der rechten, oberen rechten Ecke der Programmseite.
- 6. Im Drop-Down-Menü PCS auswählen, wählen Sie Variable_rtcp_pcs_1.

7. Erstellen Sie eine Zuordnung oder einen Script-Knoten zur Aktualisierung von **Variable_rtcp_pcs_1** vor dem RTCP Werkzeugpfad-Knoten.

Der folgende Abschnitt erklärt, wie ein Variable-PCS in einem Remote-TCP-Werkzeugpfad-Knoten verwendet wird.

✔ Basis-Befehle		۹	Befehl	Grafik	Variablen	
Bewegen Wegpunkt	1 ▼ Roboterprogramm 2 ♥ ▼ Werkzeugpfad FahreP		Werkze	ugpfad		
Richtung	3 Toolpath_1		🖉 Too	lpath_1		Festes PCS
Einstellen			Werkzeugpf <werkzeug< td=""><td>ad auswähl pfaddat 🔻</td><td>Ebene als PCS auswählen <ebenenfunktion></ebenenfunktion></td><td>Zum ersten Punkt.</td></werkzeug<>	ad auswähl pfaddat 🔻	Ebene als PCS auswählen <ebenenfunktion></ebenenfunktion>	Zum ersten Punkt.
Meldung Halt					O Vorschub verwenden	
Kommentar	4)				Gem. Werkzeuggesch	w.
 Fortgeschritten Assistenten URCaps 			+ Werkze	eugpfad	 Gem. Werkzeugbeschleunig Werkzeugbeschleunig 	ung 1000 mm
			1 Ein Dateip	fad muss ause	gewählt werden.	

Konfigurieren eines Remote-TCP-Werkzeugpfad-Knotens

- 1. Gehen Sie zum Programm-Tab und tippen Sie auf URCaps.
- 2. Wählen Sie Remote TCP Move, um einen RTCP_MoveP-Knoten einzufügen.
- 3. Wählen Sie einen TCP und setzen Sie die Bewegungsparameter Werkzeuggeschwindigkeit, Werkzeugbeschleunigung und Blend-Radius.
- 4. Tippen Sie auf **+Werkzeugpfad**, um einen RTCP-Werkzeugpfad-Knoten einzufügen. Löschen Sie den RTCP Wegpunkt-Knoten, der standardmäßig vorliegt, wenn er nicht benötigt wird.
- 5. Wählen Sie eine Werkzeugpfad-Datei und das entsprechende Remote-TCP PCS aus dem Drop-Down-Menü.
- 6. Passen Sie die Bewegungsparameter an, falls für den RTCP- Werkzeugpfad-Knoten unterschiedliche Werte verwendet werden sollen.
- 7. Tippen Sie auf **Zum ersten Punkt fahren**, um sicherzustellen, dass sich das gegriffene Teil dem Remote-TCP wie geplant nähert.
- 8. Testen Sie das Programm im Simulationsmodus mit niedriger Geschwindigkeit, um sicherzugehen, dass die Konfiguration korrekt ist.

HINWEIS:

Sie können eine identische Roboterbewegung bei jeder Ausführung des Werkzeugpfads gewährleisten, indem Sie ein MoveJ mit **Gelenkwinkel verwenden** hinzufügen, die zur Einnahme einer festen Gelenkkonfiguration vor der Ausführung des Werkzeugpfads führen. Siehe 15.5.1

15.8.7 Gleichmäßige TCP-Werkzeugpfad-Bewegungen

Ähnlich wie bei der Konfiguration einer Remote-TCP-Werkzeugpfadbewegung, erfordert eine TCP-Werkzeugpfadbewegung folgendes:

- Werkzeugpfad-Datei
- Gleichmäßiger TCP
- Ebene-Feature als PCS

Konfigurieren und Importieren einer Werkzeugpfad-Datei

Dies entspricht der Konfiguration eines Werkzeugpfads (siehe 15.8.4) und Import eines Werkzeugpfads (siehe 15.8.4).

Konfiguration eines normalen TCP

Folgen Sie den Anweisungen in 16.1.1, um einen normalen TCP zu konfigurieren. Hinweis: Stellen Sie sicher, dass die positive Z-Achse der Werkzeugpunkte von der Teilefläche weg zeigt.

Konfiguration eines Ebene-Feature-PCS

- 1. Erstellen Sie eine Ebene-Funktion mithilfe von **Ebene hinzufügen** oder **Ebene anlernen**. Siehe 16.3.4.
- 2. Befestigen Sie das Teil relativ zur Roboterbasis.
- 3. Stellen Sie sicher, dass der korrekte TCP für die Erstellung der Ebene-Funktion verwendet wird. Für höhere Genauigkeit richten Sie einen vorübergehenden, scharfen Remote-TCP ein, um diesen Anlernvorgang abzuschließen.
- 4. Verfahren Sie den Roboter für den Remote TCP, so dass er den Ursprung, die positive X-Achsen- und positive Y-Achsenrichtung des PCS auf dem Teil berührt.
- 5. Beenden Sie den Anlernvorgang und bestätigen Sie die PCS Position und Ausrichtung.

Konfigurieren eines Werkzeugpfad-Knoten

- 1. Gehen Sie auf den Programm-Tab und tippen Sie auf URCaps.
- Wählen Sie einen TCP und setzen Sie die Bewegungsparameter Werkzeuggeschwindigkeit, Werkzeugbeschleunigung und Blend-Radius. Wählen Sie Werkzeug frei um seine Z-Achse drehen. Wählen Sie dies nicht, wenn das Werkzeug der Ausrichtung um die Z-Achse in einer definierten Werkzeugpfad-Datei folgen muss.

IR

UNIVERSAL ROBOTS

- 3. Tippen Sie auf +Werkzeugpfad, um einen Werkzeugpfad-Knoten einzufügen.
- 4. Wählen Sie eine Werkzeugpfad-Datei und das entsprechende PCS (Ebene-Feature) im Dropdown-Menü.
- 5. Passen Sie die Bewegungsparameter an, falls für den Werkzeugpfad-Knoten unterschiedliche Werte verwendet werden sollen.
- 6. Tippen Sie auf **Zum ersten Punkt fahren**, um zu verifizieren, dass der erste Punkt des Werkzeugpfads angefahren werden kann.
- 7. Führen Sie das Programm im Simulationsmodus mit niedriger Geschwindigkeit aus, um sicherzugehen, dass die Konfiguration korrekt ist.

HINWEIS:

Sie können eine identische Roboterbewegung bei jeder Ausführung des Werkzeugpfads gewährleisten, indem Sie ein MoveJ mit **Gelenkwinkel verwenden** hinzufügen, die zur Einnahme einer festen Gelenkkonfiguration vor der Ausführung des Werkzeugpfads führen. Siehe 15.5.1

16.1 Allgemeine

Das Register Installation ermöglicht Ihnen das Konfigurieren der Einstellungen, die die Gesamtleistung des Roboters und von PolyScope beeinflussen.

16.1.1 TCP-Konfiguration

Ein **Tool Center Point** (TCP) ist ein Punkt auf dem Roboterwerkzeug. Jeder TCP enthält eine Verschiebung und Drehung bezogen auf die Mitte des Werkzeugausgangsflanschs . Bei der Programmierung zur Rückkehr zu einem zuvor gespeicherten Wegpunkt bewegt ein Roboter den TCP zu der Position und Orientierung, die im Wegpunkt gespeichert ist. Wenn der TCP für lineare Bewegungen programmiert ist, bewegt er sich linear.

Position

Die Koordinaten X, Y und Z geben die TCP-Position an. Wenn alle Werte (auch die Ausrichtung) Null sind, liegt der TCP auf dem Mittelpunkt des Werkzeugflanschs und nimmt das auf dem Bildschirm dargestellte Koordinatensystem an.

Ausrichtung

Die Koordinatenfelder RX, RY und RZ geben die TCP-Ausrichtung an. Wählen Sie die Ausrichtungskoordinaten (siehe 17.3.1) wie im Move-Tab aus dem Einheiten-Dropdown-Menü über den Feldern RX, RY, RZ aus.

Hinzufügen, Umbenennen, Ändern und Entfernen von TCPs

Tippen Sie auf die Schaltfläche **Neu**, um einen neuen TCP zu definieren. Der so erstellte TCP erhält dann automatisch einen eineindeutigen Namen und wird im Dropdown-Menü ausgewählt.

Zum Umbenennen eines TCPs, tippen Sie auf die **Bleistift**-Taste neben dem **TCP** Dropdown-Menü. Um den ausgewählten TCP zu entfernen, klicken Sie auf die **Entfernen**-Taste. Der letzte TCP kann nicht entfernt werden.

Die Verschiebung und Drehung eines ausgewählten TCP kann durch Eingabe neuer Werte in die Felder geändert werden.

Aktiver TCP

Bei einer linearen Bewegung verwendet der Roboter bei der Bestimmung des TCP-Abstands stets den aktiven TCP. Mit den Befehlen Verschieben (siehe 15.5.1) oder Festlegen kann der aktive TCP geändert werden. Die Bewegung des aktiven TCP wird im Tab Grafik (siehe 15.3) angezeigt.

Standard-TCP

Bevor ein Programm ausgeführt wird, muss der Standard-TCP als Aktiver TCP festgelegt werden. Wählen Sie den gewünschten TCP aus und tippen Sie auf **Als Standard festlegen**, um einen TCP als Standard festzulegen. Der als Standard konfigurierte TCP wird im Dropdown-Menü mit einem grünen Symbol markiert.

Anlernen (Teaching) der TCP-Position

Aligemein	Tool Cente	r Point				TCP-Position anlernen	
тср		И ТСР	-	■ ⋒			
Montage		-			Weitere Punkte b	enötigt	
E/A-	Position				TCP mit unterschiedli	chen Orientierungen auf den gleichen Po	Ink
Einstellung	X	0.0			bringen.		
Variablen	Y	0.0				Punkt 1 festlegen	
Autostart	Z	0.0		Assis			
Sanfter Übergang	Orientierun	ıg				Punkt 2 festlegen	
Förderband	Einheiten F	Rotationsvektor [ra		-		Punkt 3 festlegen	
Schrauben	RX	0.0000					
Home	RY	0.0000				Punkt 4 festlegen	
Werkzeug E/A	RZ	0.0000		🖌 Assis			
Sicherheit	Nutzlast ur	nd Schwerpunkt					
Koordinatensys			7.0.1				
-eldbus	Nutzlast:	0.00 kg	_ Schwerpu	nkt	0	Einstellen 😣 Abbrechen	
	сх	0.	0 mm				
	CY	0.	0 mm				
	cz	0.	0 mm	🎢 Assistent			

TCP-Positionskoordinaten können wie folgt automatisch berechnet werden:

- 1. Klicken Sie auf **TCP-Positionsassistent**.
- 2. Wählen Sie einen fixen Punkt im Wirkungsbereich des Roboters.
- 3. Verwenden Sie die Positionspfeile auf der rechten Seite des Bildschirms, um den TCP aus mindestens drei verschiedenen Winkeln zu bewegen, und um die entsprechenden Positionen des Werkzeugausgangsflanschs zu speichern.
- 4. Verwenden Sie die Taste Set, um die verifizierten Koordinaten auf den entsprechenden TCP anzuwenden. Die Positionen müssen ausreichend vielfältig sein, damit die Berechnung richtig funktioniert. Sind sie nicht ausreichend vielfältig, leuchtet eine rote Status-LED über den Tasten.

Obwohl drei Positionen ausreichend sind, um den TCP zu bestimmen, kann die vierte Position dazu beitragen, sicherzustellen, dass die Berechnung korrekt ist. Die Qualität jedes gespeicherten Punktes in Bezug auf den berechneten TCP wird mit einer grünen, gelben oder roten LED auf der jeweiligen Taste signalisiert.

LR Ausführe	n Programm Installation		PROGRAMM <unt INSTALLATION defau</unt 	nbenannt>* 📴 🗖 层 C C 🚍
V A	llgemein	Tool Center Point		TCP-Orientierung einlernen
	ТСР		m	
	Montage			Kein Koordinatensystem ausgewählt
	E/A-	Position		Wählen Sie ein Koordinatensystem und legen Sie einen Wegpunkt fest, während das Werkzeug in Bichtung der Z-Achse des ausgewählten
	Variablen	X 0.0 mm		Koordinatensystems zeigt.
	Autostart	Y 0.0 mm	** A i-	<nicht definiert=""></nicht>
	Fanftar	2 0.0 mm	Assis	
	Übergang	Orientierung		Punkt festlegen
	Förderband	Einheiten Rotationsvektor [rad]		
	Schrauben	RX 0.0000		
	Home	RY 0.0000	1110	
	Werkzeug E/A	RZ 0.0000	Assis	
> s	icherheit	Nutzlast und Schwerpunkt		
> k	oordinatensys		<i>.</i>	
> ⊧	eldbus			
		CX 0.0 mm		
		CY 0.0 mm		
		CZ 0.0 mm	🎢 Assistent	
\bigcirc	Normal	Geschwindigkeit 🥌	01	100% 🕞 🔁 Simulation
~				

- 1. Klicken Sie auf TCP-Ausrichtungsassistent.
- 2. Wählen Sie eine Funktion aus der Dropdown-Liste. (Siehe 16.3) für weitere Informationen über das Definieren von neuen Funktionen
- 3. Klicken Sie auf **Punkt auswählen** und navigieren Sie mit den **Move Tool-Pfeilen** zu einer Position, in der die Ausrichtung des Werkzeugs und der entsprechende TCP im ausgewählten Bezugs-Koordinatensystem zusammenfallen.
- 4. Überprüfen Sie die berechnete TCP-Ausrichtung und übertragen Sie diese auf den ausgewählten TCP durch Anklicken der Taste **Festlegen**.

16.1.2 Nutzlast und Schwerpunkt

Geben Sie das Gewicht einer Nutzlast an und definieren Sie einen Schwerpunkt.

Festlegen der Nutzlast

Tippen Sie auf das Feld Nutzlast und tragen Sie ein neues Gewicht ein. Die Einstellung gilt für alle definierten TCPs. Weitere Informationen zur maximal zulässigen Nutzlast finden Sie im Hardware-Installationshandbuch.

Festlegen des Schwerpunkts

Tippen Sie auf die Felder CX, CY und CZ, um den Schwerpunkt festzulegen. Die Einstellungen gelten für alle definierten TCPs. Installationen vor Version 5.2 unterstützen das Einstellen des Schwerpunkts auf den TCP, wenn sie vorher festgelegt wurden. Ab Version 5.2 kann der Schwerpunkt jedoch nicht mehr manuell festgelegt werden.

WARNUNG:

Verwenden Sie die korrekten Installationseinstellungen. Speichern und laden Sie die Installationsdateien zusammen mit dem Programm.

Schätzung der Nutzlast

Diese Funktion ermöglicht es dem Roboter, die korrekte Nutzlast und den Schwerpunkt einzustellen.

