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STEP Support Programme

Hints and Partial Solutions for Assignment 20

Warm-up

1 You need to be quite careful when writing out this sort of argument. Note that you cannot
find the limit of the numerator and denominator separately.

(i) You know:
sin(x+ h) = sinx cosh+ sinh cosx

and, since h is small we can use the small angle approximations for cosh and sinh:

sin(x+ h) ≈ sinx×
(
1− 1

2h
2
)

+ h cosx .

We can now say that, in the limit as h→ 0:

lim
h→0

sin(x+ h)− sinx

h
= lim

h→0

���sinx− h2

2 sinx+ h cosx−���sinx

h

= lim
h→0

(
cosx− h

2
sinx

)
= cosx .

You then need to do something very similar when differentiating cosx:

lim
h→0

cos(x+ h)− cosx

h
= lim

h→0

cosx cosh− sinx sinh− cosx

h

= lim
h→0

���cosx− h2

2 cosx− h sinx−���cosx

h

= lim
h→0

(
−h

2
cosx− sinx

)
= − sinx .

(ii) Here we can write:

ln(x+ h)− lnx = ln

(
x+ h

x

)
= ln

(
1 +

h

x

)
=
h

x
− 1

2

(
h

x

)2
+

1

3

(
h

x

)3
+ · · · as long as

∣∣∣∣hx
∣∣∣∣ < 1 .
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Since x 6= 0 (necessary for lnx to be defined) and h is small we can pick h so that
|hx | < 1, but it is still necessary to state that the expansion is only true when |hx | < 1.

Then we have:

lim
h→0

h
x −

1
2

(
h
x

)2
+ 1

3

(
h
x

)3
+ · · ·

h
=

1

x
.

(iii) If we square the given approximation we get:

1 + t ≈ 1 + 2kt+ k2t2

and since t2 can be ignored we get k = 1
2 .

Writing
√
x+ h as

√
x×

√
1 + h

x and using the approximation derived above gives the

derivative as:

lim
h→0

√
x+ h−

√
x

h
= lim

h→0

√
x×

√
1 + h

x −
√
x

h

= lim
h→0

√
x
(
�1 + 1

2 ×
h
x − �1

)
h

where
h

x
� 1

= lim
h→0

(√
x× 1

2
× 1

x

)
=

1

2
x−

1
2 .

Using the binomial expansion
(
1 + h

x

) 1
2 = 1+

(
1
2

)
×
(
h
x

)
+
(
1
2!

)
×
(
1
2

)
×
(
−1

2

)
×
(
h
x

)2
+ · · ·

is perhaps a little more satisfying as you then have a h term which can tend to zero,
but we tried to write this question so that people who have not met the binomial
expansion can still do it!

For x−
1
2 you can use (1 + t)−

1
2 ≈ 1 + kt to give 1 ≈ (1 + kt)2(1 + t). This gives

1 ≈ 1 + t+ 2kt+ at2 + bt3 (where we are going to ignore the t2 and t3 terms) and so
k = −1

2 .

Alternatively, using the binomial expansion gives (1+ t)−
1
2 = 1+

(
−1

2

)
t+
(
1
2!

)
×
(
1
2

)
×(

−1
2

)
× t2 + · · · and hence (1 + t)−

1
2 ≈ 1− 1

2 t for small t. The argument is then:

lim
h→0

1√
x+h
− 1√

x

h
= lim

h→0

1√
x
×

(
1√
1+h

x

− 1

)
h

= lim
h→0

1√
x

(
�1− 1

2 ×
h
x − �1

)
h

where
h

x
� 1

= lim
h→0

(
− 1√

x
× 1

2
× 1

x

)
= −1

2
x−

3
2 .
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Preparation

2 (i) Let n = 1 then 4n + 6n − 1 = 4 + 6 − 1 = 9 which is divisible by 9 and hence the
statement is true for n = 1.

Assume the statement is true for n = k, so that 4k + 6k− 1 = 9M for some integer M .