Verwendung des Assistenten zur Schätzung der Nutzlast

- 1. Wählen Sie TCP im Installations-Tab unter Allgemein.
- 2. Klicken Sie auf dem TCP-Bildschirm unter Nutzlast und Schwerpunkt auf **Nutzlast und Schwerpunkt-**Assistent.
- 3. Klicken Sie im Assistenten zur Schätzung der Nutzlast auf Weiter
- 4. Folgen Sie den Schritten zum Einstellen der vier Positionen. Das Einstellen der vier Positionen erfordert das Bewegen des Roboterarms zu vier verschiedenen Positionen. Jede Position wird gemessen. Einzelne Messungen können durch Berühren der Schwerpunkt-Felder und Eingabe der Werte geändert werden.
- 5. Nachdem alle Messungen abgeschlossen sind, klicken Sie auf Fertigstellen

HINWEIS:

Folgen Sie diesen Leitlinien, um die besten Ergebnisse bei der Schätzung der Nutzlast zu erhalten:

- Achten Sie darauf, dass die vier TCP-Positionen so unterschiedlich wie möglich voneinander sind
- Führen Sie die Messungen innerhalb einer kurzen Zeitspanne durch

WARNUNG:

- Vermeiden Sie das Ziehen an dem Werkzeug und/oder der angehängten Nutzlast vor und während der Schätzung
- Robotermontage und -winkel müssen in der Installation richtig definiert werden

16.1.3 Montage

Die Angabe der Befestigung des Roboterarms dient zwei Zwecken:

- 1. Die richtige Darstellung des Roboterarms auf dem Bildschirm.
- 2. Der Controller wird über die Richtung der Gravitationskraft informiert.

Ein erweitertes dynamisches Modell gibt dem Roboterarm glatte und präzise Bewegungen und ermöglicht es dem Roboterarm sich selbst im **Modus Freedrive** zu halten. Aus diesem Grund ist es wichtig, dass die Montage des Roboters korrekt erfolgt.

WARNUNG:

Werden die Einstellungen des Roboterarms nicht richtig durchgeführt, kann dies zu häufigen Schutzstopps führen und/oder eine Bewegung des Roboterarms beim Drücken der **Freedrive**-Taste zur Folge haben.

Wenn der Roboterarm auf einem flachen Tisch oder Untergrund montiert ist, sind keine Änderungen auf diesem Bildschirm erforderlich werden. Wird der Roboterarm jedoch **an der Decke**, **an der Wand** oder **in einem Winkel** montiert, muss dies mithilfe der Tasten angepasst werden.

Die Schaltflächen auf der rechten Seite des Bildschirms dienen der Einstellung des Winkels der Roboterarmmontage. Die drei Schaltflächen auf der rechten oberen Seite stellen den Winkel für **Decke** (180°), **Wand** (90°), **Boden** (0°). Die Schaltflächen **Neigen** können stellen einen willkürlichen Winkel ein.

Die Schaltflächen im unteren Teil des Bildschirms werden zur Drehung der Montage des Roboterarms eingesetzt, um der eigentlichen Montage zu entsprechen.

WARNUNG:

Verwenden Sie die korrekten Installationseinstellungen. Speichern und laden Sie die Installationsdateien zusammen mit dem Programm.

16.1.4 E/A-Einstellung

Aigemein	Ansicht							
ТСР	Digital		•					
Montage	Ū							
E/A-	Eingang				Ausgang			
Einstellung	DI[0]	digital_in(0)		^	D0(0)	digital_out[0]		
Variablen	DI[1]	digital_in[1]			% D0[1]	digital_out[1]	Prog-Running	
	DI[2]	digital_in[2]	Start-Prog		D0[2]	digital_out[2]		
Autostart	DI[3]	digital_in[3]	Stop-Prog		D0[3]	digital_out[3]		
Sanfter	DI[4]	digital_in[4]			D0[4]	digital_out[4]		
Übergang	DI[5]	digital_in(5)			D0(5)	digital_out[5]		
Förderband	DI[6]	digital_in[6]			D0[6]	digital_out[6]		
Schrauben	DI[7]	digital_in[7]			D0[7]	digital_out[7]		
Schlauben	TI[0]	tool_in[0]			то[0]	tool_out[0]		
Home	TI[1]	tool_in[1]		~	T0[1]	tool_out[1]		`
Werkzeug E/A	Ausgewä	ihlte E/A: digital (put[1]					
Sicherheit	Umbener				Tab E/A St	eueruna		
Koordinatensys						odorang		
				Loschen			·	
-eldbus								
	Aktion im	Programm						
	High, we	nn aktiv-Low, wenn	gestoppt	•				
			5 II					

Auf dem E/A-Einrichtungsbildschirm kann der Benutzer E/A-Signale und Aktionen mit der E/A-Tab-Steuerung definieren.

Hinweis: Ist die Kommunikationsschnittstelle für Werkzeuge (TCI) aktiviert, so ist der Werkzeug-Analogeingang nicht mehr verfügbar.

Die Spalten Eingänge und Ausgänge beinhalten folgende Typen von E/A-Signalen:

- Digitalstandard, Mehrzweck, konfigurierbar und Werkzeug
- Analogstandard, Mehrzweck und Werkzeug
- MODBUS
- Allgemeine Tabs (Boole, Integer und Float) Auf die allgemeinen Tabs kann von einem Feldbus zugegriffen werden (wie z. B. Profinet und EtherNet/IP).

E/A Signaltyp

Um die Anzahl der angezeigten Signale in den Abschnitten **Eingänge** und **Ausgänge** zu begrenzen, verwenden Sie das Dropdown-Menü **Ansicht** oben auf dem Bildschirm und ändern Sie die angezeigten Inhalte durch Auswahl der Signaltypen.

Zuordnen von benutzerdefinierten Namen

Um sich einfach an das zu erinnern, was die Signale bei der Arbeit mit dem Roboter bewirken, können Benutzer den Eingangs- und Ausgangssignalen Namen zuordnen.

1. Wählen Sie das gewünschte Signal

- 2. Klicken Sie auf das Textfeld im unteren Teil des Bildschirms, um den Namen festzulegen.
- 3. Um die Namen auf die Standardeinstellungen zurückzusetzen, klicken Sie auf Löschen.

Einem Mehrzweck-Tab muss ein benutzerdefinierter Name zugeordnet werden, um ihn im Programm verfügbar zu machen (d.h. für einen **Warten** Befehl oder den bedingten Ausdruck eines **If**-Befehls. **Warten-** und **If**-Befehle werden entsprechend in (15.5.3) und (15.6.2) beschrieben. Benannte, allgemeine Tabs befinden sich in der Auswahl der **Eingänge** oder **Ausgänge** in der **Ausdruckseditor**-Anzeige.

E/A-Aktionen und E/A-Tabsteuerung

- **Eingabe- und Ausgabe-Aktionen** Physikalische und digitale Feldbus-E/As können zum Auslösen von Aktionen bzw. Reagieren auf den Status eines Programms verwendet werden. Verfügbare Eingangs-Aktionen:
 - Start: Startet oder setzt das aktuelle Programm auf steigender Flanke fort. Diese Funktion ist nur in der Fernsteuerung aktiviert (siehe 21.4.5).
 - Stopp: Stoppt das aktuelle Programm auf steigender Flanke.
 - Pause: Hält das aktuelle Programm auf steigender Flanke an.
 - Freedrive: Wenn der Eingang HOCH ist, befindet sich der Roboter im Freilauf (wie Schaltfläche Freedrive). Der Eingang wird ignoriert, wenn ein Programm ausgeführt wird oder andere Bedingungen den Freedrive nicht zulassen.

WARNUNG:

Wenn der Roboter während der Start-Eingangsaktion gestoppt wird, verfährt er langsam zum ersten Wegpunkt des Programms, bevor dieses Programm ausgeführt wird. Wenn der Roboter während der Start-Eingangsaktion angehalten wird, verfährt er langsam zu der Stelle, an der er angehalten wurde, bevor dieses Programm fortgesetzt wird.

Verfügbare Ausgangs-Aktionen:

- Niedrig, wenn nicht aktiv: Ausgang ist LOW, wenn der Programmstatus "gestoppt" oder "unterbrochen" ist.
- Hoch, wenn nicht aktiv: Ausgang ist HIGH, wenn der Programmstatus "gestoppt" oder "unterbrochen" ist.
- HIGH, wenn läuft; LOW, wenn gestoppt: Ausgang ist LOW, wenn der Programmstatus "gestoppt" oder "unterbrochen" ist und HIGH, wenn aktiv.
- Kontinuierliches Pulsieren: Ausgang wechselt f
 ür eine bestimmte Anzahl von Sekunden zwischen HOCH und NIEDRIG, w
 ährend das Programm ausgef
 ührt wird. Unterbrechen oder stoppen Sie das Programm, um den Impulsstatus zu erhalten.
- **E/A-Tab-Steuerung** Geben Sie an, ob ein Ausgang über den Tab E/A (entweder von Programmierern oder von Bedienern und Programmierern) gesteuert werden kann oder nur durch Roboterprogramme gesteuert werden darf.

16.1.5 Variablen

Ausführen Programm			PROGRAMM . INSTALLATION	<unbenannt>* default*</unbenannt>	Neu Ö	ffnen Speichern		с с с с	≡
✓ Allgemein			Install	ationsvar	riable	n			
ТСР	N.	ariable e	motan			Wert			
Montage	v					wert			
E/A- Einstellung									
Variablen									
Autostart									
Sanfter Übergang									
Förderband									
Schrauben									
Home									
Werkzeug E/A									
> Sicherheit									
> Koordinatensys									
> Feldbus									
		Neu	u erstellen	Wert bearbe	eiten	Löschen			
Normal	Ges	chwindigkeit 🥌		100%	C	00	Simu	ulation 🤇	

Auf dem Variablen-Bildschirm erstellte Variablen werden Installationsvariablen genannt und können wie normale Programmvariablen verwendet werden. Installationsvariablen sind eindeutig, da sie ihren Wert beibehalten, selbst wenn ein Programm gestoppt und dann wieder gestartet wird und wenn der Roboterarm und/oder die Control-Box aus- und dann wieder eingeschaltet wird. Ihre Namen und Werte werden mit der Installation gespeichert. Deshalb ist es möglich, die gleiche Variable in mehreren Programmen zu verwenden.

Neue Installatio	nsvari	able erstel	len						
Name		Wert							
i_var_1	=								
							OK	ſ	Abbrechen

Durch Betätigen von **Neu erstellen** wird ein Feld mit einem Namensvorschlag für die neue Variable geöffnet. Der Name kann geändert bzw. sein Wert eingegeben werden, indem das Textfeld berührt wird. Die Taste **OK** kann nur angetippt werden, wenn der neue Name nicht bereits in dieser Installation verwendet wird.

Es ist möglich, den Wert einer Installationsvariablen zu ändern, indem die Variable in der Liste markiert und dann auf **Wert bearbeiten** geklickt wird.

Wählen Sie zum Löschen einer Variablen diese aus der Liste aus und klicken Sie auf Löschen.

Nach dem Konfigurieren der Installationsvariablen muss die Installation eigens gespeichert werden, um diese Konfiguration beizubehalten.

Die Installationsvariablen und deren Werte werden etwa alle 10 Minuten automatisch gespeichert.

Wird ein Programm oder eine Installation geladen und eine oder mehrere der Programmvariablen haben denselben Namen wie die Installationsvariablen, so werden dem Benutzer zwei Optionen zur Behebung dieses Problems angeboten: er kann entweder die Installationsvariablen desselben Namens anstelle der Programmvariablen verwenden oder die in Konflikt stehenden Variablen automatisch umbenennen lassen.

16.1.6 Anlauf

Ausführen Programm Installation	PROGRAMM <unbenannt>* 🔓 📷 🔂 C C 💳</unbenannt>
✓ Allgemein	Die Änderungen werden erst nach dem Speichern der Installation wirksam.
ТСР	Programm für Autostart
Montage	Automatisches Laden eines Programms, wenn der Roboter eingeschaltet wird
E/A- Einstellung	Autostartprogramm laden:
Variablen	<autostartprogramm wählen=""></autostartprogramm>
Autostart	Autostart des o.g. Programms im Tab Ausführen
Sanfter Übergang	Ein <di.eingang> Flanke nach Low</di.eingang>
Förderband	
Schrauben	1. Wenn die Option "Auto-Initialisieren" unten ebenfalls aktiviert ist, kann sich der Roboter bereits beim Einschalten bewegen.
Home	Dies ist nur im Modus "Fernsteuerung" verrugbar.
Werkzeug E/A	Auto-Initialisieren
> Sicherheit	Automatisches Initialisieren des Roboters, wenn der Roboterarm ausgeschaltet wurde.
> Koordinatensys	Automatisches Lösen der Bremsen des Roboters
> Feldbus	Ein <di.eingang> Flanke nach Low</di.eingang>
	Ler Roboter kann sich beim Lösen der Bremsen bewegen. Dies ist nur im Modus "Fernsteuerung" verfügbar.
Normal	Geschwindigkeit 룾 🛑 100% 🕞 🔂 🗊 Simulation 🔵

Dieser Startbildschirm enthält Einstellungen für das automatische Laden und Starten eines Standardprogramms und für die Auto-Initialisierung des Roboterarms beim Einschalten.

WARNUNG:

- Sind automatisches Laden, automatisches Starten und automatisches Initialisieren aktiviert, führt der Roboter das Programm aus, sobald die Control-Box eingeschaltet ist und solange die Eingangssignale mit dem gewählten Signalpegel übereinstimmen. Der Flankenübergang für den gewählten Signalpegel ist in diesem Fall beispielsweise nicht erforderlich.
- Seien Sie vorsichtig, wenn der Signalpegel auf LOW eingestellt ist. Eingangssignale sind standardmäßig LOW, sodass das Programm automatisch ausgeführt wird, ohne durch ein externes Signal ausgelöst zu werden.
- 3. Sie müssen sich im Modus **Fernsteuerung** befinden, bevor ein Programm ausgeführt werden kann, bei dem Auto-Start und Auto-Initialisieren aktiviert sind.

Laden eines Anlaufprogramms

Ein Standard-Programm wird geladen, nachdem die Control-Box eingeschaltet wurde. Darüber hinaus wird das Standardprogramm auch automatisch geladen, wenn die **Programm ausführen**-Anzeige (siehe 14)geöffnet wird und kein Programm geladen ist.

Starten eines Anlaufprogramms

Das Standardprogramm kann auf dem Bildschirm **Programm ausführen** automatisch gestartet werden. Wird das Standardprogramm geladen und der spezifizierte Flankenübergang eines externen Eingangssignals erkannt, startet das Programm automatisch. Beim Programmstart ist das aktuelle Eingangssignal nicht definiert. Das Wählen eines Übergangs, der dem Signalpegel beim Start entspricht, startet das Programm sofort. Darüber hinaus wird die Auto-Startfunktion beim Verlassen des Bildschirms **Programm ausführen** oder beim Anklicken der Stopptaste im Dashboard solange deaktiviert, bis die Taste "Ausführen" noch einmal gedrückt wird.

16.1.7 Werkzeug-E/A

- agentent	Literentangen werkzeugsen intistelle						
ТСР	Definieren Sie, wie die E/A-Werkzeugschnittste	lle angesteuert wird. Falls die Schnittstelle durch ein URCap gesteuert wird, werden					
Montage	benutzerdefinierte Einstellungen überschrieben.						
E/A- Einstellung	Ansteuerung durch Benutzer						
Variablen	Analoge Eingänge - Kommunikationsschnit	Einstellungen Digitalausgänge					
Autostart		Die Einstellungen der Digitalausgänge des Werkzeugs werden auf Basis des					
Sanfter Übergang	analog_in[2]	montierten Werkzeugs definiert					
Förderband	analog_in[3] Spannung 💌	Verkzedg-Spaining					
Schrauben	Kommunikationsschnittstelle	Einstellung der Werkzeugspannung auf 24V kann angeschlossene Geräte beschädigen, falls diese für 12V ausgelegt sind					
Home	Die Kommunikationsschnittstelle am						
Werkzeug E/A	Kommunikation mit einem Tool ohne externe Kabelführ <u>ung.</u>	O Parallelschaltung der Ausgänge					
Sicherheit	Baudrate 115200 🔻						
Koordinatensys	Parität Kein 🔻						
Feldbus	Stoppbits Ein 🔻	Digitalausgang 1 Endstufe (NPN)					
	RX Leerzeichen 1,5						
	IX Leerzeichen 3,5						

E/A-Schnittstellensteuerung

Mit der **E/A-Schnittstellensteuerung** können Sie zwischen Benutzersteuerung und URcap-Steuerung umschalten.

- 1. Tippen Sie auf den Tab Installation und unter Allgemein auf Werkzeug-E/A.
- Wählen Sie unter E/A-Schnittstellensteuerung Benutzer aus, um auf die Einstellungen der Werkzeug-Analogeingänge und/oder den Digitalausgangsmodus zuzugreifen. Die Auswahl eines URCap deaktiviert den Zugriff auf die Einstellungen der Werkzeug-Analogeingänge und/oder des Digitalausgang-Modus.

HINWEIS:

Wenn ein URCap ein Anbaugerät steuert (z. B. einen Greifer), muss das URCap die Steuerung der E/A-Schnittstelle des Werkzeugs kontrollieren. Wählen Sie den URCap für die Steuerung der E/A-Schnittstelle des Werkzeugs aus der Liste aus.

Analogeingänge des Werkzeugs

Kommunikationsschnittstelle für Tools

Die Kommunikationsschnittstelle für Werkzeuge TCI ermöglicht die Kommunikation des Roboters mit einem angebauten Tool über den Analogeingang des Werkzeugs. Dies beseitigt die Notwendigkeit für externe Verkabelung. Sobald die Kommunikationsschnittstelle für Werkzeuge aktiviert ist, ist kein Werkzeug-Analogeingang mehr verfügbar.

Konfigurieren der Kommunikationsschnittstelle für Werkzeuge (TCI)

- 1. Tippen Sie auf den Tab Installation und unter Allgemein auf **Werkzeug-E/A**.
- Wählen Sie Kommunikationsschnittstelle, um TCI-Einstellungen zu bearbeiten. Sobald TCI aktiviert ist, ist der Analogeingang des Werkzeugs für die E/A Einstellung der Installation nicht mehr verfügbar und erscheint nicht mehr in der Eingabeliste. Der Analogeingang des Werkzeugs ist auch für Programme bei Option/Ausdruck von Warten auf nicht verfügbar.
- 3. Wählen Sie in den Dropdownmenüs unter Kommunikationsschnittstelle die erforderlichen Werte.

Alle Änderungen von Werten werden unmittelbar zum Werkzeug gesendet. Unterscheiden sich die Werte von denen, die das Werkzeug tatsächlich verwendet, so erscheint eine Warnung.

Digitalausgangsmodus

Die Kommunikationsschnittstelle für Werkzeuge lässt zwei digitale Ausgänge zu, die unabhängig voneinander konfiguriert werden können. In PolyScope hat jeder Pin ein Dropdown-Menü, das die Einstellung des Ausgangsmodus ermöglicht. Die folgenden Optionen sind verfügbar:

- Sinking: Dies ermöglicht es, den Kontakt als NPN- bzw. Sinking-Konfiguration einzurichten. Wenn der Ausgang ausgeschaltet ist, ermöglicht es der Kontakt, dass Strom zur Erdung fließt. Dieser kann in Verbindung mit dem PWR-Pin zum Erstellen eines vollständigen Stromkreises verwendet werden. Siehe Kapitel fünf im Hardware-Installationshandbuch.
- Sourcing: Dies ermöglicht es, den Kontakt als PNP- bzw. Sourcing-Konfiguration einzurichten. Wenn der Ausgang aktiviert ist, bietet der Pin eine positive Spannungsquelle (konfigurierbar im Register E/A). Dies kann in Verbindung mit dem GND-Pin zum Erstellen eines vollständigen Stromkreises verwendet werden.
- Drücken/Ziehen: Dies ermöglicht dem Pin die Konfiguration in einer Drücken-/Ziehen-Konfiguration. Wenn der Ausgang aktiviert ist, bietet der Pin eine positive Spannungsquelle (konfigurierbar im Register E/A). Dies kann in Verbindung mit dem GND-Pin zum Erstellen eines vollständigen Stromkreises verwendet werden. Wenn der Ausgang ausgeschaltet ist, ermöglicht es der Kontakt, dass Strom zur Erdung fließt.

Nach der Auswahl einer neuen Ausgangskonfiguration werden die Änderungen wirksam. Die aktuell geladene Installation wird geändert, um die neue Konfiguration zu reflektieren. Nach dem Bestätigen, dass die Werkzeugausgänge wie vorgesehen funktionieren, speichern Sie die Installation, um den Verlust der Änderungen zu vermeiden.

Doppel-Pin-Strom

Doppel-Pin-Strom wird als Stromquelle für das Werkzeug verwendet. Das Aktivieren von Doppel-Pin-Strom deaktiviert standardmäßige digitale Ausgänge des Werkzeugs.

16.1.8 Sanfter Übergang zwischen Sicherheitsmodi

Beim Umschalten zwischen Sicherheitsmodi bei Ereignissen (z. B. Eingang Reduzierter Modus, Auslöseebenen für Reduzierter Modus, Schutzstopp und Drei-Stellungs-Zustimmschalter) ist der

Roboterarm bestrebt, einen sanften Übergang mit 0,4s zu bewerkstelligen. Vorhandene Anwendungen bleiben davon unberührt, was einer harten Einstellung entspricht. Neue Installationsdateien erhalten standardmäßig die sanfte Einstellung.

Einstellungsänderungen für Beschleunigung/Verlangsamung

- 1. Klicken Sie in der Kopfzeile auf Installation.
- 2. Wählen Sie im linken Seitenmenü unter Allgemein zunächst Sanfter Übergang.
- 3. Wählen Sie **Hart** für eine höhere Beschleunigung/Verzögerung oder wählen Sie **Sanft** für die weichere Standardübergang-Einstellung.

16.1.9 Home

Aligemein	Home		Roboter	
тср	Desiries head			
Montage	Position bearbeiten			
E/A- Einstellung	Hierher bewe	egen		
Variablen				
Autostart	🛓 Nullposi	tion		
Sanfter Übergang				
Förderband				
Schrauben				
Home				
Werkzeug E/A	Gelenkposition			
Sicherheit	Basis	90,00°		
Koordinatensys	Schulter	-90,00°		
⁻ eldbus	Ellbogen	-90,00°		
	Handgelenk 1	-90,00°		
	Handgelenk 2	90,00°		
	Handgelenk 3	0,00°		

Home ist eine benutzerdefinierte Rückkehrposition für den Roboterarm. Wenn sie einmal festgelegt ist, ist die Home-Position beim Erstellen eines Roboterprogramms verfügbar. Sie können die Home-Position zum Festlegen einer Safe Home-Position verwenden. (Siehe 13.2.10) Verwenden Sie die Home-Bildschirm-Tasten für die folgenden:

- Position bearbeiten verändert eine Home-Position.
- Hierher bewegen bewegt den Roboterarm in die definierte Home-Position.
- Die Schaltfläche **Nullstellung** lässt den Roboterarm in eine aufrechte Position zurückkehren.

Festlegen von Home

- 1. Klicken Sie in der Kopfzeile auf Installation.
- 2. Wählen Sie unter Allgemein die Option Home.
- 3. Tippen Sie auf **Position festlegen**.
- 4. Lernen Sie den Roboter entweder über Freedrive oder die Umstellungstasten an.
16.1.10 Einstellungen für Fließband-Tracking

Die Einstellungen für Fließband-Tracking ermöglichen die Konfiguration der Bewegung von bis zu zwei separaten Fließbändern. Die Fließband-Tracking-Einrichtung bietet Robotereinstelloptionen für den Betrieb mit absoluten bzw. relativen Encodern sowie einem linearen oder kreisförmigen Fließband.

IR

UNIVERSAL ROBOTS

Definieren eines Fließbands

- 1. Klicken Sie in der Kopfzeile auf Installation.
- 2. Wählen Sie unter Allgemein Fließband-Tracking.
- 3. Unter Einstellungen für Fließband-Tracking wählen Sie in der Dropdownliste **Fließband 1** oder **Fließband 2**.

Sie können nur ein Fließband gleichzeitig festlegen.

- 4. Wählen Sie Fließband-Tracking aktivieren
- 5. Konfigurieren der Fließband-Parameter (Abschnitt 16.1.10) und Tracking-Parameter (Abschnitt 16.1.10).

Fließband-Parameter

- **Relative** Encoder können an die digitalen Eingänge 8 bis 11. Das Decodieren von digitalen Signalen läuft mit 40 kHz. Mit einem **Quadratur** Encoder (erfordert zwei Eingänge) ist der Roboter in der Lage, die Geschwindigkeit sowie Richtung des Fließbands zu bestimmen. Ist die Richtung des Fließbands konstant, kann ein einzelner Eingang dazu verwendet werden, die Geschwindigkeit des Fließbandes über die Erkennung einer *Steigenden, Fallenden* oder von *Steigenden und Fallenden* Signalflanken zu bestimmen.
- **Absolute** Encoder können über ein MODBUS-Signal verbunden werden. Dies erfordert eine Vorkonfigurierung des digitalen MODBUS-Ausgangsregisters in Abschnitt 16.4.1).

Parameter für Fließband-Tracking

- Linear-Fließband Wurde ein Linear-Fließband ausgewählt, muss in der Installation unter Funktionen eine Linienfunktion konfiguriert werden, um die Richtung des Fließbands zu ermitteln. Achten Sie auf Genauigkeit, indem Sie die Linien-Funktion parallel zu der Richtung des Fließbands platzieren, mit einem großen Abstand zwischen den beiden Punkten, die die Linie definieren. Konfigurieren Sie die Linienfunktion so, dass Sie das Werkzeug beim Anlernen fest gegen die Seite des Fließbands stemmen. Verläuft die Richtung der Linienfunktion entgegen der Fließbandbewegung, verwenden Sie die Schaltfläche Richtung umkehren. Das Feld Ticks per meter zeigt die Anzahl der Inkremente, die der Encoder während eines Meters Fahrstrecke des Fließbands erzeugt.
- **Kreisförmige Fließbänder** Beim Tracking eines kreisförmigen Fließbands, muss der Mittelpunkt des Fließbands definiert sein.
 - Definieren Sie den Mittelpunkt im Teil Funktionen der Installation. Der Wert Inkremente pro Meter wird als die Anzahl der Inkremente verwendet, die der Encoder während einer vollen Umdrehung des Fließbands erzeugt.
 - 2. Wählen Sie Kontrollkästchen **Werkzeug mit Fließband drehen**, damit die Werkzeugorientierung die Fließbanddrehung verfolgt.

16.1.11 Einrichtung Schrauben

Unter Einrichtung Schrauben finden Sie Optionen zum Konfigurieren des Roboters für die Arbeit mit einem Industrieschraubendreher oder einem Industrieschrauber. Sie können die Position des Schraubendrehers in Bezug auf den Werkzeugflansch und die elektrische Schnittstelle des Roboters einstellen.

Allgemein	Schrauben			
TCP	Finstellungen für So	chraubanwendung		
Montage	Verwenden Sie das Regist	er "TCP" um die Spitze des Sch	raubers als TCP zu	
E/A- Einstellung	definieren und die korrekt Grafik auf der Rechten Se	e Orientierung einzustellen. Nu ite dieses Registers.	tzen Sie hier als Hilfe die	
Variablen	Auswählen 🔻			
Autostart				× ×
Sanfter Übergang	E/A Signale	Eingang	Ausgang	'Z
Förderband	Schnittstelle	0K	Programm-Auswahl- 1	Start
Schrauben	Alle	Auswählen	▼ Auswählen ▼	Auswählen 🔻
Home		Nicht OK	Programm-Auswahl- 2	Verzögerung Programmauswahl
Werkzeug E/A		Auswählen	▼ Auswählen ▼	1.0 s
Sicherheit		Bereit	Programm-Auswahl- 3	
Foldburg		Auswählen	▼ Auswählen ▼	
Telabas			Programm-Auswahl- 4	
			Auswählen 🔻	

Konfiguration eines Schraubendrehers

- 1. Klicken Sie in der Kopfzeile auf Installation.
- Wählen Sie unter Allgemein die Option Schrauben aus oder tippen Sie unter Allgemein auf TCP und erstellen Sie Ihren eigenen TCP f
 ür das Schrauben.
- 3. Konfigurieren Sie unter **Eingang** und **Ausgang** die E/A für Ihren Schraubendreher. Über die Liste **Schnittstelle** können Sie die Arten der unter Eingang und Ausgang angezeigten E/A filtern.
- 4. Wählen Sie unter **Start** den E/A, der den Schraubvorgang startet.

Hinweis: Sie können in jeder Programmauswahlliste unter Ausgang eine Ganzzahlausgabe wählen, um die Programmauswahl (siehe 15.6.8) auf ein Zahlenfeld umzuschalten.

Konfiguration der Position des Schraubendrehers

- 1. Wählen Sie im Dropdown-Menü unter **Einrichtung Schrauben** einen zuvor erstellten TCP aus (siehe 16.1.1), in dem Position und Ausrichtung wie folgt festgelegt werden:
 - Konfigurieren Sie die Position so, dass Sie beim Kontakt mit der Schraube auf Spitze des Schraubendrehers liegt.
 - Konfigurieren Sie die Ausrichtung so, dass die positive Z-Richtung entlang der festzuziehenden Schrauben ausgerichtet ist.

Wenn Sie prüfen wollen, ob die X-, Y- und Z-Koordinaten des ausgewählten TCP auf Spitze oder Sockel des Werkzeugs liegen, können Sie die Koordinaten anzeigen.

Der Programmknoten Schrauben (siehe 15.6.8) verwendet zur Verfolgung der Schraube und zum Berechnen von Entfernungen die positive Z-Richtung.