Now consider the case n = k + 1. We have:

4k+1 + 6(k + 1)− 1 = 4× 4k + 6k + 6− 1

= 4× (9M − 6k + 1) + 6k + 6− 1

= 36M − 18k + 9

= 9(4M − 3k + 1)

and since M and k are both integers, 4M −3k+ 1 is an integer and 4k+1 + 6(k+ 1)−1
is divisible by 9. Hence if it is true for n = k then it is true for n = k + 1 and as it is
true for n = 1 it is therefore true for all integers n > 1.

(ii) Let n = 1. We have 13 = 1 and 1
4 × 12× (1 + 1)2 = 1

4 × 1× 4 = 1 and so the statement
is true when n = 1.

Assume the statement to be true when n = k so we have
k∑

i=1

i3 = 1
4k

2(k + 1)2.

Now consider the case n = k+1. We want to show that

k+1∑
i=1

i3 = 1
4(k+1)2([k+1]+1)2.

We have:

k+1∑
i=1

i3 =
k∑

i=1

i3 + (k + 1)3

= 1
4k

2(k + 1)2 + (k + 1)3

= 1
4(k + 1)2

[
k2 + 4(k + 1)

]
= 1

4(k + 1)2
[
k2 + 4k + 4

]
= 1

4(k + 1)2(k + 2)2 as required.

Hence if it is true for n = k then it is true for n = k + 1 and as it is true for n = 1 it
is therefore true for all integers n > 1.
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The STEP question

3 To show that F2 = 1 etc. you should write something like:

F2 = F1 + F0 = 1 + 0 = 1 .

You should also find that F5 = 5, F6 = 8 and F7 = 13.

For Fn+1Fn−1 − F 2
n it helps to be systematic

n Fn+1Fn−1 − F 2
n

1 F2F0 − F 2
1 1× 0− 12 = −1

2 F3F1 − F 2
2 2× 1− 12 = 1

3 F4F2 − F 2
3 3× 1− 22 = −1

4 F5F3 − F 2
4 5× 2− 32 = 1

From this, we make the conjecture that Fn+1Fn−1 − F 2
n = (−1)n. We know that this is true

when n = 1 (from the first line in the table), so now assume that it is true for n = k i.e. we
have Fk+1Fk−1 − F 2

k = (−1)k.

Consider the case n = k + 1. We want to show that Fk+2Fk − F 2
k+1 = (−1)k+1. There are

many ways you could approach it, one way is to start with the left hand side:

Fk+2Fk − F 2
k+1 = [Fk+1 + Fk]Fk − Fk+1 [Fk + Fk−1]

= ����FkFk+1 + F 2
k −����Fk+1Fk − Fk+1Fk−1

= −1×
[
Fk+1Fk−1 − F 2

k

]
= −1× (−1)k = (−1)k+1 as required.

Hence if it is true for n = k then it is true for n = k + 1 and as it is true for n = 1 it is
therefore true for all integers n > 1.

Several of these steps make use of the definition of the Fibonacci numbers, Fn+1 = Fn+Fn−1.

For the last part the suggested method is to use induction on k. Throughout this part, think
of n as being a fixed (but unknown) integer. Starting with the case k = 1 we have:

Fn+1 = F1Fn+1 + F0Fn = 1× Fn+1 + 0× Fn

which is true. When k = 21 we have:

Fn+2 = F2Fn+1 + F1Fn = 1× Fn+1 + 1× Fn

which is also true, from the definition of Fibonacci numbers.

1The reason for doing two base cases will be more obvious later. When doing this sort of question it will often
only be when you are completing the induction step that you realise that two base cases are necessary.
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Now assume that the statement is true for k = m, for some integer m, and also for k = m−1.
We then have Fn+m = FmFn+1 + Fm−1Fn and also Fn+m−1 = Fm−1Fn+1 + Fm−2Fn

2.
We want to show that the k = (m + 1)th case is true, i.e. we are trying to prove that
Fn+(m+1) = F(m+1)Fn+1 + F(m+1)−1Fn.

Fn+m+1 = Fn+m + Fn+m−1 (using the Fibonacci number definition)

= (FmFn+1 + Fm−1Fn) + (Fm−1Fn+1 + Fm−2Fn) (using the inductive steps)

= Fn+1 (Fm + Fm−1) + Fn (Fm−1 + Fm−2) (rearranging)

= Fn+1Fm+1 + FnFm (using the Fibonacci number definition)

= F(m+1)Fn+1 + F(m+1)−1Fn (as required.)