Die folgende Tabelle zeigt typische Ausrichtungswerte (in Rotationsvektor-Schreibweise [rad]).

Schraubachse par- allel zu negativer Y-		Ausrichtung
Richtung des Roboter-		• RX : 1,5708 rad
werkzeugnanschs		• RY: 0,0000 rad
		• RZ : 0,0000 rad
Schraubachse par- allel zu positiver Y-		Ausrichtung
Richtung des Roboter-		• RX : -1,5708 rad
Werkzeugflanschs	- and	• RY : 0,0000 rad
		• RZ : 0,0000 rad
Schraubachse par-		Ausrichtung
allel zu positiver X- Richtung des Roboter-	$\bullet \rightarrow$	
Werkzeugflanschs		• RX : 0,0000 rad
		• KY : 1,5708 rad
		• RZ : 0,0000 rad
Schraubachse par-		Ausrichtung
allel zu negativer X- Richtung des Roboter-	\land	
Werkzeugflanschs	\rightarrow	• RX : 0,0000 rad
J.		• RY : -1,5708 rad
		• RZ : 0,0000 rad
Schraubachse par-		Ausrichtung
allel zu positiver Z- Richtung des Roboter-		
Werkzeugflanschs		• RX : 0,0000 rad
-	↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓	 RY: 0,0000 rad
	\checkmark	• RZ : 0,0000 rad
Schraubachse par-		• RZ : 0,0000 rad Ausrichtung
Schraubachse par- allel zu negativer Z- Richtung des Roboter-		• RZ : 0,0000 rad
Schraubachse par- allel zu negativer Z- Richtung des Roboter- Werkzeugflanschs		RZ: 0,0000 rad Ausrichtung RX: 3,1416 rad RX: 0,0000 rad
Schraubachse par- allel zu negativer Z- Richtung des Roboter- Werkzeugflanschs		 RZ: 0,0000 rad Ausrichtung RX: 3,1416 rad RY: 0,0000 rad
Schraubachse par- allel zu negativer Z- Richtung des Roboter- Werkzeugflanschs		 RZ: 0,0000 rad Ausrichtung RX: 3,1416 rad RY: 0,0000 rad RZ: 0,0000 rad

Konfiguration der Schnittstelle des Schraubendrehers

- 1. Ändern Sie über das Dropdown-Menü **Schnittstelle** oben im Bildschirm die angezeigten Inhalte auf Basis des Signaltyps.
- 2. Konfigurieren Sie unter **Eingang** die Signale, die der Roboter vom Schraubendreher empfängt:
 - OK: HIGH, wenn die Verschraubung erfolgreich beendet wurde. Wenn nicht ausgewählt, ist diese Bedingung im Programmknoten Schrauben nicht verfügbar
 - NOK: HIGH, wenn die Verschraubung fehlerhaft beendet wurde. Wenn nicht ausgewählt, ist diese Bedingung im Programmknoten Schrauben nicht verfügbar
 - Bereit: HIGH, wenn der Schraubendreher einsatzbereit ist. Wenn nicht ausgewählt, wird diese Bedingung nicht geprüft
- 3. Konfigurieren Sie unter **Ausgang** die Signale, die der Roboter an den Schraubendreher sendet:
 - Start: startet das Festziehen oder Lösen einer Schraube nur in Abhängigkeit von der Verdrahtung.
 - Programmauswahl: es können eine Ganzzahl oder bis zu vier Binärsignale ausgewählt werden, um verschiedene im Schraubendreher abgelegte Verschraubungskonfigurationen zu aktivieren
 - Verzögerung bei Programmauswahl: Wartezeit nach Schraubendreher-Programmwechsel, damit dieses sicher aktiviert ist

16.2 Sicherheit

Siehe Kapitel 13.

16.3 Funktionen

Die **Funktion** ist eine Darstellung eines solchen Objekts, das mit einem Namen für zukünftige Referenzzwecke und einer sechsdimensionalen Pose (Position und Orientierung) in Bezug auf die Roboterbasis definiert wurde.

Einige Unterkomponenten eines Roboterprogramms bestehen aus Bewegungen, die sich nicht auf die Basis des Roboterarms beziehen, sondern relativ zu bestimmten Punkten auszuführen sind. Dabei kann es sich um Tische, andere Maschinen, Werkstücke, Fließbänder, Paletten, Kamerasysteme, Rohteile oder Begrenzungen handeln, die in der Umgebung des Roboterarms vorhanden sind. Zwei vordefinierte Funktionen existieren immer für den Roboter. Jede Funktion hat eine von der Konfiguration des Roboterarms selbst definierte Pose:

- Die Basisfunktion hat ihren Ursprung im Zentrum der Roboterbasis (siehe Abbildung 16.1)
- Der Ursprung der Werkzeugfunktion liegt im Zentrum des aktuellen TCP (siehe Abbildung 16.2)

Abbildung 16.1: Basisfunktion

Abbildung 16.2: Tool (TCP)-Funktion

Benutzerdefinierte Funktionen werden über eine Methode positioniert, die die aktuelle Pose des TCP im Arbeitsbereich verwendet. Dies bedeutet: Der Benutzer kann mithilfe des die Position und Lage von Funktionen anlernen oder den Roboter mit dem manuellen Tippbetrieb in die gewünschte Position bringen.

Für die Definition einer benutzerdefinierten Funktion stehen drei verschiedene Methoden zur Auswahl (**Punkt, Linie** und **Ebene**). Die beste Strategie für eine bestimmte Anwendung hängt von der Art des verwendeten Objekts und den Anforderungen an Genauigkeit ab. Im Allgemeinen ist eine Funktion zu bevorzugen, die auf mehreren Eingangspunkten (**Linie** und **Ebene**) basiert, wenn diese auf das spezifische Objekt zutrifft.

Um die Richtung eines Linear-Fließbands genau definieren zu können, definieren Sie zwei Punkte einer Linienfunktion mit möglichst hoher physikalischer Trennung. Die Punktfunktion kann auch verwendet werden, um ein Linear-Fließband zu definieren, allerdings muss der Anwender den TCP in die Richtung der Bandbewegung weisen.

Werden mehr Punkte für die Definition von Position und Lage z. B. eines Tisches verwendet, bedeutet dies, dass die Ausrichtung eher auf Positionen anstatt auf der Ausrichtung eines einzelnen TCP basiert. Eine einzelne TCP-Ausrichtung ist mit hoher Präzision schwerer zu konfigurieren.

Erfahren Sie mehr über die verschiedenen Methoden zum Definieren eine Funktion in (Abschnitte: 16.3.2), (16.3.3) und (16.3.4).

16.3.1 Verwenden einer Funktion

Wurde eine Funktion bei der Installation definiert, können Sie diesen Funktionen Roboterbewegungen aus dem Roboterprogramm (z. B. **MoveJ**, **MoveL** und **MoveP**-Befehle) zuweisen (siehe Abschnitt 15.5.1). Dies ermöglicht eine einfache Anpassung eines Roboterprogramms (z. B. bei mehreren Roboterstationen oder wenn ein Objekt während der Programmlaufzeit verschoben oder permanent in der Szene verschoben wird. Durch einfaches Anpassen der Funktion eines Objekts, werden alle Bewegungen innerhalb des Programms relativ mit dem Objekt verschoben. Weitere Beispiele finden Sie unter (Abschnitte 16.3.5) und (16.3.6). Ist eine Funktion als Bezug ausgewählt, werden die Tasten für die Bewegung des Werkzeugs für Translationen und Rotationen im Bezugs-Koordinatensystem angewendet (siehe 17.3) und (17.1), ebenso wie die aktuelle Anzeige der TCP-Koordinaten. Wenn z. B. ein Tisch als eine Funktion definiert und als Referenz im Tab "Move" ausgewählt ist, bewegen die Pfeile (nach oben/unten, links/rechts, vorwärts/rückwärts) den Roboter in diese Richtungen relativ zum Tisch. Zusätzlich befinden sich die TCP-Koordinaten im Rahmen des Tisches.

- In der Funktionsstruktur können Sie einen Punkt, eine Linie oder Ebene durch Anklicken der Stifttaste umbenennen.
- In der Funktionsstruktur können Sie einen Punkt, eine Linie oder Ebene durch Anklicken der Taste Löschen entfernen.

Verwenden von Roboter hierher bewegen

Drücken Sie die Schaltfläche **Roboter hierher bewegen** um den Roboterarm in Richtung des Bezugs-Koordinatensystems zu bewegen. Am Ende dieser Bewegung stimmen die Koordinatensysteme der Funktion und des TCP überein.

16.3.2 Neuen Punkt hinzufügen

Betätigen Sie die Schaltfläche **Punkt**, um eine Punkt-Funktion zur Installation hinzuzufügen. Die Punkt-Funktion definiert Sicherheitsgrenzen oder eine globalen Grundposition des Roboterarms. Die Punkt-Funktion Pose wird als die Position und Ausrichtung des TCP definiert.

16.3.3 Hinzufügen einer Linie

Betätigen Sie die Schaltfläche **Linie**, um eine Linienfunktion zur Installation hinzuzufügen. Die Linienfunktion definiert Linien, denen der Roboter folgen muss. (z. B. bei Fließband-Tracking). Eine Linie *I* ist als eine Achse zwischen zwei Punkt-Funktionen *p1* und *p2* definiert, wie in Abbildung 16.3 gezeigt.

Abbildung 16.3: Definition der Linienfunktion

In Abbildung 16.3 ist die Achse vom ersten zum zweiten Punkt gerichtet und beschreibt die y-Achse des Koordinatensystems der Linienfunktion. Die z-Achse wird durch die Orientierung der z-Achse von p1 definiert und steht senkrecht auf der Linie. Die Position des Koordinatensystems der Linie ist dieselbe wie die Position von p1.

16.3.4 Funktion Ebene

Wählen Sie die Ebenenfunktion, wenn ein Koordinatensystem mit hoher Präzision erforderlich ist, z. B. bei der Arbeit mit einem Sichtsystem oder bei Bewegungen relativ zu einem Tisch.

Hinzufügen einer Ebene

- 1. Unter Installation wählen Sie **Funktionen**.
- 2. Unter Funktionen wählen Sie Ebene.

Anlernen (Teaching) einer Ebene

Wenn Sie die Schaltfläche Ebene zum Erstellen einer neuen Ebene klicken, führt Sie der Assistent auf dem Bildschirm durch das Erstellen einer Ebene.

- 1. Wählen Sie Origo
- 2. Bewegen Sie den Roboter, um die Richtung der positiven X-Achse der Ebene zu definieren
- 3. Bewegen Sie den Roboter, um die Richtung der positiven Y-Achse der Ebene zu definieren

Die Ebene wird mit der Regel der rechten Hand definiert, sodass die Z-Achse das Kreuzprodukt der X-Achse und der Y-Achse ist, wie unten dargestellt.

HINWEIS:

Sie können die Ebene erneut in entgegengesetzter Richtung der X-Achse anlernen, wenn Sie wollen, dass die Ebene in entgegengesetzter Richtung normal ist.

Ändern Sie eine vorhandene Ebene durch die Auswahl einer Ebene und drücken Sie "Ebene ändern". Damit verwenden Sie den gleichen Leitfaden wie für das Anlernen einer neuen Ebene.

16.3.5 Beispiel: Manuelle Anpassung einer Funktion zur Anpassung eines Programms

Stellen Sie sich eine Anwendung vor, in welcher mehrere Teile eines Roboterprogramms relativ zu einem Tisch definiert sind. In Abbildung 16.4 wird dies als Bewegung der Wegpunkte wp1 bis wp4 dargestellt.

Die Anwendung erfordert, dass das Programm für mehrere Roboterinstallationen verwendet werden soll, in welchen nur die Positionen des Tisches leicht variieren. Die Bewegung relativ zum Tisch ist identisch. Durch Definition der Tischposition als Funktion *PI* in der Installation kann das

```
Roboterprogramm

MoveJ

S1

MoveL # Funktion: P1_var

wp1

wp2

wp3

wp4
```


Abbildung 16.4: Einfaches Programm mit vier Wegpunkten in Relation zu einer Funktionsebene, manuell aktualisiert durch Ändern der Funktion

Programm mit einem *MoveL*-Befehl, welcher relativ zu Ebene konfiguriert ist, einfach für weitere Roboter angewendet werden, indem lediglich die Installation mit der tatsächlichen Position des Tisches aktualisiert wird.

Das Konzept gilt für eine beliebige Anzahl von Funktionen einer Applikation, um ein flexibles Programm zu erhalten, welches die gleiche Aufgabe auf mehreren Robotern ausführen kann. Und dies selbst dann, wenn andere Bereiche der Arbeitsfläche zwischen den Installationen variieren.

16.3.6 Beispiel: Dynamisches Aktualisieren einer Funktion

Stellen Sie sich eine ähnliche Anwendung vor, in welcher der Roboter seinen TCP ebenfalls in einem bestimmten Muster über den Tisch bewegt, um eine spezifische Aufgabe zu lösen (wie in Abbildung 16.5 gezeigt).

Abbildung 16.5: Ein MoveL Befehl mit vier Wegpunkten relativ zu einer Ebenenfunktion

```
Roboterprogramm

MoveJ

wp1

y = 0,01

o = p[0,y,0,0,0,0]

P1_var = pose_trans(P1_var, o)

MoveL # Funktion: P1_var

wp1

wp2

wp3

wp4
```

Abbildung 16.6: Anwenden einer Verschiebung bei der Ebenenfunktion

Die Bewegung relativ zu *P1* wird mehrmals wiederholt, jeweils durch einen Offset von o. In diesem Beispiel ist der Offset auf 10 cm in Y-Richtung festgelegt (siehe Abbildung 16.6, Offsets *O1* und *O2*). Dies kann mit den Scriptfunktionen *pose_add()* oder *pose_trans()* erreicht werden, mit

UNIVERSAL ROBOTS

```
Roboterprogramm

MoveJ

S1

if (digital_input[0]) then

P1_var = P1

else

P1_var = P2

MoveL # Funktion: P1_var

wp1

wp2

wp3

wp4
```


denen die Variable beeinflusst wird. Anstelle eines Offset ist es auch möglich, auf eine andere Funktion zu wechseln. Dies wird im Beispiel unten gezeigt (siehe Abbildung 16.7), in dem die Bezugsfunktion für den *MoveL*-Befehl *P1_var* zwischen zwei Ebenen *P1* und *P2* wechseln kann.

16.4 Feldbus

16.4.1

Hier können Sie das Netzwerkprotokoll für Industrierechner festlegen, das für die verteilte Echtzeitsteuerung durch PolyScope eingesetzt werden soll: MODBUS, Ethernet/IP und PROFINET.

Ausführen Programm Installation	PROGRAMM <unbenannt>* L Procentaria C C INSTALLATION default* Neu. 6ffner. Speichern. C C</unbenannt>
> Allgemein	MODBUS-Client-E/A-Einstellung
> Sicherheit> Koordinatensys	MODBUS-Einheit hinzufügen
V Feldbus MODBUS Ethernet/IP	IP-Adresse 10.0.0.2 Sequenzieller Modus Einheit löschen
PROFINET	Typ Adresse Name Wert Registerausgang 18 MODBUS_1 0 Löschen Frequenz [Hz] 10 MODBUS-Slave-Adresse 255 Antwortzeit [ms]:, Timeout: 0, Anfrage fehlgeschlagen: 0, Avg. resp. f: Digitaler Eingang 260 MODBUS_2 Frequenz [Hz] 10 MODBUS-Slave-Adresse 255 Antwortzeit [ms]:, Timeout: 0, Anfrage fehlgeschlagen: 0, Avg. resp. f: Löschen
	Neues Signal hinzufügen

Hier können die Signale des MODBUS-Client (Master) eingestellt werden. Verbindungen zu MODBUS-Servern (oder Slaves) auf angegebenen IP-Adressen können mit Eingangs-/Ausgangssignalen (Register oder digital) erstellt werden. Jedes Signal hat einen einmaligen Namen, damit es in Programmen verwendet werden kann.

Aktualisieren

Drücken Sie auf diese Schaltfläche, um alle MODBUS-Verbindungen zu aktualisieren. Das Aktualisieren trennt alle Modbus-Einheiten und verbindet sie erneut. Alle Statistik wird gelöscht.

Einheit hinzufügen

Drücken Sie auf diese Schaltfläche, um eine neue MODBUS-Einheit hinzuzufügen.

Einheit löschen

Drücken Sie auf diese Schaltfläche, um die MODBUS-Einheit und alle Signale dieser Einheit zu löschen.

Einstellung IP-Adresse Einheit

Hier wird die IP-Adresse der MODBUS-Einheit angezeigt. Drücken Sie auf die Schaltfläche, um diese zu ändern.

Sequenzieller Modus

Nur verfügbar, wenn "Erweiterte Optionen anzeigen" (siehe 16.4.1) ausgewählt ist. Dieses Kontrollkästchen zwingt den Modbus-Client auf eine Antwort zu warten, bevor er die nächste Anforderung sendet. Dieser Modus ist für einige Feldbus-Einheiten erforderlich. Das Aktivieren dieser Option kann bei Mehrfach-Signalen hilfreich sein und steigende Anfragehäufigkeit resultiert in Signaltrennungen. Beachten Sie, dass die tatsächliche Signalfrequenz möglicherweise niedriger als angefordert sein könnte, wenn mehrere Signale im sequenziellen Modus definiert sind. Die tatsächliche Signalfrequenz kann in Signalstatistiken festgestellt werden (siehe Abschnitt 16.4.1). Die Signalanzeige wird gelb, wenn die tatsächliche Signalfrequenz weniger als die Hälfte des aus der Dropdown-Liste "Frequenz" ausgewählten Wertes beträgt.

Signal hinzufügen

Drücken Sie auf diese Schaltfläche, um der entsprechenden MODBUS-Einheit ein Signal hinzuzufügen.

Signal löschen

Drücken Sie auf diese Schaltfläche, um ein MODBUS-Signal der entsprechenden MODBUS-Einheit zu löschen.

Signaltyp einstellen

Verwenden Sie dieses Auswahlmenü, um den Signaltyp auszuwählen. Die folgenden Typen stehen zur Verfügung:

- **Digitaleingang** Ein digitaler Eingang (Coil) ist eine Ein-Bit-Menge, die von der MODBUS-Einheit aus dem Coil abgelesen wird und im Adressfeld des Signals angegeben ist. Funktionscode 0x02 (diskrete Ausgänge lesen) wird eingesetzt.
- **Digitalausgang** Ein digitaler Ausgang (Coil) ist eine Ein-Bit-Menge, die auf HIGH oder LOW eingestellt werden kann. Bevor der Wert dieses Ausgangs durch den Benutzer eingestellt wurde, wird der Wert von der dezentralen MODBUS-Einheit abgelesen. Das bedeutet, dass der Funktionscode 0x01 (Read Coils) verwendet wird. Wenn der Ausgang entweder durch ein Roboterprogramm oder durch Betätigung der Schaltfläche **Signalwert bestimmen** festgelegt wurde, wird ab diesem Zeitpunkt der Funktionscode 0x05 (Write Single Coil) eingesetzt.
- **Registereingang** Ein Registereingang ist eine 16-Bit-Menge, die von der Adresse abgelesen wird, die im Adressfeld angegeben ist. Der Funktionscode 0x04 (Read Input Registers) wird eingesetzt.

Registerausgang Ein Registerausgang ist eine 16-Bit-Menge, die durch den Benutzer eingestellt werden kann. Bevor der Wert dieses Registers eingestellt wurde, wird der Wert von der dezentralen MODBUS-Einheit abgelesen. Das bedeutet, dass der Funktionscode 0x03 (Read Holding Registers) verwendet wird. Wenn der Ausgang entweder durch ein Roboterprogramm oder durch Betätigung der Schaltfläche **Signalwert bestimmen** festgelegt wurde, wird der Funktionscode 0x06 (Einzelnes Register schreiben) eingesetzt, um den Wert auf der dezentralen MODBUS-Einheit festzulegen.

Signaladresse einstellen

Dieses Feld zeigt die Adresse des dezentralen MODBUS-Servers. Verwenden Sie die Bildschirmtastatur, um eine andere Adresse auszuwählen. Gültige Adressen hängen von Hersteller und Konfiguration der dezentralen MODBUS-Einheit ab.

Signalname einstellen

Durch Verwendung der Bildschirmtastatur kann der Benutzer das Signal benennen. Dieser Name wird verwendet, wenn das Signal in Programmen eingesetzt wird.

Signalwert

Hier wird der Istwert des Signals angezeigt. Bei Registersignalen wird der Wert als vorzeichenlose ganze Zahl ausgedrückt. Bei Ausgangssignalen kann der gewünschte Signalwert mit der Schaltfläche eingestellt werden. Für den Registerausgang muss der an die Einheit zu schreibende Wert als vorzeichenlose ganze Zahl bereitgestellt werden.

Status Signalkonnektivität

Dieses Symbol zeigt an, ob das Signal korrekt gelesen/geschrieben (grün) werden kann oder ob die Einheit unerwartet antwortet oder nicht erreichbar ist (grau). Wird eine MODBUS-Ausnahmeantwort empfangen, wird der Antwortcode angezeigt. Die MODBUS-TCP-Ausnahmeantworten lauten wie folgt:

- **E1** UNZULÄSSIGE FUNKTION (0x01) Der in der Abfrage empfangene Funktionscode ist keine zulässige Aktion für den Server (oder Slave).
- **E2** UNZULÄSSIGE DATENADRESSE (0x02) Der in der Abfrage empfangene Funktionscode ist keine zulässige Aktion für den Server (oder Slave). Prüfen Sie, ob die eingegebenen Signaladressen mit der Einstellung des dezentralen MODBUS-Servers übereinstimmen.
- **E3** UNZULÄSSIGER DATENWERT (0x03) Ein im Abfragedatenfeld enthaltener Wert ist für den Server (oder Slave) unzulässig. Prüfen Sie, ob der eingegebene Signalwert für die angegebenen Adressen auf dem dezentralen MODBUS-Server gültig ist.
- **E4** FEHLER IM SLAVE-GERÄT (0x04) Ein nicht wiederherstellbarer Fehler ist aufgetreten, während der Server (oder Slave) versucht hat, die angeforderte Aktion auszuführen.
- **E5** BESTÄTIGEN (0x05) Spezielle Verwendung in Verbindung mit Programmierbefehlen, die an die dezentrale MODBUS-Einheit gesendet werden.
- **E6** SLAVE-GERÄT MOMENTAN NICHT VERFÜGBAR (0x06) Spezielle Verwendung in Verbindung mit Programmierbefehlen, die an die dezentrale MODBUS-Einheit gesendet werden; der Slave (Server) kann im Moment nicht antworten.

Erweiterte Optionen anzeigen

Dieses Kontrollkästchen zeigt die erweiterten Optionen für jedes Signal bzw. blendet diese aus.

Erweiterte Optionen

- **Update-Häufigkeit** Mit diesem Menü kann die Aktualisierungsfrequenz des Signals geändert werden. Dies gilt für die Frequenz, mit der Anfragen an die dezentrale MODBUS-Einheit geschickt werden, um den Signalwert entweder zu lesen oder zu schreiben. Ist die Frequenz auf 0 gesetzt, so werden Modbus-Anfragen auf Anforderung unter Verwendung von Modbus_erhalte_Signal_Status, Modbus_setze_Ausgangs-_Register und Modbus_setze_Ausgangs-_Signal-Scriptfunktionen angestoßen.
- **Slave-Adresse** Dieses Textfeld kann verwendet werden, um eine spezifische Slave-Adresse für Anfragen im Zusammenhang mit einem spezifischen Signal einzustellen. Der Wert muss im Bereich von 0-255 liegen. Der Standardwert ist 255. Wenn Sie diesen Wert ändern, wird empfohlen, das Handbuch des dezentralen MODUS-Geräts hinzuzuziehen, um seine Funktion zu prüfen, wenn die Slave-Adresse geändert wird.
- Zählvariable neu verbinden Anzahl der beendeten und neu hergestellten TCP-Verbindungen
- Verbindungsstatus TCP-Verbindungsstatus
- **Antwortzeit [ms**] Zeitspanne zwischen gesendeter Modbus-Anforderung und empfangener Antwort wird nur bei aktiver Kommunikation aktualisiert.
- **Modbus-Paket-Fehler** Anzahl der empfangenen Pakete, die Fehler enthielten. (Z. B. ungültige Länge, fehlende Daten, TCP-Socket-Fehler).
- Timeout Anzahl von Modbus-Anfragen ohne Antwort.
- **Anfrage fehlgeschlagen** Anzahl der Pakete, die aufgrund eines ungültigen Socket-Status nicht gesendet werden konnten.
- **Istfrequenz** Die durchschnittliche Häufigkeit von Client (Master)-Signal-Status-Updates. Dieser Wert wird jedes Mal neu berechnet, wenn das Signal eine Antwort vom Server (oder Slave) erhält.

Alle Zähler zählen bis 65535 und springen dann wieder auf 0.

16.4.2 Ethernet/IP

Unter EtherNet/IP können Sie die Verbindung des Roboters mit einem EtherNet/IP aktivieren bzw. deaktivieren. Ist die Verbindung aktiviert, können Sie wählen, was mit einem Programm geschehen soll, wenn die EtherNet/IP Scannerverbindung verloren geht. Folgende Reaktionen sind möglich:

- **Keine:** PolyScope ignoriert die unterbrochene EtherNet/IP Verbindung und setzt das Programm normal fort.
- **Pause:** PolyScope unterbricht das aktuelle Programm vorläufig. Das Programm wird an der unterbrochenen Stelle wieder fortgesetzt.
- Stopp: PolyScope hält das aktuelle Programm an.

In diesem Bildschirm können Sie den Roboterarm direkt bewegen, entweder durch Versatz/Drehen des Roboterwerkzeugs oder durch das Bewegen der einzelnen Robotergelenke.

17.1 Move Tool

Halten Sie einen der **Move Tool**-Pfeile gedrückt, um den Roboterarm in eine bestimmte Richtung zu fahren.

- Die (oberen) **Bewegungspfeile** fahren die Werkzeugspitze des Roboters in die angegebene Richtung.
- Mit den (unteren) Drehungspfeilen wird die Ausrichtung des Roboterwerkzeugs in die angegebene Richtung gelenkt. Der Drehpunkt ist der Werkzeugmittelpunkt (TCP), d. h. der Punkt am Ende des Roboterarms, der einen charakteristischen Punkt des Roboterwerkzeugs darstellt. Der TCP wird kleine blaue Kugel dargestellt.

17.2 Roboter

Nähert sich die aktuelle Position des Roboter- TCP einer Sicherheits- oder Auslöseebene oder befindet sich die Ausrichtung des Roboterwerkzeugs nahe einer Werkzeugausrichtungsgrenze (siehe 13.2.5), so wird eine 3D-Darstellung der angenäherten Bewegungsgrenze angezeigt. Hinweis: Wenn der Roboter ein Programm ausführt, ist die Darstellung von Bewegungsgrenzen deaktiviert.

Sicherheitsebenen werden in Gelb und Schwarz zusammen mit einem kleinen Pfeil angezeigt, der für die Normalebene steht und angibt, auf welcher Seite der Ebene der Roboter-TCP positioniert werden darf. Auslöseebenen werden in Blau und Grün zusammen mit einem kleinen Pfeil dargestellt, der auf die Seite der Ebene zeigt, bei der die Grenzen des Modus **Normal** aktiv sind (siehe 13.2.2). Das Limit der Werkzeugausrichtungsgrenze wird anhand eines sphärischen Kegels visualisiert, wobei ein Vektor die aktuelle Ausrichtung des Roboterwerkzeugs anzeigt. Das Innere des Kegels repräsentiert den zulässigen Bereich für die Werkzeugausrichtung (Vektor).

Befindet sich der Roboter-TCP nicht mehr in der Nähe der Bewegungsgrenze, verschwindet die 3D-Darstellung. Wird eine Bewegungsgrenze durch den TCP überschritten oder ist kurz vor der Überschreitung, wird die Darstellung der Bewegungsgrenze rot.

Funktion

Oben links im Feld **Roboter** können Sie unter **Funktion** festlegen, wie der Roboterarm in Relation zu den Funktionen **Ansicht**, **Basis** oder **Werkzeug** gesteuert werden soll.

Hinweis: Um das beste Gefühl für die Steuerung des Roboterarms zu bekommen, wählen Sie die Funktion **Ansicht**. Drehen Sie den Blickwinkel der 3D-Darstellung dann mit den **Drehpfeilen**, bis sie mit der Perspektive auf den echten Roboterarm übereinstimmt.

Aktiver TCP

Im Feld **Roboter** wird unter **Aktiver TCP** der Name des gegenwärtig aktiven Werkzeugmittelpunkts (TCP) angezeigt.

Home

Die Schaltfläche **Home** greift auf den Bildschirm **Roboter in Position fahren** zu, in dem Sie die **Auto**-Schaltfläche gedrückt halten können (siehe 14.4), um den Roboter in die Position zu fahren, die zuvor im Rahmen der Installation definiert wurde (siehe 16.1.9). Die Standardeinstellung der Home-Taste lässt den Roboterarm in eine aufrechte Position zurückkehren (siehe 16.1.9).

Freedrive

Die auf dem Bildschirm angezeigte Schaltfläche **Freedrive** ermöglicht es, dass der Roboterarm in die gewünschten Positionen/Posen gezogen werden kann.

Ausrichten

Die **Ausrichten**-Schaltfläche ermöglicht es, die Z-Achse des aktiven TCP hin zu einem ausgewählten Feature auszurichten.

17.3 Werkzeugposition

Die Textfelder zeigen die vollständigen Koordinatenwerte des TCP relativ zur ausgewählten Funktion an.

Hinweis: Sie können mehrere benannte TCPs konfigurieren (siehe 16.1.1). Sie können auch auf **Pose bearbeiten** klicken, um den Bildschirm **Poseneditor** aufzurufen.