Hence if it is true for k = m and k = m− 1 then it is true for k = m+ 1 and as it is true for
k = 1 and k = 2 it is therefore true for all integers k > 1.

4 Do have a bit of a play around with this first. Try some different functions and see what you
can discover.

Start by taking f(x) = 1. We then can use (iv) with f(x) = g(x) = 1. This gives:

4
(
1× 1

)
= 141 + 141

41 = 241

0 = 41 i.e. 41 = 0 .

Then we can use (iii) with f(x) = c to get:

4c = 4
(
c× 1

)
= c×41

= c× 0 = 0 as required.

For 4x2 use (iv) (with f(x) = g(x) = x) and (i) to get:

4x2 = 4
(
x× x

)
= x4x+ x4x
= x+ x = 2x .

For 4x3 use (iv) (with f(x) = x and g(x) = x2) to get:

4x3 = 4
(
x× x2

)
= x4x2 + x24x
= x× 2x+ x2 × 1 = 3x2 .

At this point, it does appear that 4 differentiates the polynomial it is applied to. To prove
that this is true for all polynomials in x you need to take a bit of care with the argument.

2We needed two base cases as we want to assume the proposition is true for both k = m and k = m− 1.

Hints and Partial Solutions for A20 5



maths.org/step

Proposition:
4xn = nxn−1. (*)

We know that this is true for n = 0, 1, 2 and 3 from the previous work. Assume it is true
for n = k (i.e. we assume 4xk = kxk−1) and then consider the case n = k + 1. We want to
show that 4xk+1 = (k + 1)xk.

4xk+1 = 4
(
x× xk

)
= x4xk + xk4x
= x× kxk−1 + xk × 1

= kxk + xk = (k + 1)xk as required.

Hence if it is true for n = k then it is true for n = k + 1 and as it is true for n = 0 it is
therefore true for all integers n > 0.

Now consider a general polynomial, h(x) = anx
n + an−1x

n−1 + · · · a2x2 + a1x+ a0.

4
(
h(x)

)
= 4

(
anx

n + an−1x
n−1 + · · · a2x2 + a1x+ a0

)
= 4

(
anx

n
)

+4
(
an−1x

n−1)+ · · ·+4
(
a2x

2
)

+4
(
a1x
)

+4
(
a0
)

using (ii)

= an4
(
xn
)

+ an−14
(
xn−1

)
+ · · ·+ a24

(
x2
)

+ a14
(
x
)

+ 0 using (iii)

= an × nxn−1 + an−1 × (n− 1)xn−2 + · · ·+ a2 × 2x+ a1 using (∗)

= nanx
n−1 + (n− 1)an−1x

n−2 + · · ·+ 2a2x+ a1 =
d

dx
h(x) as required.
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Warm down

5 The following diagram is the same as in the question, with one dotted line added and some
extra points labelled.

(i) Using two similar triangles (4AXC and 4MDC — similar as the three angles are
the same) we can show that MD = 1

2h (since M is the midpoint of AC the lengths of
4AXC are double those in 4MDC).

Using sin θ = opposite
hypotenuse in 4MDB gives ∠MBD = ∠MBC = 30◦.

(ii) We have ∠CAB = ∠MBC = 30◦ and ∠ACB = ∠MCB as this is a shared angle.
Hence the third angles in 4ACB and 4MCB are the same and we have ∠ABC =
∠BMC.

(iii) Let ∠ABC = θ. We then have (using the similar triangles of (ii) above) ∠BMC = θ,
and ∠AMB = 180◦ − θ. The sine rule in 4AMB give us:

AB

sin(180◦ − θ)
=

h

sin 30◦

which simplifies to AB = 2h sin θ.

Using 4AXB gives AB sin θ = h. Equating the two expressions for AB gives us:

2h sin θ =
h

sin θ

and so sin2 θ = 1
2 and so θ = 45◦ (as we must have 0 < θ < 90◦).
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