17.3.1 Bearbeitungsanzeige "Pose"

Im **Poseneditor**-Bildschirm können präzise Zielgelenkpositionen oder eine Zielpose (Position und Ausrichtung) für den TCP konfiguriert werden. Hinweis: Diese Anzeige ist **offline** und steuert

den Roboterarm nicht direkt.

Roboter

Das 3D-Bild zeigt die aktuelle Position des Roboterarms. Der **Schatten** zeigt die durch die auf dem Bildschirm angegebenen Werte bestimmte Zielposition des Roboterarms. Tippen Sie auf die Lupensymbole, um hinein-/herauszuzoomen oder ziehen Sie einen Finger darüber, um die Ansicht zu ändern.

Ist die spezifizierte Zielposition des Roboter-TCP einer Sicherheits- oder Auslöserebene nahe oder befindet sich die Ausrichtung des Roboterwerkzeugs nahe am Limit der Werkzeugausrichtungsgrenze (siehe 13.2.5), so wird eine 3D-Darstellung des Näherungslimits der Grenze angezeigt. Sicherheitsebenen werden in Gelb und Schwarz zusammen mit einem kleinen Pfeil angezeigt, der für die Normalebene steht und angibt, auf welcher Seite der Ebene der Roboter-TCP positioniert werden darf. Auslöseebenen werden in Blau und Grün zusammen mit einem kleinen Pfeil dargestellt, der auf die Seite der Ebene zeigt, bei der die Grenzen des **Normalmodus** aktiv sind (siehe 13.2.2). Das Limit der Werkzeugausrichtungsgrenze wird anhand eines sphärischen Kegels visualisiert, wobei ein Vektor die aktuelle Ausrichtung des Roboterwerkzeugs anzeigt. Das Innere des Kegels repräsentiert den zulässigen Bereich für die Werkzeugausrichtung (Vektor). Befindet sich der Roboter-TCP nicht mehr in der Nähe der Bewegungsgrenze, verschwindet die 3D-Darstellung. Wenn der Ziel-TCP ein Grenzlimit überschreitet oder dem sehr nahe ist, ändert sich die Limitanzeige zu rot.

Funktion und Werkzeugposition

Der aktive TCP und die Koordinatenwerte der ausgewählten Funktion werden angezeigt. Die Koordinaten **X**, **Y** und **Z** geben die Werkzeugposition an. Die Koordinaten **RX**, **RY** und **RZ** geben die Ausrichtung an. Weitere Informationen zur Konfigurationen mehrerer benannter TCPs finden Sie hier (siehe 16.1.1).

Verwenden Sie das Auswahlmenü über den Feldern **rx**, **rx** und **rz**, um die Art der Ausrichtungsdarstellung auszuwählen.

- **Rotationsvektor** [**rad**] Die Ausrichtung wird als *Rotationsvektor* angegeben. Die Länge der Achse entspricht dem zu drehenden Winkel in Radianten, und der Vektor selbst gibt die Achse an, um die die Drehung erfolgt. Dies ist die Standardeinstellung.
- **Rotationsvektor** [°] Die Ausrichtung wird als *Rotationsvektor* angegeben, wobei die Länge des Vektors der Rotationswinkel in Grad ist.
- **RPY** [**rad**] *Roll-*, *Nick-* und *Gier-*Winkel (*RPY*), die als Radianten angegeben werden. Die RPY-Rotationsmatrix (x-, y'-, z" - Rotation) ist bestimmt durch:

```
R_{rpy}(\gamma,\beta,\alpha) = R_Z(\alpha) \cdot R_Y(\beta) \cdot R_X(\gamma)
```

• **RPY** [°] *Roll-*, *Nick-* und *Gier-*Winkel (*RPY*), die in Grad angegeben werden.

Durch Anklicken der Werte können die Koordinaten verändert werden. Durch Anklicken der Schaltflächen + und - rechts neben einem Feld können Sie den aktuellen Wert ebenfalls erhöhen oder verringern. Durch Gedrückthalten einer Schaltfläche wird der Wert direkt erhöht/verringert.

Gelenkpositionen

Einzelne Gelenkpositionen werden direkt angegeben. Jede Gelenkposition kann einen Gelenkgrenzbereich von -360° bis $+360^{\circ}$ haben. Konfigurieren Sie die Gelenkpositionen wie folgt:

- Tippen Sie auf die Gelenkposition, um die Werte zu bearbeiten.
- Tippen Sie auf die Schaltflächen + und rechts neben einem Feld, um den aktuellen Wert zu erhöhen oder zu verringern.
- · Halten Sie die Schaltfläche gedrückt, um den Wert direkt zu erhöhen/verringern.

Schaltfläche OK

Wenn Sie diesen Bildschirm vom Bildschirm **Move** aus aktiviert haben (siehe 17), tippen Sie auf die Schaltfläche **OK**, um zum Bildschirm **Move** zurückzukehren. Der Roboterarm verfährt zum angegebenen Ziel. War der zuletzt festgelegte Wert eine Werkzeugkoordinate, bewegt sich der Roboterarm mithilfe der Bewegungsart **MoveL** in die Zielposition. Alternativ bewegt sich der Roboterarm mithilfe der Bewegungsart **MoveJ** in die Zielposition, wenn zuletzt eine Gelenkposition festgelegt wurde (siehe 15.5.1).

Schaltfläche Abbrechen

Mit der Schaltfläche Abbrechen verlassen Sie den Bildschirm und verwerfen alle Änderungen.

17.4 Gelenkposition

Im Feld **Gelenkposition** können Sie einzelne Gelenke direkt ansteuern. Für jedes Gelenk gilt ein Standard-Gelenkgrenzbereich von -360° bis $+360^{\circ}$, der mit einer horizontale Leiste definiert wird. Sobald die Grenze erreicht ist, können Sie das Gelenk nicht weiter bewegen.

Hinweis: Gelenke können Sie mit einem Positionierbereich konfigurieren, der von dem Standard abweicht (siehe 13.2.4). Dieser neue Bereich wird durch eine rote Zone auf der horizontalen Leiste gekennzeichnet.

WARNUNG:

- Wenn unter Setup die Schwerpunkteinstellung (siehe 16.1.3) falsch ist oder der Roboterarm eine schwere Last transportiert, kann sich der Roboterarm in Bewegung versetzen (sinken), wenn Sie auf Freedrive drücken. Lassen Sie Freedrive in diesem Fall wieder los.
- Verwenden Sie die richtigen Installationseinstellungen (z. B. Roboterwinkel, Nutzlast-Gewicht und Nutzlast-Schwerpunktverschiebung). Speichern und laden Sie die Installationsdateien zusammen mit dem Programm.
- Die Nutzlast- und Robotermontageeinstellungen müssen korrekt sein, bevor die Schaltfläche Freedrive betätigt wird. Sind diese Einstellungen falsch, bewegt sich der Roboterarm, sobald auf Freedrive gedrückt wird.
- 4. Die Freedrive-Funktion darf nur bei Installationen verwendet werden, in denen die Risikobewertung dies zulässt. Werkzeuge und Hindernisse sollten keine scharfen Kanten oder Quetschpunkte aufweisen. Stellen Sie sicher, dass sich niemand in der Reichweite des Roboterarms befindet.

18.1 Roboter

Ausführen Programm Installatio		PROGRAMM <unbena< b=""> installation default*</unbena<>	annt>* 📮 🚰 冒	د د د د ≡
✔ Intern	Konfigurierbarer Eingang	Konfigurierbarer Ausgang	Digitaler Eingang	Digitaler Ausgang
Roboter	S-Guard Reset 4	0 🗌 🗌 4	0 4	0 🗌 🗍 4
> Extern	S-Guard Reset 5	1 🗌 🗖 5	1 5	Prog-Running 5
	2 6	2 🗌 🗌 6	Start-Prog 6	2 🗌 🗍 6
	3 7	3 🗌 🗍 7	Stop-Prog 7	3 🗌 🗍 7
	Analoger Eingang		Digitaler Werkzeugeingang	Digitaler Werkzeugausgang
	analog_in[0]o.co	sy Spannung ▼ 10V	0 🗌 🗌 1	0 🗌 🗍 1
	analog_in[1]	Spannung 💌 10V		Strom
	Analoger Ausgang		Analoger Werkzeugeingang	
	analog_out[0]	Strom 🔻	analog_in[2] 0V	0.00V Spannung 10V
	analog out[1]	Strom 🔻	analog_in[3]	0.00 V Spannung
	4,00	D mA	UV	107
O Normal	Geschwind	igkeit 💶 1009	* • • •	Simulation

In diesem Bildschirm können Sie die spannungsführenden E/A -Signale von/zur Control-Box stets überwachen und einstellen. Der Bildschirm zeigt den aktuellen Status der Ein- und Ausgänge an, auch während der Programmausführung. Werden während der Ausführung des Programms Änderungen vorgenommen, so stoppt das Programm. Wenn ein Programm stoppt, behalten alle Ausgangssignale ihren Status bei. Der Bildschirm wird bei nur 10 Hz aktualisiert, sodass ein sehr schnelles Signal eventuell nicht richtig angezeigt wird.

Konfigurierbare E/A können für spezielle Sicherheitseinstellungen reserviert werden, die im Abschnitt Sicherheits-E/A-Konfiguration der Installation definiert sind (siehe 13.2.8). Reservierte E/A tragen den Namen der Sicherheitsfunktion statt des Standardnamens oder eines benutzerdefinierten Namens. Konfigurierbare Ausgänge, die für Sicherheitseinstellungen reserviert sind, können nicht bedient werden und werden nur als LEDs angezeigt.

Die elektrischen Angaben der Signale sind im Kapitel 5.4 beschrieben.

Spannung Unter Werkzeugausgang kann Spannung nur dann konfiguriert werden, wenn der Werkzeugausgang vom Benutzer gesteuert wird. Mit Auswahl eines URCap entfällt der Zugriff auf die Spannung.

Einstellung Analogdomäne Die analogen E/A können entweder auf Stromausgang [4-20 mA] oder Spannungsausgang [0-10V] eingestellt werden. Die Einstellungen werden für mögliche spätere Neustarts des Controllers bei der Speicherung eines Programms gespeichert. Mit Auswahl

eines URCap im Werkzeugausgang entfällt der Zugriff auf die Domäneneinstellungen für die Werkzeug-Analogeingänge.

Kommunikationsschnittstelle für Tools Ist die **Kommunikationsschnittstelle für Werkzeuge (TCI)** aktiviert, so ist der Werkzeug-Analogeingang nicht mehr verfügbar. Auf dem **E/A**-Schirm, ändert sich das **Werkzeugeingangsfeld** wie unten dargestellt.

Tool Analog Input	
Baud Rate	115200
Parity	None
Stop Bits	One
RX Idle Chars	1.50
TX Idle Chars	3.50

HINWEIS:

Wenn der **Angetriebene Doppel-Pin** aktiviert ist, müssen die digitalen Ausgänge des Werkzeugs wie folgt benannt werden:

- Werkzeug_aus [0] (Strom)
- Werkzeug_aus [1] (Erdung)

Das Feld Werkzeug-Ausgabe ist unten dargestellt.

Tool Digital Output
Power 📃 🔳 GND
Current
Current
(000 mA)

18.2 MODBUS

Der Screenshot unten zeigt die E/A-Signale des MODBUS-Clients, wie sie bei der Installation eingerichtet werden. Mithilfe der Dropdownmenüs am oberen Rand des Bildschirms können Sie die angezeigten Inhalte basierend auf Signaltyp und MODBUS-Einheit ändern, wenn mehr als eine konfiguriert sind. Jedes Signal in der Listen enthält seinen Verbindungsstatus, Wert, Name,

seine Adresse und sein Signal. Die Ausgangssignale können umgeschaltet werden, wenn der Status der Verbindung und die Wahl für die E/A-Tab-Steuerung es erlauben (siehe 16.1.4).

Ausführen Programm Installation	PROGRAMM <unben< th=""><th>annt>* 📮 📮 🖬 C C 💳</th></unben<>	annt>* 📮 📮 🖬 C C 💳
> Intern✓ Extern	MODBUS-Typ: Alle	▼
MODBUS	Eingänge	Ausgänge
	MODBUS-Einheit: 10.0.0.2	MODBUS-Einheit: 10.0.0.2
	MODBUS_4 [260]	0 MODBUS_3 [18]
	MODBUS-Einheit: 127.0.0.1	MODBUS-Einheit: 127.0.0.1
	0 MODBUS_1 [0]	MODBUS_2 [16]
		MODBUS_5 [17]
		MODBUS_6 [18]
		MODBUS_7 [19]
		MODBUS_8 [20]
		MODBUS_9 [21]
Normal	Geschwindigkeit 🥌 100	% > C) O Simulation

19 Der Tab "Protokoll"

Ausführen Programm Installation Bewegen		Protokol	I	PROGRAMM <unbe< b=""> INSTALLATION default</unbe<>	nannt>*	Neu	Öffnen Speichern		د د د د
Controllerwerte		Prozessoriast Gelen	k						
Controllertemp.	24.C	0 Basis	ОК				0,0A 25.5 °C	0,0 V	5
Hauptspannung	48,C	1 Schulter	ОК				3,2A 25.0 °C	0,0 V	4 - 3
Durchschnittl. Leistung Robot	er C	2 Ellbogen	OK			_	1,7A 24.5 °C	0,0 V	
Strom	0,C	③ Handgelenk 1	ОК			_	0,2A 24.0 °C	0,0 V	2-
Strom E/A	C	(4) Handgelenk 2	OK			_	0,0A 23.5 *C	0,0 V	
Strom Werkzeug	C	6 Handgelenk 3	OK			_	0.0A 23.5 *C	0,0∨	
Protokoll									
m 2020-03-26 02:44:06		Ansicht:	0	1. 😢 🖉	Lös	chen		4	Support-Datei
2020-03-26 02:44:00.749 F	PolyScop	re COAO					Wählern Sie weit	einen Eintrag ere Informatic	aus dem Protokoll, um nen zu erhalten.
Normal		Geschwindigkeit		100)%	C	000		Simulation

19.1 Messwerte und gemeinsame Last

Die obere Hälfte des Bildschirms zeigt den Status des Roboterarms und des Controllers an. Der linke Teil des Bildschirms zeigt Informationen im Zusammenhang mit der Control-Box an, während auf der rechten Bildschirmseite Informationen zu den Robotergelenken angezeigt werden. Jedes Robotergelenk zeigt Informationen zur Temperatur der Last am Gelenk und zur elektrischen Spannung an.

19.2 Datumsprotokoll

Die erste Spalte kategorisiert den Schweregrad des Protokolleintrags. In der zweiten Spalte ist der Zeitpunkt des Eintreffens der jeweiligen Meldungen eingetragen. Die folgende Spalte zeigt den Sender einer Meldung. Die letzte Spalte zeigt die eigentliche Meldung. Meldungen können durch Auswahl der Schaltflächen, die zu dem Schweregrad gehören, gefiltert werden. Die Abbildung oben zeigt, dass Fehler angezeigt werden, während Informations- und Warnmeldungen gefiltert werden. Einige Protokollmeldungen sind darauf ausgelegt, weitere Informationen zu bieten, die auf der rechten Seite nach Auswahl des Protokolleintrags angezeigt werden.

19.3 Fehlerberichte speichern

Wenn ein Büroklammersymbol in der Protokollzeile erscheint, steht ein ausführlicher Statusbericht zur Verfügung.

• Wählen Sie die Protokollzeile aus und klicken Sie auf die Option Bericht speichern, um den Bericht auf einem USB-Laufwerk zu speichern.

• Der Bericht kann bei laufendem Programm gespeichert werden.

HINWEIS:

Der jeweils älteste Bericht wird gelöscht, wenn ein neuer generiert wird. Nur die aktuellsten fünf Berichte werden gespeichert.

Die folgende Liste mit Fehlern kann nachverfolgt und exportiert werden:

- Störung
- Interne PolyScope Ausnahmen
- Sicherheitsstopp
- Nicht abgefangener Ausnahmefehler in URCap
- Verletzung

Der exportierte Bericht enthält ein Benutzerprogramm, ein Journalprotokoll, eine Installation und eine Liste mit ausgeführten Diensten.

19.4 Datei für technische Unterstützung (Support-Datei)

Die Berichtsdatei enthält Informationen, die für die Diagnose und die Nachbildung von Problemen hilfreich sind. Die Datei enthält Aufzeichnungen über frühere Roboterstörungen sowie aktuelle Roboterkonfigurationen, Programme und Installationen. Die Berichtsdatei kann auf ein externes USB-Laufwerk gespeichert werden. Tippen Sie auf **Support-Datei** im Protokoll-Bildschirm und folgen Sie den Anweisungen auf dem Bildschirm, um auf die Funktion zuzugreifen.

HINWEIS:

Der Vorgang für das Exportieren kann je nach Geschwindigkeit des USB-Laufwerks und der Größe der vom Roboter-Dateisystem gesammelten Dateien bis zu 20 Minuten dauern. Der Bericht wird als normale, nicht passwortgeschützte Zip-Datei gespeichert und kann vor dem Senden an den Technischen Support bearbeitet werden.

20 Programm- und Installations-Manager

Der Programm- und Installations-Manager enthält drei Symbole, über die Sie Programme und Installationen erstellen, laden und konfigurieren können: **Neu..., Öffnen...** und **Speichern...**. Im Dateipfad werden das derzeit geladene Programm, der Name und die Art der Installation angezeigt. Beim Erstellen oder Laden eines neuen Programms bzw. einer Installation ändert sich der Dateipfad. Für einen Roboter können mehrere Installationsdateien gespeichert sein. Die erstellten Programme laden und nutzen die aktive Installation automatisch.

20.1 Öffnen...

Dient zum Laden eines Programms und/oder einer Installation.

Austrikter Frogramm Installation Bewegen EA Protokiel	PROGRAMM ABCDE Installation default ,	Ciffnen	° ° ⊂ ≡
Programm	Variablen	n	
ABCDE	2 installatio	on	
Programm laden			
Status Gestoppt	Kei	ne Variablen	
Betriebszeit			
Tage Stunden Minuten Sekunden 0 00 04 20			
			Circulation
Ges Ges			

Programm öffnen

- 1. Klicken Sie im Programm- und Installations-Manager auf **Öffnen...** und wählen Sie ein Programm.
- 2. Wählen Sie im Bildschirm Programm laden ein vorhandenes Programm und klicken Sie auf "Öffnen".
- 3. Stellen Sie unter Dateipfad fest, ob der gewünschte Programmname angezeigt wird.

Installation öffnen.

- 1. Klicken Sie im Programm- und Installations-Manager auf **Öffnen...** und wählen Sie eine Installation.
- 2. Wählen Sie im Bildschirm "Roboter-Installation laden" eine vorhandene Installation und klicken Sie auf "Öffnen".
- 3. Klicken Sie im Feld Sicherheitskonfiguration auf Übernehmen und Neustart, um einen Neustart des Roboters durchzuführen.
- 4. Wählen Sie "Installation festlegen", um die Installation für das aktuelle Programm einzustellen.
- 5. Stellen Sie unter Dateipfad fest, ob der gewünschte Installationsname angezeigt wird.

20.2 Neu...

Dient zum Erstellen eines neuen Programms und/oder einer Installation.

		PROGRAMM ABCDE	öffnen Speichern	сс сс
Programm	Variablen	Programm		
ABCDE		1 Installation		
Programm laden				
Status Gestoppt		Keine	Variablen	
Betriebszeit				
Tage Stunden Minuten Sekunden 0 00 04 19	U Wegpunkte anze	zigen		
O Normal	Geschwindigkeit	100%	\mathbf{D}	Simulation

Neues Programm erstellen

- 1. Klicken Sie im Programm- und Installations-Manager auf **Neu...** und wählen Sie ein Programm.
- 2. Konfigurieren Sie das neue Programm im Bildschirm Programm wie gewünscht.
- 3. Klicken Sie im Programm- und Installations-Manager auf **Speichern...** und wählen Sie Alle speichern oder Programm speichern als...
- 4. Vergeben Sie im Bildschirm "Programm speichern als" einen Dateinamen und klicken Sie auf "Speichern".
- 5. Stellen Sie unter Dateipfad fest, ob der neue Programmname angezeigt wird.

Neue Installation erstellen

Hinweis: Eine Installation muss gespeichert werden, wenn sie nach dem Abschalten des Roboters wiederverwendet werden soll.

- Klicken Sie im Programm- und Installations-Manager auf Neu... und wählen Sie eine Installation.
- 2. Klicken Sie auf Sicherheitskonfiguration bestätigen.
- 3. Konfigurieren Sie die neue Installation im Bildschirm Installation wie gewünscht.
- 4. Klicken Sie im Programm- und Installations-Manager auf **Speichern...** und wählen Sie "Installation speichern als ..."
- 5. Vergeben Sie im Bildschirm Roboterinstallation speichern einen Dateinamen und klicken Sie auf "Speichern".
- 6. Wählen Sie "Installation festlegen", um die Installation für das aktuelle Programm einzustellen.
- 7. Stellen Sie unter Dateipfad fest, ob der Name der neuen Installation angezeigt wird.

20.3 Speichern...

	PROGRAMM ABCDE LA CONTRALLATION default
Programm	Variablen
ABCDE	Programm speichern als Installation speichern als
Status Gestoppt	Keine Variablen
Betriebszeit	
Tage Stunden Minuten Sekunden 0 00 04 20	
	Wegpunkte anzeigen
O Normal Ge	schwindigkeit 🛑 🛑 Simulation 🕖 🚺

Speichern... bietet drei Möglichkeiten. Je nach Programm/Installation, das/die Sie laden oder erstellen, haben Sie folgende Möglichkeiten:

Alle speichern, um das aktuelle Programm und die Installation direkt zu speichern, ohne dass Sie das System nach einem anderen Verzeichnis oder anderen Namen fragt. Hinweis: Wenn an dem Programm oder der Installation nichts geändert wurde, ist die Schaltfläche "Alle speichern …" deaktiviert.

Programm speichern als... um den Namen und das Verzeichnis für das neue Programm zu ändern. Hinweis: Die aktuelle Installation wird mit dem bestehenden Namen und Verzeichnis ebenfalls gespeichert.

Installation speichern als... um den Namen und das Verzeichnis für die neue Installation zu ändern. Hinweis: Das aktuelle Programm wird mit dem bestehenden Namen und Verzeichnis ebenfalls gespeichert.

20.4 Datei-Manager

Diese Abbildung zeigt den Ladebildschirm, der die folgenden Schaltflächen umfasst:

Breadcrumb-Pfad Der Breadcrumb-Pfad zeigt eine Verzeichnisliste, die zum aktuellen Ort führt. Wird in der Liste ein Verzeichnisname ausgewählt, wechselt der Ort zu diesem Verzeichnis und zeigt es im Dateiauswahlbereich an.

Dateiauswahlbereich Klicken Sie auf den Namen einer Datei, um diese zu öffnen. Ein Verzeichnis wird ausgewählt, indem Sie für eine halbe Sekunde auf seinen Namen drücken.

Dateifilter Sie können die angezeigten Dateitypen festlegen. Nach der Auswahl der Backup-Dateien werden in diesem Bereich die zehn zuletzt gespeicherten Programmversionen angezeigt, wobei ".old0" die neueste und ".old9" die älteste ist.

Dateiname Hier wird die ausgewählte Datei angezeigt. Beim Speichern einer Datei verwenden Sie bitte das Textfeld für die Eingabe des Dateinamens.

Aktionsschaltflächen Die Aktionsleiste besteht aus einer Reihe von Schaltflächen, mit denen Sie Dateien verwalten können.

Die Aktion "Backup" auf der rechten Seite der Aktionsleiste unterstützt die Sicherung aktuell ausgewählter Dateien und Verzeichnisse zu einem Speicherort und zu USB. Die Aktion "Backup" ist nur aktiviert, wenn ein externes Medium am USB-Port angeschlossen ist.

21.1 Hilfe

Für alle Elemente, die die PolyScope Funktionen betreffen, können Sie nach Definitionen suchen.

- 1. Klicken Sie rechts in der Kopfzeile auf das Hamburger-Menü und wählen Sie Hilfe.
- 2. Klicken Sie auf eines der roten Fragezeichen, die eingeblendet werden, um das gewünschte Element zu definieren.
- 3. Klicken oben rechts im Definitionsbildschirm des Elements auf das rote X, um die Hilfe zu verlassen.

21.2 Über

Hier können Sie die Version sowie rechtliche Angaben einsehen.

- 1. Klicken Sie auf das Hamburger-Menü und wählen Sie Über.
- 2. Klicken Sie entweder auf **Version** oder auf **Impressum**, um die jeweiligen Angaben aufzurufen.
- 3. Klicken Sie auf Schließen, um zum Ausgangsbildschirm zurückzukehren.

21.3 Einstellungen

Personalisierung der Einstellungen von PolyScope

- 1. Drücken Sie in der Kopfzeile auf das Hamburger-Menü und wählen Sie **Einstellungen**.
- Wählen Sie im linken Seitenmenü ein Element zum Anpassen aus. Hinweis: Falls ein Passwort für den Betriebsmodus festgelegt wurde, steht System im Seitenmenü nur dem Programmierer zur Verfügung.
- Klicken Sie unten rechts auf Übernehmen und neu starten, um Ihre Änderungen einzusetzen.
- 4. Klicken Sie unten links auf **Beenden**, um den Einstellungsbildschirm zu schließen, ohne Änderungen vorzunehmen.

21.3.1 Voreinstellungen

Sprache

Die Sprache und Maßeinheit (metrisch oder US/GB) können in PolyScope ändern.

Zeit

Sie können die in PolyScope angezeigte aktuelle Uhrzeit und das Datum aufrufen und/oder anpassen.

- 1. Drücken Sie in der Kopfzeile auf das Hamburger-Menü und wählen Sie Einstellungen.
- 2. Wählen Sie unter Einstellungen Zeit aus.

- 3. Bestätigen und/oder passen Sie **Uhrzeit** und/oder **Datum** nach Bedarf an.
- 4. Tippen Sie auf Übernehmen und neu starten, um Ihre Änderungen zu übernehmen.

Datum und Uhrzeit werden im Protokoll-Tab angezeigt (siehe 19.2) unter **Datumsprotokoll**.

Geschwindigkeitsregler ausblenden

Auf der Unterseite des Registers Run kann der Benutzer mithilfe des Geschwindigkeitsreglers die Geschwindigkeit eines laufenden Programms ändern.

- 1. Drücken Sie in der Kopfzeile auf das Hamburger-Menü und wählen Sie Einstellungen.
- 2. Unter Voreinstellungen klicken Sie auf Ausführungsbildschirm
- 3. Aktivieren Sie das Kontrollkästchen zum Anzeigen oder Ausblenden des **Geschwindigkeits**reglers.

21.3.2 Passwort

Modus

Das Passwort für den Betriebsmodus verhindert eine unbefugte Änderung der Robotereinrichtung. Dazu sind in PolyScope zwei verschiedene Benutzerrollen definiert: Automatik und Manuell. Wenn Sie ein Betriebsmodus-Passwort definieren, können Programme oder Installationen nur im manuellen Modus erstellt und geladen werden. Sobald Sie den manuellen Modus aufrufen, fordert Sie PolyScope zur Eingabe des Passworts auf, das in diesem Bildschirm zuvor festgelegt wurde.

Sicherheit

Das Sicherheitspasswort verhindert eine unbefugte Änderung der Sicherheitseinstellungen .

21.4 System

21.4.1 Sicherung und Wiederherstellung

Speichern Sie eine vollständige Kopie Ihres Systems auf einem USB-Laufwerk, damit Sie den vorherigen Status Ihres Systems wiederherstellen können. Dies kann nach Schäden an der Festplatte oder nach versehentlichem Löschen erforderlich werden.

HINWEIS:

Nutzen Sie für eine Sicherung und Wiederherstellung einen der USB-Anschlüsse in der Control-Box (CB). Ein CB USB-Anschluss ist stabiler und die Wiederherstellung erfordert weniger Zeit.

Sicherung des Systems

- 1. Drücken Sie in der Kopfzeile auf das Hamburger-Menü und wählen Sie **Einstellungen**.
- 2. Tippen Sie unter System auf Sichern Wiederherstellen.
- 3. Wählen Sie einen Speicherort für die Sicherungsdatei aus und drücken Sie auf Sichern.
- 4. Drücken Sie **OK** für einen vollständigen Systemneustart.

Wiederherstellen des Systems

- 1. Drücken Sie in der Kopfzeile auf das Hamburger-Menü und wählen Sie **Einstellungen**.
- 2. Tippen Sie unter System auf Sichern Wiederherstellen.
- 3. Wählen Sie Ihre Sicherungsdatei aus und drücken Sie auf Wiederherstellen.
- 4. Drücken Sie zum Bestätigen auf OK.

21.4.2 Aktualisierung

Verwenden Sie das Software-Update, um Ihre Robotersoftware zu aktualisieren. Software-Update-Dateien sind auf der Support-Website von Universal Robots verfügbar: http://www.universal-robots. com/support.

WARNUNG:

Halten Sie die Software Ihres Roboters auf dem neuesten Stand, um einen sicheren Betrieb zu gewährleisten.

Für weitere Informationen zur Aktualisierung der Software können Sie das Service-Handbuch von der Universal Robots-Supportseite herunterladen: http://www.universal-robots.com/support.

21.4.3 Netzwerk

Die Roboterverbindung zu einem Netzwerk können Sie durch Auswahl einer der drei verfügbaren Vernetzungen festlegen:

- DHCP
- Statische Adresse
- · Deaktiviertes Netzwerk (falls Sie Ihren Roboter nicht vernetzen möchten)

Je nach ausgewählter Vernetzung müssen Sie die Netzwerkeinstellungen konfigurieren:

- IP-Adresse
- Subnet-Maske
- Standard-Gateway
- Bevorzugter DNS-Server
- Alternativer DNS-Server

Hinweis: Drücken Sie Übernehmen, um die Änderungen zu übernehmen.

21.4.4 Verwaltung von URCaps

Sie können Ihre bestehenden **URCaps** verwalten oder in Ihrem Roboter neue installieren.

- 1. Drücken Sie in der Kopfzeile auf das Hamburger-Menü und wählen Sie **Einstellungen**.
- 2. Wählen Sie unter System URCaps.
- Drücken Sie auf die Schaltfläche +, wählen Sie die .urcap Datei und anschließend Öffnen Hinweis: Wenn Sie im Feld Aktive URCaps das neue URCaps auswählen, erhalten Sie weitere Einzelheiten darüber. Weitere Informationen werden unter dem Feld URCaps Informationen angezeigt.

- 4. Wenn Sie die Installation des jeweiligen URCap fortsetzen möchten, drücken Sie **Neustart**. Anschließend ist das URCaps installiert und kann verwendet werden.
- 5. Zum Löschen eines installierten URCaps wählen Sie es unter Aktive URCaps aus, drücken auf und anschließend auf **Neustart**, damit die Änderungen in Kraft treten.

21.4.5 Fernsteuerung

Gesteuert werden kann ein Roboter entweder durch lokale Steuerung (Steuerung mittels Teach Pendant) oder durch Fernsteuerung (externe Steuerung).

Lokale Steuerung erlaubt	Fernsteuerung erlaubt nicht
das Einschalten und Lösen der	das Bewegen des Roboters über den
Bremse über das Netzwerk	Move-Tab
das Empfangen und Ausführen von	das Starten aus dem Teach Pendant
Roboterprogrammen und Installa-	
tionen, die über das Netzwerk an	
den Roboter geschickt wurden	
den automatischen Start von Pro-	das Laden von Programmen und Instal-
grammen beim Booten bzw. eine	lationen über das Teach Pendant
Steuerung über digitale Eingänge	
das Automatische Lösen der Brem-	Freedrive
se beim Booten bzw. eine Steue-	
rung über digitale Eingänge	
das Starten von Programmen bzw.	
eine Steuerung über digitale Eingän-	
ge	

Die Steuerung des Roboters über ein Netzwerk oder einen Digitaleingang ist standardmäßig eingeschränkt. Diese Einschränkung wird durch Aktivierung und Auswahl der Funktion Fernsteuerung aufgehoben. Die Fernsteuerung können Sie durch Schalten des Roboterprofils Lokale Steuerung (PolyScope Kontrolle) aktivieren, mit dem die gesamte Kontrolle über die Programmausführung und die Scriptausführung über das Netzwerk ermöglicht wird.

Hinweis: Um auf den Remote-Modus und Lokalen Modus im Profil zuzugreifen, müssen Sie die Funktion Fernsteuerung unter Einstellungen aktivieren.

Aktivierung der Fernsteuerung

- 1. Drücken Sie in der Kopfzeile auf das Hamburger-Menü und wählen Sie Einstellungen.
- 2. Unter System wählen Sie Fernsteuerung.
- 3. Drücken Sie **Aktivieren**, um die Fernsteuerungsfunktion verfügbar zu machen. PolyScope bleibt aktiv. Hinweis: Durch das Aktivieren der Fernsteuerung wird die Funktion nicht sofort aktiv. Sie können dadurch von Lokaler Steuerung auf Fernsteuerung umschalten.
- 4. Wählen Sie im Profilmenü **Fernsteuerung**, um PolyScope zu ändern. Hinweis: Sie können wieder zur Lokalen Steuerung durch Umschaltung im Profilmenü oder durch Auswahl von Bediener oder Programmierer zurückkehren, sofern ein Passwort angegeben wird.

HINWEIS:

- Zwar sind Ihre Aktionen in PolyScope durch die Fernsteuerung eingeschränkt, den Roboterstatus können Sie aber dennoch überwachen.
- Wenn ein Robotersystem in der Fernsteuerung ausgeschaltet wird, startet es in der Fernsteuerung.

21.5 Roboter abschalten

Die Schaltfläche Roboter abschalten dient zum Abschalten oder Neustart des Roboters.

Abschaltung des Roboters

- 1. Drücken Sie in der Kopfzeile auf das Hamburger-Menü und wählen Sie **Roboter abschalten**.
- 2. Wenn das Dialogfeld "Roboter abschalten" erscheint, tippen Sie auf Ausschalten.

Glossar

- **Stoppkategorie 0** Die Roboterbewegung wird durch die sofortige Trennung der Stromversorgung zum Roboter gestoppt. Es ist ein ungesteuerter Stopp, bei dem der Roboter vom programmierten Pfad abweichen kann, da jedes Gelenk unvermittelt bremst. Dieser Sicherheitsstopp wird verwendet, wenn ein sicherheitsrelevanter Grenzwert überschritten wird oder eine Störung in den sicherheitsrelevanten Teilen des Steuersystems auftritt. Siehe ISO 13850 oder IEC 60204-1 für weitere Informationen.
- Stoppkategorie 1 Die Roboterbewegung wird gestoppt, indem der dem Roboter verbleibende Strom zum Erzielen des Stopps eingesetzt wird und die Stromversorgung getrennt wird, wenn der Stopp erzielt wurde. Es ist ein gesteuerter Stopp, bei dem der Roboter dem programmierten Pfad weiterhin folgt. Die Stromversorgung wird getrennt, sobald der Roboter still steht. Siehe ISO 13850 oder IEC 60204-1 für weitere Informationen.
- **Stoppkategorie 2** Ein gesteuerter Stopp, bei dem dem Roboter weiterhin Strom zur Verfügung steht. Das sicherheitsrelevante Steuersystem überwacht, dass der Roboter in der Stopp-Position verbleibt. Siehe IEC 60204-1 für weitere Informationen.
- **Stoppkategorie 3** Der Begriff *Kategorie* ist nicht mit dem Begriff *Stoppkategorie* zu verwechseln. *Kategorie* bezieht sich auf den Architekturtyp, der als Grundlage für einen bestimmten *Performance Level* verwendet wird. Eine wesentliche Eigenschaft einer *Kategorie* 3-Architektur ist es, dass ein einzelner Fehler nicht zum Verlust der Sicherheitsfunktion führen kann. Siehe ISO 13849-1 für weitere Informationen.
- **Performance Level (PL)** Der Performance Level ist eine diskrete Stufe, die genutzt wird, um die Fähigkeit von sicherheitsrelevanten Teilen des Steuersystems zur Ausführung von Sicherheitsfunktionen unter vorhersehbaren Bedingungen auszudrücken. PLd ist die zweithöchste Zuverlässigkeitsklassifikation und steht für eine extrem zuverlässige Sicherheitsfunktion. Siehe ISO 13849-1 für weitere Informationen.
- **Der Diagnosedeckungsgrad (DC)** gibt die Wirksamkeit der Diagnose an, die für das Erreichen des angegebenen Performance Level implementiert ist. Siehe ISO 13849-1 für weitere Informationen.
- **MTTFd** Die Mittlere Zeit bis zu einem gefährlichen Ausfall (MTTFd) ist ein Wert auf Basis von Berechnungen und Tests, der dazu verwendet wird, den angegebenen Performance Level zu erreichen. Siehe ISO 13849-1 für weitere Informationen.
- **Integrator** Der Integrator legt die endgültige Roboterinstallation aus. Der Integrator ist für die abschließende Risikobewertung verantwortlich und muss sicherstellen, dass die endgültige Installation den örtlichen Gesetzen und Bestimmungen entspricht.
- **Risikobewertung** Eine Risikobewertung umfasst den gesamten Vorgang der Identifizierung aller Risiken und deren Reduzierung auf ein angemessenes Niveau. Eine Risikobewertung sollte stets dokumentiert werden. Siehe ISO 12100 für weitere Informationen.
- **Kooperative Roboteranwendung** Der Begriff *kollaborativ* bezieht sich auf das Zusammenwirken von Bediener und Roboter in einer Roboteranwendung. Für genaue Definitionen und Beschreibungen, siehe ISO 10218-1 und ISO 10218-2.

Sicherheitskonfiguration Sicherheitsrelevante Funktionen und Schnittstellen sind durch Sicherheitskonfigurationsparameter konfigurierbar. Diese werden über die Softwareschnittstelle definiert, s. Teil II.

Index

Symbols

"Hamburger-Menü"		II-5
------------------	--	------

Modus: Automatik	II-4
Modus: Manuell	

A

Abschaltung	II-145
Abspielen	. II-5, II-40
Angehaltener Status	II-8
Anwendungsspezifisch	II-24
Anzeigen	II-28
Ausdruckseditor	II-75
Ausgangssignale	II-34
Auslöseebene	II-29
Auslöser Reduzierter Modus	II-28
Ausrichten	II-126
Auto	II-126
Automatikmodus	
Automatikmodus-Schutz-Reset	II-34
Automatikmodus-Schutzabschaltung	II-34

В

Basis	I-61, II-7, II-52
Basisfunktion	II-115
Betrieb	II-3, II-39
Betriebsarten	II-28
Bewegung	II-87
Bildschirm	II-3
Bis	II-60
Bis Werkzeug-Kontakt	II-62
Bis-Ausdruck	II-62
Bis-Entfernung	II-61
Blending	II-54
Blending-Parameter	II-55

С

Control Boxix
Control-BoxI-24, I-29, I-32, I-41-I-43, I-77, II-8,
II-106, II-131

D

Das Signal Reduzierter ModusII-35

Das Signal Roboter in Bewegung II-34
Das Signal Roboter stoppt nicht II-34
Das Signal Safe HomeIl-35
Das Signal System-Notabschaltung II-34
DateipfadII-137
DeaktiviertII-28, II-29
Der NachlaufwegII-24
Die Deaktivierte Werkzeugrichtungsbegrenzung
II-32
Die LeistungII-24
Die Nachlaufzeit II-24
Die Normale & Reduzierte
Werkzeugrichtungsbegrenzung II-32
Die Normale Werkzeugrichtungsbegrenzung
II-32
Die Reduzierte Werkzeugrichtungsbegrenzung
II-32
DrehmomentII-24

Ε

F

FehlerII-73
Fernsteuerung II-107, II-144
Fließband-TrackingI-32, II-88
Freedrive I-19, II-17, II-87, II-88, II-103, II-126,
II-129
Freedrive-Modus II-115
Funktion II-115, II-126
FunktionenII-111

FunktionsmenüII	-86
Fußzeile II-3, II-	-40

G

Garantie	I-59
Gelenkgrenzen	II-26
Gelenklast	II-135
Gelenkraum	II-51
Geschwindigkeitsregler I	I-5, II-17

Н

Handgel	enk	 		 		 	II-7
Home		 	•••	 	• • • •	 	II-126

I

Initialisieren	II-5, II-8
Installation	. II-3, II-106, II-137, II-138
Installationsvariablen	II-106
Integrator	I-9

Κ

Kommunikationsschnitts	stelle für Werkzeuge
	II-108
Konfigurierbarer E/A	I-33
Konsole	I-29
Konusmitte	II-32
Konuswinkel	II-32
Kopfzeile	II-3
Kraftmodus	II-85

L

Löschen				II-28
---------	--	--	--	-------

Μ

Manuelle hohe Geschwindigkeit II-5, II-19
Manueller Modus II-17
Mini-Display-Port I-29
MODBUSI-29, II-111, II-120, II-122, II-132
ModusI-18
Modus: FernsteuerungII-4
Modus: LokalII-4
Montagevorrichtungix
Move II-3, II-17, II-51, II-52, II-64, II-128
Move Tool II-125
MoveJ II-51, II-116, II-128
MoveL II-51, II-116, II-128
MoveP II-51, II-116

Ν

Neigungswinkel	 	 	II-33
Neu	 	 	. II-4, II-137

Nicht-Reduzierter Modus	II-35
Normal	II-28
Normal & Reduziert	II-28
Normale Ebene	II-29
Normaler Modus	II-25, II-32
Normalmodus	II-49, II-127

0

Ordner II-66

Ρ

PolyScope . ix, I-19, II-3, II-7, II-9, II-36, II-39, II-67,
II-99, II-120, II-123, II-141, II-145
Pop-upII-65
PoseneditorII-126
PositionII-30
Position bearbeiten II-31
PositionsbereichII-26
Programm II-3, II-39, II-88, II-137, II-138
Programm- und Installations-Manager II-4, II-137
Programmknoten II-43, II-48
Programmstruktur II-43
Protokoll II-4
Punkt II-86

R

Radius	II-30
Rahmen	II-86
Reduziert	II-28
Reduzierter Modus I-18, II-2	25, II-30, II-32, II-33
Relativer Wegpunkt	II-52
Richtungsvektor	II-61
Risikobewertung	. x, I-3, I-9, I-11, I-15
Roboter	. II-30, II-125, II-126
Roboter fahren zu	II-41
Roboter programmieren	II-6
Roboterarm . I-29, I-77, II-7, II-	8, II-83–II-85, II-87,
II-106,	II-125
Robotergrenzen	II-24
Roboterinstallation konfigurie	ren II-6
Roboterprogrammknoten	II-48

S

SchrittII-5
Schulter I-61, II-7
Schutz-ResetII-34
Schwenkwinkel II-33
Script-Handbuchxi
Service-Handbuchxi
Setup II-129
Sicherheits-E/AI-13, I-18, I-33, I-34

SicherheitsanweisungenI-51
Sicherheitsebenen II-27, II-125, II-127
Sicherheitseinstellungen I-3, II-21, II-142
SicherheitsfunktionenI-13, I-14
Sicherheitskonfiguration I-9, II-21, II-23, II-26
Sicherheitsprüfsumme II-4, II-23
Simulation II-5
SpannungII-131
Speichern II-4, II-137, II-139
StandardI-77, I-79
Stopp II-5
Switch Case-Konstruktion II-75
System-NotabschaltungII-33

Т

TCI	II-63
Teach Pendant	ix, I-24, I-27, I-41, II-3, II-8, II-35,
	II-87, II-88, II-144
Testschalter	II-88

U

Umbenennen	II-28
Universal-I/O	I-33
UR+	xi
URCaps	II-143

V	
Variable-Wegpunkte	. II-53
Variablen II-39), II-50
Variablen-Funktion	. II-53
Vorlagen	. II-88

W

Warnsignale	I-4
Warten	II-63
WegpunktII-5	1, II-52, II-54, II-59
Wegpunkte	II-12
Werksvorgaben	II-24
Werkzeug	II-30
Werkzeug-E/A	I-44
Werkzeugfunktion	II-115
Werkzeuggeschwindigkeit	II-25
Werkzeugmittelpunkt II-25	5, II-30, II-53, II-99,
II-12	б
Werkzeugmoment	II-25
Werkzeugposition	II-30, II-31
Werkzeugrichtung	II-31, II-32
Wiederherstellungsmodus	I-19, II-26

•
Öffnen II-4, II-137
Über II-141

Software version: 5.8

